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Abstract. In this paper we study the confluence of two regular singular
points of the hypergeometric equation into an irregular one. We study the
consequence of the divergence of solutions at the irregular singular point for
the unfolded system. Our study covers a full neighborhood of the origin in
the confluence parameter space. In particular, we show how the divergence of
solutions at the irregular singular point explains the presence of logarithmic
terms in the solutions at a regular singular point of the unfolded system.
For this study, we consider values of the confluence parameter taken in two
sectors covering the complex plane. In each sector, we study the monodromy
of a first integral of a Riccati system related to the hypergeometric equation.
Then, on each sector, we include the presence of logarithmic terms into a
continuous phenomenon and view a Stokes multiplier related to a 1-summable
solution as the limit of an obstruction that prevents a pair of eigenvectors of
the monodromy operators, one at each singular point, to coincide.

1. Introduction

The hypergeometric differential equation arises in many problems of mathematics
and physics and is related to special functions. It is written

(1) X(1 − X) v′′(X) + {c − (a + b + 1)X} v′(X) − ab v(X) = 0.

More precisely, any linear equation of order two (y′′(z) + p(z)y′(z) + q(z)y(z) =
0) with three regular singular points can be transformed into the hypergeometric
equation by a change of variables of the form y = f(z)v and a new independant
variable X obtained from z by a Möbius transformation (see for example [6]).

The confluent hypergeometric equation with a regular singular point at z = 0
and an irregular one at z = ∞ is often written in the form

(2) zu′′(z) + (c′ − z)u′(z) − a′u(z) = 0.

Solutions of this equation at the irregular point z = ∞ are in general divergent
and always 1-summable. C. Zhang ([12] and [13]) and J.-P. Ramis [8] showed that
the Stokes multipliers related to the confluent equation can be obtained from the
limits of the monodromy of the solutions of the nonconfluent equation (1). They
assumed that the bases of solutions of (1) around the merging singular points (z = b
and z = ∞) never contain logarithmic terms and they described the phenomenon
using two types of limits: first with ℑ(b) → ∞, then with ℜ(b) → ∞ on the subset

Date: November 1, 2007.
Key words and phrases. Hypergeometric equation, confluence, Stokes phenomenon, divergent

series, analytic continuation, summability, monodromy, confluent hypergeometric equation, Ric-
cati equation.

Research supported by NSERC and FQRNT in Canada.

1



2 C.Lambert, C.Rousseau

b = b0 + N for b0 ∈ C. They also proved the uniform convergence of the solutions
on all compact sets in the case ℑb → ∞.

In this paper, we propose a different approach : we describe the phenomenon
in a whole neighborhood of values of the confluence parameter, but we are forced
to cover the neighborhood with two sectors on which the presentations are differ-
ent. We are then able to explain the presence of the logarithmic terms: they occur
precisely for discrete values of the confluence parameter when we unfold a conflu-
ent equation with at least one divergent solution. On each sector, each divergent
solution explains the presence of logarithmic terms at one of the unfolded singular
points. The occurrence of logarithmic terms, a discrete phenomenon, is embedded
into a continuous phenomenon valid on the whole sector.

To help understanding the phenomenon, we give a translation of the hyper-
geometric equation in terms of a Riccati system in which two saddle-nodes are
unfolded with a parameter ǫ. The parameter space is again covered with two
sectors S±. For this Riccati system, we consider on each sector S± of the pa-
rameter space a first integral which has a limit when ǫ → 0, written in the form

Iǫ±(x, y) = Hǫ±(x)y−ρ1(x,ǫ)
y−ρ2(x,ǫ) where y = ρ1(x, ǫ) and y = ρ2(x, ǫ) are analytic invari-

ant manifolds of singular points and, for ǫ = 0, center manifolds of the saddle-nodes.
Then, when we calculate the monodromy of one of these first integrals, we can sep-
arate it into two parts: a continuous one which has a limit when ǫ → 0 inside the
sector S± and a wild one which has no limit but which is linear. The wild part
is independent of the divergence of the solutions and present in all cases. The di-
vergence of ρ1(x, 0) corresponds to the analytic invariant manifold of one singular
point being ramified at the other in the unfolding of one saddle-node. For particular
values of ǫ for which one singular point is a resonant node, this forces the node to
be nonlinearisable (i.e. to have a nonzero resonant monomial), in which case loga-

rithmic terms appear in Iǫ± . This is called the parametric resurgence phenomenon
in [9]. The divergence of ρ2(x, 0) corresponds to a similar phenomenon with the
pair of singular points coming from the unfolding of the other saddle-node. Finally,
we translate our results in the case of a universal deformation.

2. Solutions of the hypergeometric equations

In this paper, we study the confluence of the singular points 0 and 1; the confluent
hypergeometric equation has an irregular singular point at the origin. We make the
change of variables X = x

ǫ
in (1) to bring the singular point at X = 1 to a singular

point at x = ǫ 6= 0. We consider small values of ǫ and we limit the values of c to

(3) c = 1 − 1

ǫ
.

Let v(x
ǫ
) be denoted by w(x). Then (1) becomes

(4) x(x − ǫ)w′′(x) + {1 − ǫ + (a + b + 1)x}w′(x) + ab w(x) = 0.

We will then let ǫ → 0. We want to study what happens in a neighborhood of
ǫ = 0. The confluence parameter ǫ will be taken in two sectors, the union of which
is a small pointed neighborhood of the origin in the complex plane.

Remark 1. Although not explicitly written, our study is still valid if we let a(ǫ)
and b(ǫ) be analytic functions of ǫ.

Definition 2. Given γ ∈ (0, π
2 ) fixed, we define
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• S+ = {ǫ ∈ C : 0 < |ǫ| < r(γ), arg(ǫ) ∈ (−π + γ, π − γ)},
• S− = {ǫ ∈ C : 0 < |ǫ| < r(γ), arg(ǫ) ∈ (γ, 2π − γ)}.

Remark 3. γ can be chosen arbitrary small, but r(γ) will depend on γ and r(γ) → 0
as γ → 0. In particular, we will ask a + b + 1

ǫ
/∈ −N, a + 1

ǫ
/∈ −N and b + 1

ǫ
/∈ −N

on S+ and 2 − a − b − 1
ǫ

/∈ −N, a − 1
ǫ

/∈ −N and b − 1
ǫ

/∈ −N on S− (in this paper
N = {0, 1, ...}).
2.1. Bases for the solutions of the hypergeometric equation (4) at the
regular singular points x = 0 and x = ǫ. The fundamental group of C\{0, ǫ}
based at an ordinary point acts on a solution (valid at this base point) by giving
its analytic continuation at the end of a loop. In this way we have monodromy
operators around each singular point. We can extend it to act on any function of
solutions.

Notation 4. The monodromy operator M0 (resp. Mǫ) is the one associated to the
loop which makes one turn around the singular point x = 0 (resp. x = ǫ) in the
positive direction (and which does not surround any other singular point). In this
paper, since we use bases of solutions whose Taylor series are convergent in a disk
of radius ǫ centered at a singular point, it will be useful to define M0 (resp. Mǫ)
with the fundamental group based at a point belonging to the line joining −ǫ and
0 (resp. ǫ and 2ǫ).

As the hypergeometric equation is linear of second order, the space of solutions
is of dimension 2. Given a basis for the space of solutions, the monodromy operator
M0 (resp. Mǫ) acting on this basis is linear and is represented by a two-dimensional
matrix.

As elements of a basis B0 (resp. Bǫ) around the singular point x = 0 (resp.
x = ǫ), it is classical to use solutions which are eigenvectors of the monodromy
operator M0 (resp. Mǫ) whenever these solutions exist. However, none of these
bases is defined on the whole of a sector S+ or S−. This is why we later switch to
mixed bases. C. Zhang ([12] and [13]) also used mixed bases but he has not pushed
the study as far as we do.

Definition 5. The hypergeometric series kFj(a1, a2, ...ak, c1, c2, ..., cj ; x) is defined
by

(5) kFj(a1, a2, ...ak, c1, c2, ..., cj; x) = 1 +

∞
∑

n=1

(a1)n(a2)n...(ak)n

(c1)n(c2)n...(cj)nn!
xn

with

(6)

{

(a)0 = 1

(a)n = a(a + 1)(a + 2)...(a + n − 1)

and for c1, ..., cj /∈ −N.

A basis B0 = {w1(x), w2(x)} of solutions of (4) around the singular point x = 0
is well known (see [5] for details):



















w1(x) = 2F1(a, b, 1 − 1
ǫ
; x

ǫ
)

= (1 − x
ǫ
)1−

1
ǫ
−a−b

2F1(1 − 1
ǫ
− a, 1 − 1

ǫ
− b, 1 − 1

ǫ
; x

ǫ
),

w2(x) = (x
ǫ
)

1
ǫ 2F1(a + 1

ǫ
, b + 1

ǫ
, 1 + 1

ǫ
; x

ǫ
)

= (x
ǫ
)

1
ǫ (1 − x

ǫ
)1−

1
ǫ
−a−b

2F1(1 − a, 1 − b, 1 + 1
ǫ
; x

ǫ
).

(7)
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The solution w1(x) exists if 1 − 1
ǫ

/∈ −N whereas w2(x) exists if 1 + 1
ǫ

/∈ −N.
Similarly, a basis Bǫ = {w3(x), w4(x)} of solutions of (4) around the singular

point x = ǫ is given by:
{

w3(x) = 2F1(a, b, a + b + 1
ǫ
; 1 − x

ǫ
),

w4(x) = (x
ǫ
)

1
ǫ (1 − x

ǫ
)1−

1
ǫ
−a−b

2F1(1 − a, 1 − b, 2 − 1
ǫ
− a − b; 1 − x

ǫ
).

(8)

The solution w3(x) exists if a+b+ 1
ǫ

/∈ −N whereas w4(x) exists if 2− 1
ǫ
−a−b /∈ −N.

In particular, w2(x) and w3(x) exist for all ǫ ∈ S+ and w1(x) and w4(x) exist
for all ǫ ∈ S−, provided r(γ) is sufficiently small.

Traditionally, in order to get a basis when 1− 1
ǫ
∈ −N, a /∈ −N and b /∈ −N (resp.

2 − 1
ǫ
− a − b ∈ −N, 1 − a /∈ −N and 1 − b /∈ −N), the solution w1(x) in B0 (resp.

w4(x) in Bǫ) is replaced by some other solution w̃1(x) (resp. w̃4(x)) which contains
logarithmic terms. The converse is true if ǫ ∈ S+ is sufficiently small. Similarly,
we have w̃2(x) and w̃3(x) for specific value of ǫ in S− (see for example [2]).

The problem with this approach is that the basis B0 = {w1(x), w2(x)} (resp.
Bǫ = {w3(x), w4(x)}) does not have a limit when the parameter tends to a value
for which there are logarithmic terms at the origin (resp. at x = ǫ). For ǫ ∈ S+,
there are values of ǫ for which w1(x) or w4(x) may not be defined, whereas w2(x)
or w3(x) may not be defined for some values of ǫ in S−. This means that B0

and Bǫ are not optimal bases to describe the dynamics for all values of ǫ in the
sectors S±. We will rather consider the bases B+ = {w2(x), w3(x)} on S+ and
B− = {w4(x), w1(x)} on S−. With these bases we will explain the occurence of
logarithmic terms (a phenomenon occuring for discrete values of the confluence
parameter) in a continuous way. The following lemma will allow us to consider
only one of the bases, namely B+ with ǫ ∈ S+.

Lemma 6. The equation (4) is invariant under

(9)































c′ = 1 − c + a + b

ǫ′ = 1
1−c′

x′ = ǫ′(1 − x
ǫ
)

a′ = a

b′ = b

which transforms S+ into S− and B+ into B−.

2.2. The confluent hypergeometric equation and its summable solutions.
Taking the limit ǫ → 0 in (4), we obtain a confluent hypergeometric equation:

(10) x2 w′′(x) + {1 + (1 + a + b)x}w′(x) + ab w(x) = 0.

A basis of solutions around the origin is

(11)

{

ĝ(x) = 2F0(a, b;−x),

k̂(x) = e
1
x x1−a−b

2F0(1 − a, 1 − b; x) = e
1
x x1−a−bĥ(x).

Remark 7. The confluent equation in the literature is often studied with the irreg-
ular singular point at infinity:

(12) zu′′(z) + (c′ − z)u′(z) − au(z) = 0.
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The following transformation applied to (12) yields the confluent equation (10):

(13)











z = 1
x
,

u( 1
x
) = xaw(x),

c′ = a + 1 − b.

The following theorem is well-known, one can refer for instance to [7].

Theorem 8. The series ĝ(x) is divergent if and only if a /∈ −N and b /∈ −N. It

is 1-summable in all directions except R−. The series ĥ(x) is divergent if and only
if 1 − a /∈ −N and 1 − b /∈ −N. It is 1-summable in all directions except R+. The
Borel sums of these series, denoted g(x) and h(x), are thus defined in the sectors
illustrated in Figure 1.

g(x) h(x)

0
0

Figure 1. Domains of the Borel sums of the confluent series g(x)
and h(x)

As illustrated in Figure 1, we have one Borel sum g(x) in the region ℜ(x) > 0.
When extending g(x) to the region ℜ(x) < 0 by turning around the origin in the
positive (resp. negative) direction, we get a sum g+(x) (resp. g−(x)). The functions
g+(x) and g−(x) are different in general and never coincide if the series is divergent.
Since g+(x) and g−(x) have the same asymptotic expansion g(x), their difference
is a solution of (10) which is asymptotic to 0 in the region ℜ(x) < 0, and thus

(14) g+(xe2πi) − g−(x) = λk(x) if arg(x) ∈ (
−3π

2
,
−π

2
).

Similarly, we consider h(x) defined in the region ℜ(x) < 0. When we extend it by
turning around the origin in the positive (resp. negative) direction, we obtain the
sum h+(x) (resp. h−(x)). We define

(15)

{

k+(x) = e
1
x x1−a−bh+(x)

k−(x) = e
1
x x1−a−bh−(x)

for ℜ(x) > 0, and

(16) k(x) = e
1
x x1−a−bh(x)

for ℜ(x) < 0. Then we can write

(17) k+(x) − e2πi(1−a−b)k−(xe−2πi) = µg(x) if arg(x) ∈ (
−π

2
,
π

2
).

Remark 9. For all n ∈ Z, it is possible to construct a function gn(x), corresponding
to the Borel sum of the divergent series ĝ(x) in the regions arg(x) ∈ (−π

2 +2πn, π
2 +

2πn). Then, g+
n (x) (resp. g−n (x)) denotes its analytic continuation in the positive

(resp. negative) direction around the origin, defined in the region arg(x) ∈ (π
2 +

2πn, 3π
2 +2πn) (resp. arg(x) ∈ (−3π

2 +2πn, −π
2 +2πn)). Since g+

n+1(xe2πi) = g+
n (x),
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g−n+1(xe2πi) = g−n (x) and gn+1(xe2πi) = gn(x), the subscript n is not necessary and

the functions g(x), g+(x) and g−(x) are univalued. But what is important is that,
when considering g+(x), the + does not refer to the values of arg(x), but to the
fact that g+(x) has been obtained by analytic continuation of g(x) when turning in
the positive direction. Similar relations for h+(x), h−(x) and h(x) imply that these
functions are also univalued. On the other hand, x1−a−b is a multivalued function,
which becomes univalued as soon as arg(x) is determined.

Definition 10. In the relations (14) and (17), we call λ and µ the Stokes multipliers
associated respectively to the solutions g(x) and k(x).

Their values are calculated in [7]. Using the change of variable (13), we have

(18) λ = −2πieiπ(1−a−b)

Γ(a)Γ(b)

and

(19) µ = − 2iπ

Γ(1 − a)Γ(1 − b)
.

Notation 11. Let us write

(20) H0(x) =

{

k(x)
g−(x) if ℜ(x) < 0
k+(x)
g(x) if ℜ(x) > 0

and

(21) H0′(x) =

{

k−(x)
g(x) if ℜ(x) > 0
k(x)

g+(x) if ℜ(x) < 0

with H0(x) (resp. H0′(x)) analytic in the complex plane minus a cut with values in
CP

1, as illustrated in Figure 2. On purpose we leave the ambiguity in the argument.

In this form, H0(x) and H0′(x) are multivalued. They will become univalued when
arg(x) is specified.

H0′(x)H0(x)

0

0

Figure 2. Domains of H0(x) and H0′(x), with arbitrary radius

Proposition 12. The Stokes multiplier of g(x) is

(22) λ = 1
H0′(x)

− 1
H0(x) if arg(x) ∈ (−3π

2 , −π
2 ),

while the Stokes multiplier of k(x) is

(23) µ = H0(x) − e2πi(1−a−b)H0′(xe−2πi) if arg(x) ∈ (−π
2 , π

2 ).
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Proof. We have

(24)

λ = g+(xe2πi)
k(x) − g−(x)

k(x)

= g+(x)
k(x) − g−(x)

k(x)

= 1
H0′(x)

− 1
H0(x) if arg(x) ∈ (−3π

2 , −π
2 )

and

(25)

µ = k+(x)
g(x) − e2πi(1−a−b) k−(xe−2πi)

g(x)

= k+(x)
g(x) − e2πi(1−a−b) k−(xe−2πi)

g(xe−2πi)

= H0(x) − e2πi(1−a−b)H0′(xe−2πi) if arg(x) ∈ (−π
2 , π

2 ).

�

In view of this proposition, it will seem natural in the next section to study the
monodromy of some quotient of solutions of the hypergeometric equation (4). But
before, let us explore the link between divergent series in particular solutions of
the confluent differential equation and analytic continuation of series appearing in
solutions of the nonconfluent equation.

3. Divergence and Monodromy

3.1. Divergence and ramification: first observations. Let us illustrate by an
example the link between the divergence of a confluent series and the ramification
of its unfolded series.

Example 13. The series g(x) = 2F0(a, b;−x) is non-summable in the direction
R−, i.e. on the left side. By continuity, when we unfold with a small ǫ ∈ R, the
unfolded functions are

(26) gǫ(x) =

{

2F1(a, b, a + b + 1
ǫ
; 1 − x

ǫ
) if ǫ ∈ S+

2F1(a, b, 1 − 1
ǫ
; x

ǫ
) if ǫ ∈ S−.

Their analytic continuations will be ramified at the left singular point and regular at
the right singular point. For the special values of ǫ for which logarithmic terms may
exist in the general solution at the left singular point, this will force their existence.
Indeed, for these special values of ǫ, the solution either has logarithmic terms or is
a polynomial, in which case it cannot be ramified.

This example illustrates that a direction of non-summability for a confluent
series determines which merging singular point is "pathologic" (with ǫ in S±) for
an unfolded solution, as illustrated in Figure 3. Although subtleties are needed
to adapt Example 13 to the other solution k(x) = e

1
x x1−a−bh(x) because of the

ramification of x1−a−b, we have a similar phenomenon if we define adequately the
pathology. For example, if ǫ ∈ S+, the singular point x = 0 will be defined
pathologic for the solution w3(x) if the analytic continuation of this solution is
not an eigenvector of the monodromy operator M0. This will be studied more
precisely in Section 3.3 using the results we will obtain in the next two sections.
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0 0 ǫ

0 0 ǫ

ǫ 0

ǫ 0

2F0(a, b;−x) 2F1(a, b, a + b + 1
ǫ
; 1 −

x

ǫ
)

2F0(1 − a, 1 − b;x) 2F1(1 − a, 1 − b, 1 + 1
ǫ
; x

ǫ
)

2F1(a, b; 1 −

1
ǫ
, x

ǫ
)

2F1(1 − a, 1 − b; 2 − a − b − 1
ǫ
, 1 −

x

ǫ
)

⇐⇒

⇐⇒

or

or

∀ǫ ∈ S+ ∀ǫ ∈ S−

∀ǫ ∈ S+ ∀ǫ ∈ S−

Figure 3. Link between ramification of the analytic continuation
of the hypergeometric series in the unfolded case and divergence
(ramification) of the associated confluent series

3.2. Limit of quotients of solutions on S±. We will later see that a divergent
series in the basis of solutions at the confluence necessarily implies the presence of
an obstruction that prevents an eigenvector of M0 to be an eigenvector of Mǫ. As
a tool for our study, we will consider the behavior of the analytic continuation of
some functions of the particular solutions wi(x) ∈ B± when turning around singular
points. A first motivation for studying these functions comes from Proposition 12.
We will also see in Section 4 that these quantities have the same ramification as
first integrals of a Riccati system related to the hypergeometric equation, these first
integrals having a limit when ǫ → 0 on S±. They are defined by

(27) Hǫ+(x) =
κ+(ǫ)w2(x)

w3(x)
if ǫ ∈ S+

and

(28) Hǫ−(x) =
κ−(ǫ)w4(x)

w1(x)
if ǫ ∈ S−

with

(29) κ+(ǫ) = ǫ1−a−beπi(a+b−1+ 1
ǫ
), κ−(ǫ) = ǫ1−a−be−πi(a+b−1+ 1

ǫ
).

Hǫ±(x) are first defined in B(0, ǫ) ∩ B(ǫ, ǫ) and then analytically extended as in

Figures 4 and 5. The coefficients κ± in the functions Hǫ±(x) are chosen so that

Hǫ±(x) have the limit H0(x) when ǫ → 0 inside S±. More precisely, for ǫ ∈ S+,

we replace f(x) = (x
ǫ
)

1
ǫ (1− x

ǫ
)1−

1
ǫ
−a−b by κ+(ǫ)f(x), so that the limit when ǫ → 0

and ǫ ∈ S+ exists and corresponds to e
1
x x1−a−b. The limit is uniform on any

simply connected compact set which does not contain 0. The constant κ+(ǫ) (resp.
κ−(ǫ)) is the natural one to consider for ǫ ∈ S+ (resp. ǫ ∈ S−) when the analytic
continuation of κ+(ǫ)f(x) (resp. κ−(ǫ)f(x)) is done like in Figure 4 (resp. Figure
5).
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0 ǫ

Figure 4. Analytic continuation of κ+(ǫ)(x
ǫ
)

1
ǫ (1− x

ǫ
)1−

1
ǫ
−a−b for

ǫ ∈ S+

ǫ 0

Figure 5. Analytic continuation of κ−(ǫ)(x
ǫ
)

1
ǫ (1− x

ǫ
)1−

1
ǫ
−a−b for

ǫ ∈ S−

Proposition 14. When ǫ → 0 and ǫ ∈ S+ (resp. ǫ ∈ S−), Hǫ+(x) (resp. Hǫ−(x))
converges uniformly to H0(x) on any simply connected compact subset of the domain
of H0(x) illustrated in Figure 2. More precisely, we have the uniform limits on
compact subsets:

(30)







limǫ→0
ǫ∈S+

κ+(ǫ)w2(x) = k+(x)

limǫ→0
ǫ∈S+

w3(x) = g(x)







limǫ→0
ǫ∈S−

κ−(ǫ)w4(x) = k+(x)

limǫ→0
ǫ∈S−

w1(x) = g(x)

Proof. The hypergeometric functions appearing in wk(x) (k = 1, 2, 3, 4) and having
the limit h(x) or g(x) are ramified as illustrated in Figure 3, which suggests to take
sectors like in Figure 2 when considering the quotient of these functions.

We first prove the uniform convergence w3(x) to g(x) on simply connected com-
pact subsets of the domain {x, | arg(x)| < 3π

2 } for ǫ ∈ S+. This proof has been
inspired by [12]. Let us suppose that a− b /∈ Z. The Borel sum of g(x) is the same
as the analytic continuation of this solution, which is (see [5])

(31) w3(x) =
Γ(a + b + 1

ǫ
)Γ(b − a)

Γ(b)Γ(b + 1
ǫ
)

w5(x) +
Γ(a + b + 1

ǫ
)Γ(a − b)

Γ(a)Γ(a + 1
ǫ
)

w6(x)

with

(32)

{

w5(x) = ( ǫ
x
)a

2F1(a, a + 1
ǫ
, a + 1 − b; ǫ

x
)

w6(x) = ( ǫ
x
)b

2F1(b, b + 1
ǫ
, b + 1 − a; ǫ

x
).

The function 2F1(a, a+ 1
ǫ
, a+1− b; ǫ

x
) converges uniformly on simply connected

compact subsets to 1F1(a, a + 1 − b; 1
x
) and we have

(33) limǫ→0
ǫ∈S+

ǫaΓ(a+b+ 1
ǫ
)

Γ(b+ 1
ǫ
)

= 1.

The same relations apply with a and b interchanged so w3(x) converges uniformly
on simply connected compact subsets to

(34) g(x) =
Γ(b − a)

Γ(b)
x−a

1F1(a, a + 1 − b;
1

x
) +

Γ(a − b)

Γ(a)
x−b

1F1(b, b + 1 − a;
1

x
)

Let us suppose now that a − b = −m with m ∈ N. We take h small, we
let a = b − m + h. We first show that limh→0 w3(x) exists with x on a simply
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connected compact subset of the domain {x, | arg(x)| < 3π
2 }. We write w3(x) as

(35)
w3(x) = (a − b)Γ(b − a)Γ(a − b) Γ(a + b + 1

ǫ
)

[

w5(x)

Γ(b)Γ(b+ 1
ǫ
)Γ(a−b+1)

− w6(x)

Γ(a)Γ(a+ 1
ǫ
)Γ(b−a+1)

]

and take the limit h → 0 with a = b − m + h. The part inside brackets has a zero
at h = 0 since

(36)
limh→0

w5(x)
Γ(a−b+1) = ( ǫ

x
)b (b−m)m(b−m+ 1

ǫ
)m

m! 2F1(b, b + 1
ǫ
, m + 1; ǫ

x
)

=
Γ(b)Γ(b+ 1

ǫ
)w6(x)

Γ(a)Γ(a+ 1
ǫ
)Γ(b−a+1)

The left part of (35) has a simple pole at h = 0 so limh→0 w3(x) exists. Since w3(x)
is an analytic function of h on a punctured neighborhood of h = 0, we have that
w3(x) converges uniformly on simply connected compact subsets to limh→0 w3(x)
when h → 0. Similarly, g(x) converges uniformly on simply connected compact
subsets to limh→0 g(x) since

(37) limh→0
1F1(a,a+1−b; 1

x
)

xaΓ(a−b+1) =
Γ(b)1F1(b,b+1−a; 1

x
)

xbΓ(a)Γ(b−a+1) .

Hence, limh→0 w3(x) converges uniformly on simply connected compact subsets to
limh→0 g(x) when ǫ → 0 with ǫ ∈ S+. Interchanging a and b leads to the case
b − a ∈ −N.

Now, w2(x) (as in (7)) converges uniformly to k(x) on simply connected compact
subsets of the domain {x, | arg(−x)| < 3π

2 } to k(x). Indeed, we can decompose
κ+(ǫ)w2(x) as

(38)
(

e
πi
ǫ (

x

ǫ
)

1
ǫ (1 − x

ǫ
)−

1
ǫ

)

(

(x − ǫ)1−a−b
2F1(1 − a, 1 − b, 1 +

1

ǫ
;
x

ǫ
)

)

.

The first part converges to e
1
x . The second part converges to x1−a−b

2F0(1−a, 1−
b; x). The fact that 2F1(1−a, 1−b, 1+ 1

ǫ
; x

ǫ
) converges uniformly on simply connected

compact subsets to 2F0(1−a, 1−b; x) can be obtained from the convergence of w3(x)
to g(x) by a change of coordinates. The case ǫ ∈ S− is similar. �

3.3. Divergence and nondiagonal form of the monodromy operator in
the basis B+. It is clear that w2(x) is an eigenvector of the monodromy operator

M0 with eigenvalue e
iπ
ǫ , and that w3(x) is an eigenvector of Mǫ with eigenvalue

1. In general, eigenvectors of the monodromy operators M0 and Mǫ should not
coincide. In the generic case, the analytic continuation of an eigenvector of the
monodromy operator M0 is not an eigenvector of Mǫ. If we are in the generic
case and this persists to the limit ǫ = 0, then at the limit we have a nonzero
Stokes multiplier. The results stated in the next theorem tell us whether or not the
analytic continuation of w3(x) (resp. w2(x)) is an eigenvector of M0 (resp. Mǫ).
This is done in the two covering sectors S± of a small neighborhood of ǫ, and it
includes the presence of logarithmic terms: we will detail this last part in Theorem
17 below.

Notation 15. Let w(δ,θ)(x) be the analytic continuation of w(x) when starting on
(0, ǫ) and turning of an angle θ around x = δ, with δ ∈ {0, ǫ} (see Figure 6). In
short, w(δ,π)(x) can be obtained from the action of the monodromy operator around
x = δ applied on w(δ,−π)(x).
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0 ǫ

w(0,π)(x)

w(0,−π)(x)

w(ǫ,−π)(x)

w(ǫ,π)(x)

Figure 6. Analytic continuation of w(x)

Theorem 16. • If ǫ ∈ S+, then

(39)

(

κ+(ǫ)w2,(0,π)

w3,(0,π)

)

=

(

e
2πi

ǫ 0
λ+(ǫ) 1

)(

κ+(ǫ)w2,(0,−π)

w3,(0,−π)

)

and

(40)

(

κ+(ǫ)w2,(ǫ,π)

w3,(ǫ,π)

)

=

(

e2πi(1−a−b− 1
ǫ
) µ+(ǫ)

0 1

)(

κ+(ǫ)w2,(ǫ,−π)

w3,(ǫ,−π)

)

,

with

(41) µ+(ǫ) =
−2πi

Γ(1 − a)Γ(1 − b)

ǫ1−a−bΓ(1 + 1
ǫ
)

Γ(a + b + 1
ǫ
)

and

(42) λ+(ǫ) =
−2πieπi(1−a−b)

Γ(a)Γ(b)

ǫa+b−1Γ(a + b + 1
ǫ
)

Γ(1 + 1
ǫ
)

.

Hence, when it is nonzero, the coefficient λ+(ǫ) (resp. µ+(ǫ)) represents
the obstruction that prevents w3(x) (resp. w2(x)) of being an eigenvector
of the monodromy operator around x = 0 (resp. x = ǫ).

• If ǫ ∈ S−, then

(43)

(

κ−(ǫ)w4,(ǫ,π)

w1,(ǫ,π)

)

=

(

e2πi(1− 1
ǫ
−a−b) 0

λ−(ǫ) 1

)(

κ−(ǫ)w4,(ǫ,−π)

w1,(ǫ,−π)

)

and

(44)

(

κ−(ǫ)w4,(0,π)

w1,(0,π)

)

=

(

e
2πi

ǫ µ−(ǫ)
0 1

)(

κ−(ǫ)w4,(0,−π)

w1,(0,−π)

)

,

with

(45) µ−(ǫ) =
−2πi

Γ(1 − a)Γ(1 − b)

(ǫeπi)1−a−bΓ(2 − 1
ǫ
− a − b)

Γ(1 − 1
ǫ
)

and

(46) λ−(ǫ) =
−2πi

Γ(a)Γ(b)

(ǫ)a+b−1Γ(1 − 1
ǫ
)

Γ(2 − 1
ǫ
− a − b)

.

Hence, when it is nonzero, the coefficient λ−(ǫ) (resp. µ−(ǫ)) represents
the obstruction that prevents w1(x) (resp. w4(x)) of being an eigenvector
of the monodromy operator around x = ǫ (resp. x = 0).

Then, with the limit taken for any path in S+ or in S−, we have

(47) lim
ǫ→0

µ±(ǫ) = µ
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and

(48) lim
ǫ→0

λ±(ǫ) = λ,

which are precisely the Stokes multipliers associated to the solutions k(x) and g(x)
and given by (18) and (19).

Proof. Let ǫ ∈ S+. To make analytic continuation of the solutions w2(x) and w3(x),
we need to make further restrictions on the values of ǫ, but we will shortly show
the validity of the result without these hypotheses. We have (see for example [5])

• if 2 − 1
ǫ
− a − b /∈ −N,

(49)
w2(x) =

Γ(1− 1
ǫ
−a−b)Γ(1+ 1

ǫ
)

Γ(1−a)Γ(1−b) w3(x) +
Γ(a+b−1+ 1

ǫ
)Γ(1+ 1

ǫ
)

Γ(a+ 1
ǫ
)Γ(b+ 1

ǫ
)

w4(x)

= D(ǫ) w3(x) + E(ǫ) w4(x);

• if 1 − 1
ǫ

/∈ −N,

(50)
w3(x) =

Γ( 1
ǫ
)Γ(a+b+ 1

ǫ
)

Γ(b+ 1
ǫ
)Γ(a+ 1

ǫ
)

w1(x) +
Γ(a+b+ 1

ǫ
)Γ(− 1

ǫ
)

Γ(a)Γ(b) w2(x)

= A(ǫ) w1(x) + B(ǫ) w2(x).

These relations allow the calculation of the monodromy of w2(x) (resp. w3(x))
around x = ǫ (resp. x = 0). The explosion of the coefficients (coefficients becoming
infinite) for specific values of ǫ corresponds to the presence of logarithmic terms in
the general solution around the singular point x = ǫ (resp. x = 0). We have, in the
region B(0, ǫ) ∩ B(ǫ, ǫ) (with the hypothesis that 2 − 1

ǫ
− a − b /∈ −N),

(51)
κ+(ǫ)w2(x) = κ+(ǫ)(D(ǫ)w3(x) + E(ǫ)w4(x))

= κ+(ǫ)(D(ǫ) 2F1(a, b, a + b + 1
ǫ
; 1 − x

ǫ
)

+E(ǫ)(x
ǫ
)

1
ǫ (1 − x

ǫ
)1−

1
ǫ
−a−b

2F1(1 − a, 1 − b,− 1
ǫ

+ 2 − a − b; 1 − x
ǫ
)).

Since w3,(ǫ,−π) = w3,(ǫ,π), we obtain

(52) κ+(ǫ)w2,(ǫ,π) = e2πi(1−a−b− 1
ǫ
)κ+(ǫ)w2,(ǫ,−π) + µ+(ǫ)w3,(ǫ,−π)

with

(53)
µ+(ǫ) = D(ǫ)ǫ1−a−beπi(a+b−1+ 1

ǫ
)
(

1 − e2πi(1−a−b− 1
ǫ
)
)

= −D(ǫ)ǫ1−a−b
(

eπi(1−a−b− 1
ǫ
) − e−πi(1−a−b− 1

ǫ
)
)

.

Since sin(z) = eiz−e−iz

2i
and Γ(z) sin(πz) = π

Γ(1−z) , we can simplify the latter

expression:

(54)

µ+(ǫ) = −2iD(ǫ)ǫ1−a−b sin(π(1 − a − b − 1
ǫ
)

= −2i
Γ(1−1

ǫ
−a−b)Γ(1+ 1

ǫ
)

Γ(1−a)Γ(1−b) ǫ1−a−b sin(π(1 − a − b − 1
ǫ
))

= −2πi
Γ(1+ 1

ǫ
)

Γ(1−a)Γ(1−b)ǫ
1−a−b 1

Γ(a+b+ 1
ǫ
)
.

Remark that this expression is defined even if 2 − 1
ǫ
− a − b ∈ −N, so we have

removed the indeterminacy!
In the particular case a + b ∈ Z,

(55) µ+(ǫ) = − −2iπ

Γ(1 − a)Γ(1 − b)
ǫ1−a−br(a + b)
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with

(56) r(γ) =
Γ(1+ 1

ǫ
)

Γ(γ+ 1
ǫ
)

=











∏γ−1
j=1

1
1
ǫ
+j

γ > 1 ,
∏0

j=γ(1
ǫ

+ j) γ < 1 ,

1 γ = 1 .

Finally,

(57) lim
ǫ→0
ǫ∈S+

ǫ1−a−b
Γ(1

ǫ
+ 1)

Γ(1
ǫ

+ a + b)
= 1.

Hence

(58) lim
ǫ→0
ǫ∈S+

µ+(ǫ) = − 2iπ

Γ(1 − a)Γ(1 − b)
= µ.

Let ǫn such that 2− 1
ǫn

−a−b = −n, n ∈ N. Recall that we have supposed ǫ 6= ǫn

to obtain µ+(ǫ). Since µ+(ǫ) is analytic in a punctured disk B(ǫn, ρ)\{ǫn} (for some
well chosen ρ ∈ R+), and limǫ→ǫn

µ+(ǫ) exists, then µ+(ǫ) is analytic in B(ǫn, ρ).
Hence, the result obtained is valid without the restriction 2 − 1

ǫ
− a − b /∈ −N.

A similar calculation gives, with w2,(0,π) = e
2πi

ǫ w2,(0,−π),

(59) w3,(0,π) = w3,(0,−π) + λ+(ǫ)κ+(ǫ)w2,(0,−π)

with λ+(ǫ) = B(ǫ)e−πi(a+b−1+ 1
ǫ
)ǫa+b−1

(

e
2πi

ǫ − 1
)

.

And then

(60) λ+(ǫ) = −2πieπi(1−a−b) 1

Γ(a)Γ(b)
ǫa+b−1 Γ(a + b + 1

ǫ
)

Γ(1 + 1
ǫ
)

,

which, for a + b ∈ Z, yields

(61) λ+(ǫ) =
−2πieπi(1−a−b)ǫa+b−1

Γ(a)Γ(b)

1

r(a + b)
.

Hence,

(62) lim
ǫ→0
ǫ∈S+

λ+(ǫ) =
−2πieiπ(1−a−b)

Γ(a)Γ(b)
= λ.

Finally, Lemma 6 and equation (3) relates the case ǫ′ ∈ S+ to the case ǫ ∈ S−,
and we have, denoting wi(x) by wi(x, ǫ),

(63)
κ+(ǫ) = (eπi ǫ′

ǫ
)a+b−1κ−(ǫ′)

w2(x, ǫ) = w4(x
′, ǫ′)

w3(x, ǫ) = w1(x
′, ǫ′)

�

Theorem 17. (1) If the series g(x) is divergent, then, for all ǫ ∈ S+ (resp.
for all ǫ ∈ S−), w3(x) (resp. w1(x)) is not an eigenvector of the mon-
odromy operator M0 (resp. Mǫ). In particular, this forces the existence of
logarithmic terms at x = 0 (resp. x = ǫ) for all special values of ǫ for which
they may exist.
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(2) Conversely, for fixed a and b, if w3(x) (resp. w1(x)) is not an eigenvector
of the monodromy operator M0 (resp. Mǫ) for some ǫ ∈ S+ (resp. for some
ǫ ∈ S−), then the series g(x) is divergent.

(3) If the series h(x) is divergent, then, for all ǫ ∈ S+ (resp. for all ǫ ∈ S−),
w2(x) (resp. w4(x)) is not an eigenvector of the monodromy operator Mǫ

(resp. M0). In particular, this forces the existence of logarithmic terms at
x = ǫ (resp. x = 0) for all special values of ǫ for which they may exist.

(4) Conversely, for fixed a and b, if w2(x) (resp. w4(x)) is not an eigenvector
of the monodromy operator Mǫ (resp. M0) for some ǫ ∈ S+ (resp. for some
ǫ ∈ S−), then the series h(x) is divergent.

Proof. Let ǫ ∈ S+ (the proof for ǫ ∈ S− is similar). With Theorem 8, we have
that g(x) is divergent if and only if λ 6= 0. Since limǫ→0 λ+(ǫ) = λ, we have
λ+(ǫ) 6= 0 for ǫ ∈ S+ provided the radius of S+ is sufficiently small. If w3(x) were
an eigenvector of the monodromy operator M0, then we would have λ+(ǫ) = 0 which
is a contradiction. If λ+(ǫ) 6= 0, then the analytic continuation of w3(x) is ramified
around x = 0. When 1 − 1

ǫ
∈ −N, w2(x) is not ramified around x = 0 and either

w1(x) is a polynomial or it has logarithmic terms. Since the analytic continuation
of w3(x) is ramified at x = 0 and since it is a linear combination of w1(x) and w2(x),
we are forced to have w1(x) with logarithmic terms. The argument is similar for
w2(x).

To prove the converse, we use the expressions (41) and (42): for ǫ ∈ S+ and a
and b fixed, we have λ+(ǫ) 6= 0 if and only if λ 6= 0 as well as µ+(ǫ) 6= 0 if and only
if µ 6= 0. �

Hence, the singular direction R− (resp. R+) of the 1-summable series g(x) (resp.
h(x)) is directly related to the presence of logarithmic terms at the left (resp. right)
singular point for specific values of the confluence parameter.

Remark 18. The necessary condition (1) in Theorem 17 is still valid when a and
b are analytic functions a(ǫ) and b(ǫ). A counter example to the converse (2), for
instance with a(ǫ) and b(ǫ) non constant, is given by

(64)

{

a(ǫ) = n + ǫ, n ∈ −N

b(ǫ) = m + ǫ, m ∈ N∗.

Looking at Theorem 16, it is clear that, even in the convergent case, there is

some wild behavior (e
2πi

ǫ ) in the monodromy of the solutions which does not go
to the limit. Fortunately, this wild behavior is linear. In the next section, we will
separate it from the non linear part in order to get a limit for the latter.

3.4. The wild and continous part of the monodromy operator. In this

section, we see that the monodromy of Hǫ±(x) can be separated in a wild part

and continuous part. This is the advantage of studying the monodromy of Hǫ±(x)
instead of the monodromy of each solution. The wild part is present even in the
case of convergence of the confluent series in g(x) and in k(x) and is purely linear.
The continous part leads us to the Stokes coefficients. This is still done in the two
covering sectors S± of a small neighborhood of ǫ.
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Theorem 19. Let Hǫ±

i,(δ,θ)(x) be obtained from analytic continuation of Hǫ±(x) as

in notation 15. The relation between Hǫ±

(ǫ,∓π) and Hǫ±

(ǫ,±π), as well as the relation

between Hǫ±

(0,∓π) and Hǫ±

(0,±π) may be separated into

• a wild linear part with no limit at ǫ = 0
• a continuous non linear part

on each of the sectors S±. More precisely,

• if ǫ ∈ S+,

(65) Hǫ+

(ǫ,−π) = e2πi(a+b−1+ 1
ǫ
)(Hǫ+

(ǫ,π) − µ+(ǫ))

and

(66)
1

Hǫ+

(0,π)

= e
−2πi

ǫ

(

1

Hǫ+

(0,−π)

+ λ+(ǫ)

)

with µ+(ǫ) and λ+(ǫ) as in (41) and (42).
• if ǫ ∈ S−,

(67) Hǫ−

(0,−π) = e
−2πi

ǫ (Hǫ−

(0,π) − µ−(ǫ))

and

(68)
1

Hǫ−
(ǫ,π)

= e2πi(a+b−1+ 1
ǫ
)

(

1

Hǫ−
(ǫ,−π)

+ λ−(ǫ)

)

with µ−(ǫ) and λ−(ǫ) as in (45) and (46).

Proof. The proof is a mere calculation using (39), (40), (43) and (44). �

Proposition 20. To know which invariants are realisable, it is sufficient to look
at the product λ+(ǫ)µ+(ǫ). If a and b are analytic functions of ǫ, this last product
is analytic in a neighborhood of ǫ = 0.

Proof. If µ+(ǫ) 6= 0, we can take µ+(ǫ)w3(x) instead of w3(x) in the expression

for Hǫ+(x). Then, µ+(ǫ) is replaced by 1 in equation (65) and λ+(ǫ) is replaced
by λ+(ǫ)µ+(ǫ) in equation (66). Similarly if λ+(ǫ) 6= 0. So we can regard our
invariants as 1 and λ+(ǫ)µ+(ǫ), instead of λ+(ǫ) and µ+(ǫ) in the case where one
of them is different from 0. We have

(69)

λ+(ǫ)µ+(ǫ) = − 4π2eπi(1−a−b)

Γ(1−a)Γ(1−b)Γ(a)Γ(b)

= −4eπi(1−a−b) sin(πa) sin(πb)
= −(1 − e−2πia)(1 − e−2πib)
= λ−(ǫ)µ−(ǫ).

�

Remark 21. If µ+(ǫ) 6= 0 (resp. λ+(ǫ) 6= 0), the product λ+(ǫ)µ+(ǫ) = λ−(ǫ)µ−(ǫ)
is zero precisely when a ∈ −N or b ∈ −N (resp. 1 − a ∈ −N or 1 − b ∈ −N), i.e.
when g(x) (resp. k(x)) is a convergent solution.

Remark 22. When a + b = 1, we have µ+(ǫ) = λ+(ǫ) and µ−(ǫ) = λ−(ǫ) (and
µ = λ). We will see in Remark 26 of Section 4 that this is the particular case when
the formal invariants of the two saddle-nodes of the Riccati equation (70) vanish.
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4. A related Riccati system

4.1. First integrals of a Riccati system related to the hypergeometric

equation (4). We studied the monodromy of Hǫ±(x) = κ±(ǫ)wi(x)
wj(x) (with (i, j) =

{

(2, 3), ǫ ∈ S+

(4, 1), ǫ ∈ S− ) instead of the monodromy of each solution wk(x), for k = i, j.

To justify this choice, we transform the hypergeometric equation into a Riccati
equation (see for instance [3]) and find a first integral of the Riccati system.

Proposition 23. The Riccati system

(70)

{

ẋ = x(x − ǫ)

ẏ = abx(x − ǫ) + (−1 + (1 − a − b)x)y + y2

is related to the hypergeometric equation (4) with singular points at {0, ǫ,∞} with
the following change of variable:

(71) y = −x(x − ǫ)
w′(x)

w(x)

The space of all nonzero solutions (Ciwi(x) + Cjwj(x)) of the hypergeometric

equation is the manifold CP
1 × C∗. The next proposition give the expression of

a first integral of the Riccati system which takes values in CP
1. Up to a constant

(in C∗), this first integral is related to a general solution of the hypergeometric
equation.

Proposition 24. Let wj(X) et wi(X) be two linearly independent solutions of the
hypergeometric equation (4). In their shared region of validity we have the following
first integral of the Riccati system (70):

(72) Iǫ
(i,j) =

wi(x)

wj(x)

(

y − ρi(x, ǫ)

y − ρj(x, ǫ)

)

where

(73) ρi(x, ǫ) = −x(x − ǫ)
w′

i(x)

wi(x)
.

In order that the limit exists when ǫ ∈ S+ goes to zero, we consider the first
integral

(74) Iǫ± =

{

κ+(ǫ)Iǫ
(2,3) if ǫ ∈ S+

κ−(ǫ)Iǫ
(4,1) if ǫ ∈ S−

where κ±(ǫ) are defined in (29). Now let us see why we can work with a simpler
expression than this one to study its ramification.

Proposition 25. The quotient Hǫ± = κ±(ǫ)wi(x)
wj(x) has the same ramification around

x = 0 and x = ǫ as

(75) Iǫ± = κ±(ǫ)
wi(x)

wj(x)

(

y − ρi(x, ǫ)

y − ρj(x, ǫ)

)

,

namely we can replace Hǫ± by Iǫ± in the formulas (65), (66), (67) and (68).
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Proof. Let us prove that Hǫ+ = κ+(ǫ)wi(x)
wj(x) has the same ramification as Iǫ+ in the

case ǫ ∈ S+. We start with the ramification around x = ǫ. We have, with relation
(40),

(76)

w′
2,(ǫ,−π)(x)

w2,(ǫ,−π)(x) =
κ+(ǫ)w′

2,(ǫ,−π)(x)

κ+(ǫ)w2,(ǫ,−π)(x)

=
e
2πi(a+b+ 1

ǫ
−1)(κ+(ǫ)w′

2,(ǫ,π)(x)−µ+(ǫ)w′
3,(ǫ,π)(x))

e
2πi(a+b+ 1

ǫ
−1)(κ+(ǫ)w2,(ǫ,π)(x)−µ+(ǫ)w3,(ǫ,π)(x))

= 1

κ+(ǫ)
w2,(ǫ,π)(x)

w3,(ǫ,π)(x)
−µ+(ǫ)

(κ+(ǫ)
w′

2,(ǫ,π)(x)

w3,(ǫ,π)(x) − µ+(ǫ)
w′

3,(ǫ,π)(x)

w3,(ǫ,π)(x))

= 1

Hǫ+

(ǫ,π)
−µ+(ǫ)

(

w′
2,(ǫ,π)(x)

w2,(ǫ,π)(x)H
ǫ+

(ǫ,π) − µ+(ǫ)
w′

3,(ǫ,π)(x)

w3,(ǫ,π)(x)

)

.

Using (73), (65) and (76), we have
(77)

Iǫ+

(ǫ,−π) = Hǫ+

(ǫ,−π)

(

y−ρ2,(ǫ,−π)(x,ǫ)

y−ρ3,(ǫ,−π)(x,ǫ)

)

= e2πi(a+b−1+ 1
ǫ
)(Hǫ+

(ǫ,π) − µ+(ǫ))
y+x(x−ǫ)

w′
2,(ǫ,−π)

(x)

w2,(ǫ,−π)(x)

y+x(x−ǫ)
w′

3,(ǫ,−π)
(x)

w3,(ǫ,−π)(x)

= e2πi(a+b−1+ 1
ǫ
)
(Hǫ+

(ǫ,π)−µ+(ǫ))y+x(x−ǫ)

„

w′
2,(ǫ,π)

(x)

w2,(ǫ,π)(x)
Hǫ+

(ǫ,π)−µ+(ǫ)
w′

3,(ǫ,π)
(x)

w3,(ǫ,π)(x)

«

y+x(x−ǫ)
w′

3,(ǫ,π)
(x)

w3,(ǫ,π)(x)

= e2πi(a+b−1+ 1
ǫ
)
(

Hǫ+

(ǫ,π)

y−ρ2,(ǫ,π)(x,ǫ)

y−ρ3,(ǫ,π)(x,ǫ) − µ+(ǫ)
)

= e2πi(a+b−1+ 1
ǫ
)
(

Iǫ+

(ǫ,π) − µ+(ǫ)
)

.

The proofs for Iǫ+

(0,±π), Iǫ−

(0,±π) and Iǫ−

(ǫ,±π) are similar to this one. �

4.2. Divergence and unfolding of the saddle-nodes. Let us consider the Ric-
cati system (70) with ǫ = 0. It has two saddle-nodes located at (0, 0) and (0, 1)
(see Figure 7). In the unfolding (with maybe a(ǫ) and b(ǫ)), this yields the Riccati

y = 1

y = 0

x = 0

Figure 7. Phase plane ǫ = 0

system (70) with the four singular points (0, 0), (ǫ, 0), (0, 1) and (ǫ, y1) as illustrated
in Figures 8 and 9, with y1 = 1 + ǫ(a + b − 1).

The quotient of the eigenvalue in y by the eigenvalue in x of the Jacobian, for
each singular point, is given in Table 1.

Remark 26. By summing the quotient of the eigenvalues at the corresponding
saddle and node, we get the formal invariant of the saddle-node at (0, 0) (resp. at
(0, 1)), which is 1 − a − b (resp. a + b − 1).
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Singular point Quotient of eigenvalues
(0, 0) 1

ǫ

(ǫ, 0) 1 − 1
ǫ
− a − b

(0, 1) −1
ǫ

(ǫ, y1) −1 + 1
ǫ

+ a + b

Table 1. Quotient of the eigenvalue in y by the eigenvalue in x
of the Jacobian for each singular point

y = 1
y = y1

y = 0

x = 0 x = ǫ

Figure 8. Phase plane if ǫ and 1
ǫ

+ a + b ∈ R, ǫ > 0

y = y1
y = 1

y = 0

x = ǫ x = 0

Figure 9. Phase plane if ǫ and 1
ǫ

+ a + b ∈ R, ǫ < 0

The curves y − ρk(x, ǫ) = 0 for k = i, j appearing in the first integral (72) are
solution curves (trajectories) of the Riccati system, more precisely analytic invariant
manifolds of two of the singular points when ǫ ∈ S±. For example, for ǫ ∈ S+,
y = ρ2(x, ǫ) is the invariant manifold of the singular point (0, 1) and y = ρ3(x, ǫ) is
the invariant manifold of (ǫ, 0) (see Figure 10).

Indeed,
(78)

ρ2(x, ǫ) = −x(x − ǫ)
w′

2(x)
w2(x)

= 1 − x
ǫ

+ {ǫ(a + b − 1) + 1}x
ǫ

+ x(1 − x
ǫ
) (1−a)(1−b)

1+ 1
ǫ

2F1(2−a,2−b,2+ 1
ǫ
; x

ǫ
)

2F1(1−a,1−b,1+ 1
ǫ
; x

ǫ
)
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y = 1 y = y1

y = 0

x = 0 x = ǫ

y = ρ2(x, ǫ)

y = ρ3(x, ǫ)

Figure 10. Invariant manifolds y = ρ2(x, ǫ) and y = ρ3(x, ǫ), case
ǫ ∈ R+

and ρ2(0, ǫ) = 1. Similarly,

(79)
ρ3(x, ǫ) = −x(x − ǫ)

w′
3(x)

w3(x)

= −x(x − ǫ) ab
a+b+ 1

ǫ

2F1(1+a,1+b,1+a+b+ 1
ǫ
;1− x

ǫ
)

2F1(a,b,a+b+ 1
ǫ
;1− x

ǫ
)

and ρ3(ǫ, ǫ) = 0.
The divergence of g(x) corresponds to a nonanalytic center manifold at (0, 0) for

ǫ = 0. When we unfold on S+ (resp. S−), the invariant manifold of (ǫ, 0) (resp.
(0, 0)) is necessarily ramified at (0, 0) (resp. (ǫ, 0)) for small ǫ (see Figure 11). In
the particular case when 1 − 1

ǫ
∈ −N (resp. a + b + 1

ǫ
) with ǫ small, then (0, 0)

(resp. (ǫ, 0)) is a resonant node. Then necessarily in this case it is non linearisable
(the resonant monomial is nonzero) which in practice yields logarithmic terms in
the first integral.

Besides, if g(x) is convergent, the invariant manifold y = ρ3(x) (after unfolding
in S+, keeping a and b fixed) is not ramified at (0, 0) (recall that if a ∈ −N or
b ∈ −N, i.e. if g(x) is convergent, then w3(x) is a polynomial). This correspond to
Figure 12, an exceptional case.

Figure 11. Analytic continuation of an invariant manifold of a
saddle when the corresponding analytic center manifold is diver-
gent

The divergence of k(x) has a similar interpretation with the pair of singular
points coming from the unfolding of the saddle-node at (0, 1). If k(x) is divergent
then, when we unfold in S+ (resp. S−) the invariant manifold of (0, 1) (resp. (ǫ, y1))
is necessarily ramified at (ǫ, y1) (resp. (0, 1)). As before, this implies that (ǫ, y1)
(resp. (0, 1)) is nonlinearisable as soon as it is a resonant node.

The general description of this parametric resurgence phenomenon is described
in [9].



20 C.Lambert, C.Rousseau

Figure 12. Analytic continuation of an invariant manifold of a
saddle when the corresponding analytic center manifold is conver-
gent (this is the case since a and b are fixed)

4.3. Universal unfolding. As the universal deformation of x2 is x2 − ǫ, let us
translate the previous results in the case of this deformation. When studying the
universal unfolding of the Riccati system (70) evaluated at ǫ = 0, the singular
points to consider would be at x = −√

ǫ and x =
√

ǫ (instead of x = 0 and x = ǫ).

Proposition 27. The unfolded Riccati system (with maybe a(ǫ) and b(ǫ))

(80)

{

ẋ = x2 − ǫ

ẏ = a(ǫ)b(ǫ)(x2 − ǫ) + (1 + (1 − a(ǫ) − b(ǫ))x)y + y2

is related, with c = 1
2
√

ǫ
+ a+b+1

2 , to the hypergeometric equation with singular points

(−√
ǫ,
√

ǫ,∞)

(81) (x2 − ǫ)w′′(x) + {−1 + (a + b + 1)x}w′(x) + ab w(x) = 0

with the change of variables

(82) y = −(x2 − ǫ)
w′(x)

w(x)
.

The product λ+(
√

ǫ)µ+(
√

ǫ) is an analytic function of ǫ (and not of
√

ǫ):

Theorem 28. For the family of systems (80), in which a(ǫ) and b(ǫ) are analytic
functions of ǫ, the product L(ǫ) = λ+(

√
ǫ)µ+(

√
ǫ) is an analytic function of ǫ.

Proof. Given γ ∈ (0, π
2 ) fixed, we define

• S+ = {ǫ ∈ C : 0 < |ǫ| < r(γ), arg(ǫ) ∈ (γ, 4π − γ)}.
The sector S+ is defined such as w2(x) and w3(x) always exist for these values of

ǫ. In particular, we ask − 1
2
√

ǫ
+ 3−a+b

2 /∈ −N, − 1
2
√

ǫ
+ a+b+1

2 /∈ −N, − 1
2
√

ǫ
+ a+1−b

2 /∈
−N and − 1

2
√

ǫ
+ b+1−a

2 /∈ −N.

Then, we define

(83) Hǫ+ =
κ+(

√
ǫ)w2(x)

w3(x)

with

(84) κ+(
√

ǫ) = (2
√

ǫ)1−a−be
πi( 1

2
√

ǫ
+ a+b+1

2 )

The functions µ+(
√

ǫ) and λ+(
√

ǫ) can be defined as before and the calculations
give the same relation

(85) L(ǫ) = λ+(
√

ǫ)µ+(
√

ǫ) = −(1 − e−2πia(ǫ))(1 − e−2πib(ǫ)).

This product is thus analytic in ǫ if a(ǫ) and b(ǫ) are analytic functions of ǫ. �
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These results are used in [1] to characterize the space of modules of a Riccati
equation under orbital equivalence.

Remark 29. L(ǫ) is related to known invariants. Indeed, we have the relation
L(ǫ) = −4π2eπiα(ǫ)γ(ǫ)γ′(ǫ), where α(ǫ) = 1− a(ǫ)− b(ǫ) is the formal invariant of
the saddle-node family (80), while γ(ǫ) and γ′(ǫ) are the unfolding of the Jurkat-
Lutz-Peyerimhoff invariants γ and γ′ (see [4]) obtained with the change of variable
(13) in the system associated to the differential equation (12).

5. Directions for further research

The hypergeometric equation corresponds to a particular Riccati system. The
study of this system allowed us to describe how divergence in the limit organizes
the system in the unfolding. Similar phenomena are expected to occur in the more
general cases where solutions at the confluence are 1-summable or even k-summable.
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