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Abstract. In the paper [8], we have identified the moduli space of generic
unfoldings of linear differential systems with a nonresonant irregular singu-
larity of Poincaré rank 1 for classification under analytic equivalence. The
modulus of the unfolding of a linear differential system is the unfolding of the
modulus of the system. It consists in formal invariants and an unfolding of the
Stokes matrices. In the realization part, we have identified the realizable mod-
uli. However, the necessary and sufficient condition for realizing unfoldings of
Stokes matrices was quite obscure. In this paper we explore this condition and
we determine the realizable moduli depending analytically on the parameter
in dimensions 2 and 3. In dimension 2, all realizable unfoldings of Stokes ma-
trices can be chosen depending analytically on the parameter. In dimension 3,
not all pairs of Stokes matrices have realizable analytic unfoldings.

1. Introduction

The singularities of linear differential systems play a central role in mathematics
and mathematical physics. The simplest irregular singularity is the nonresonant
irregular singularity of Poincaré rank 1 which occurs at x = 0 in a system of the
form

(1) y′ =
A(x)

x2
y,

with x ∈ (C, 0), y ∈ Cn, and A a matrix of germs of analytic functions in x at
the origin such that A(0) has distinct eigenvalues. Many mathematicians have
contributed to the analytic classification of such systems and to the identification
of the moduli space. A final statement can be found in [1], and a proof of the
realization of an admissible modulus in [10].

The irregular singularities of Poincaré rank 1 are double singular points. It is
hence natural to interpret the modulus of the system (1) as the limit, when ǫ → 0,
of a modulus of analytic classification for

(2) y′ =
A(x, ǫ)

x2 − ǫ
y,

on a neighborhood Dr containing the two regular singularities (which are indeed
Fuchsian singularities). This was conjectured by Bolibruch, Arnold and Ramis
(with slightly different statements). Particular cases and related questions were
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studied by Ramis [7], Duval ([4] and [3]), Zhang ([13] and [12]) and Schäfke [9].
Glutsyuk [5] studied the general case, but he limited himself to a sectorial domain
SG of the origin in the parameter space. For parameter values in SG, the difficult
case of resonant regular singularities is avoided. The method of Glutsyuk is then
to compare two bases of solutions which are eigenvectors of the monodromy near
each singular point, and which we will call eigensolutions. Together with the eigen-
values at each singular point, the comparison between the bases of eigensolutions
at each singular point yields a modulus of analytic classification of (2) for a fixed
value of ǫ ∈ SG. In order to be able to cover a full neighborhood of the origin
in the parameter space, we have used a completely different approach. We have
covered Dr, punctured at the two singular points, with two sectors adherent to
the singular points as in Figure 1. Over each such sector, we have constructed an
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D
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Figure 1. Sectorial domains in x, covering Dr, depending on ǫ̂ ∈
S ∪ {0} (we take, when ǫ̂ ∈ S, arg(ǫ̂) ∈ (π − γ, 3π + γ) for a
well-chosen γ > 0).

(almost) unique basis of solutions with given simultaneous asymptotic behavior at
the singular points. The formal part of the modulus is obtained from the coeffi-
cients in a formal normal form (for a fixed value of the parameter such that the
two Fuchsian singular points are nonresonant, it corresponds to the collection of
the eigenvalues of the residue matrices at the two singular points). The analytic
part of the modulus consists in unfolded Stokes matrices obtained from the com-
parison of the bases of solutions on the left and right connected components of the
intersection of the two sectors. However, the price to pay to cover all parameter
values in a neighborhood of the origin is that our description is ramified in the
parameter ǫ and uses the parameter ǫ̂ lying in a sector S of opening greater than
2π of the universal covering of ǫ-space punctured at the origin. In particular, we
get two different complete systems of invariants for the same differential system on
S∩, the auto-intersection part of the projection of S in the ǫ-space. When consid-
ering the modulus space, a minimal necessary condition for realizing a family of
unfolded Stokes matrices and formal invariants is that they describe families that
are analytically equivalent (over S∩×Dr). We have shown in [8] that this condition
is (essentially) also sufficient. But, this condition is difficult to state and quite ob-
scure. Indeed, when n = 2, it forces the existence of representatives of the unfolded
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Stokes matrices depending analytically on the parameter. In particular, constant
Stokes matrices are realizable when n = 2. This paper explores the case n ≥ 2 with
great emphasis on the case n = 3. The necessary and sufficient condition gives the
equality of two matrix invariants up to left and right multiplication by adequate
invertible diagonal matrices. The vanishing of an element of these matrix invariants
has an intrinsic geometric meaning. We first get rid of the diagonal matrices and
give absolute invariants. In the generic case, there are (n− 1)2 such invariants. In
the case n = 3, we then explore if it is possible to realize Stokes matrices depending
analytically on ǫ and we see that this is possible only very exceptionally. But, to
our surprise, moduli composed of Stokes matrices depending analytically on ǫ can
occur for systems that are really 3-dimensional and cannot be decomposed in direct
products of lower dimensional systems. Moreover, this can already be seen when
the parameter vanishes: not all Stokes matrices have realizable analytic unfoldings.

2. Preliminaries

Let us consider the generic unfoldings of the linear differential systems (1). After
linear change in y and affine transformation in x, we can assume that A(0) is
diagonal with eigenvalues λ1,0, ..., λn,0 such that

(3) ℜ(λq,0 − λj,0) > 0, q < j,

and that the generic unfoldings of (1) are written as

(4) (x2 − ǫ)y′ = A(ǫ, x)y,

with ǫ ∈ C and A a matrix of germs of analytic functions in (ǫ, x) at the origin
satisfying A(0, x) = A(x). We have shown in [8] that (4) is locally analytically
equivalent (see Definition 2.1) to a prenormal form

(5) (x2 − ǫ)y′ =
(

Λ0(ǫ) + Λ1(ǫ)x+ (x2 − ǫ)R(ǫ, x)
)

y,

where R is a matrix of germs of analytic functions in (ǫ, x) at the origin, and where
Λ0 and Λ1 are diagonal matrices of germs of analytic functions in ǫ at the origin,
which are the formal invariants of the system (note that Λ0(0) = A(0)).

We classify the systems (5) (and hence (4)) under the following equivalence
relations:

Definition 2.1. Two systems (x2 − ǫ)y′ = A(ǫ, x)y and (x2 − ǫ)z′ = B(ǫ, x)z,
with A(ǫ, x) and B(ǫ, x) matrices of germs of analytic functions at the origin, are
locally analytically equivalent (respectively formally equivalent) if there exists an
invertible matrix P of germs of analytic functions of (ǫ, x) at the origin (respectively
an invertible matrix of formal series in (ǫ, x)) such that the substitution y = P (ǫ, x)z
transforms one system into the other.

The complete system of formal invariants is given by the polynomial part of
degree 1 in the prenormal form (5), hence it is totally described by a system

(6) (x2 − ǫ)z′ = (Λ0(ǫ) + Λ1(ǫ)x) z

that we call the model system. Its diagonal fundamental matrix of solutions is

(7) F (ǫ, x) =

{

(x− xR)
1

2xR
Λ0(ǫ)+

1

2
Λ1(ǫ)(x− xL)

1

2xL
Λ0(ǫ)+

1

2
Λ1(ǫ), ǫ 6= 0,

xΛ1(0) exp (−Λ0(0)
x

), ǫ = 0,
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where

(8) xL =
√
ǫ, xR = −√

ǫ

(in S illustrated in Figure 1, since we take arg(ǫ̂) ∈ (π−γ, 3π+γ) for a well-chosen

γ > 0, the indices in (8), meaning left and right, make sense when
√
ǫ̂ is real, hence

negative for ǫ̂ ∈ S).

Notation 2.2. We denote by S∩ the auto-intersection of the domain S of the pa-
rameter (see Figure 2). If ǭ ∈ S and ǭe2πi ∈ S, then we write ǭ ∈ S∩ and ǫ̃ ∈ S∩,
where

(9) ǫ̃ = ǭe2πi.

ℜ(ǫ)

ℑ(ǫ)

S

ǭ

ǫ̃

Figure 2. Example of values of ǭ and ǫ̃ = ǭe2πi in S∩.

Notation 2.3. We write the hat symbol over quantities that depend on ǫ̂ ∈ S (for
example x̂L). We write the symbols ˜ (respectively ¯ ) over quantities that depend
on ǫ̃ ∈ S∩ (respectively ǭ ∈ S∩). When we use the hat symbol for values of the
parameter in S∩, we mean that ǫ̂ could either be ǭ or ǫ̃.

To define the analytic part of the modulus of a system (5), we construct the
open domains ∪ǫ̂∈S{ǫ̂} × Ωǫ̂

D (respectively ∪ǫ̂∈S{ǫ̂} × Ωǫ̂
U ) illustrated in Figure 1.

Remark 2.4. The way we construct the sectorial domains Ωǫ̂
D and Ωǫ̂

U ensures
that, near the singular points, the asymptotic behavior of the solutions of the model
system is similar to the one at ǫ = 0:

(10) lim
x→x̂l

x∈Ωǫ̂
D∩Ωǫ̂

U

(F (ǫ, x))jj
(F (ǫ, x))qq

= 0, for

{

q > j, if l = R,

q < j, if l = L.

The following theorem was proved in [8].

Theorem 2.5. [8] On ∪ǫ̂∈S{ǫ̂} × Ωǫ̂
D (respectively ∪ǫ̂∈S{ǫ̂} × Ωǫ̂

U ), there exist in-
vertible transformations y = HD(ǫ̂, x)z (respectively y = HU (ǫ̂, x)z) from (5) to
its model (6), where HD(ǫ̂, x) and HU (ǫ̂, x) are invertible matrices that are unique

up to right multiplication with a diagonal matrix K̂ satisfying the conditions in
Definition 2.12.

Sketch of proof. We give this sketch of proof for HU to explain the important un-
derlying idea of the construction of the fundamental matrix of solutions HUF over



Moduli space of unfolded differential linear systems 5

ΩU . The vector space V of solutions over ΩU has a flag of invariant subspaces given
by the asymptotic behavior of solutions at x̂R:

V 1
R ⊂ V 2

R ⊂ · · · ⊂ V n
R .

It has a second flag of invariant subspaces given by the asymptotic behavior of
solutions at x̂L:

V n
L ⊂ V n−1

L ⊂ · · · ⊂ V 1
L .

For small ǫ̂, these flags are transversal (because they are transversal at the limit

ǫ = 0), and each intersection V j
R ∩ V n−j+1

L , j = 1, . . . , n is one-dimensional. The
columns of HUF are bases of each of these subspaces. In particular, the first column
is an eigensolution at x̂R and the last column is an eigensolution at x̂L. �

Remark 2.6. We construct the transformations HD(ǫ̂, x) and HU (ǫ̂, x) so they
have the same bounded and invertible limit when x → x̂l, for l = L,R.

Over each connected component of the intersection of Ωǫ̂
D and Ωǫ̂

U (Figure 3),
HD(ǫ̂, x)−1HU (ǫ̂, x) are automorphisms of the model system acting on a fundamen-

tal matrix of solutions. These automorphisms lead to the existence of matrices ĈR

and ĈL satisfying

(11) HD(ǫ̂, x)−1HU (ǫ̂, x) =











FD(ǫ̂, x)ĈR(FD(ǫ̂, x))−1, on Ωǫ̂
R,

FD(ǫ̂, x)ĈL(FD(ǫ̂, x))−1, on Ωǫ̂
L,

I, on Ωǫ̂
C ,

where FD(ǫ̂, x) is the restriction to Ωǫ̂
D of the fundamental matrix of solutions (7)

of the model system. The matrices ĈR and ĈL, that we call the unfolded Stokes
matrices, are respectively an upper triangular and a lower triangular unipotent
matrix (this follows from the proof of Theorem 2.5 and Remarks 2.4 and 2.6).
They depend analytically on ǫ̂ ∈ S and converge when ǫ̂ → 0 (ǫ̂ ∈ S) to the Stokes
matrices (see [6], pp.351-372, for the case ǫ = 0).

Ωǫ̂

L Ωǫ̂

R

Ωǫ̂

D

Ωǫ̂

U Ωǫ̂

C

x̂Rx̂L

Figure 3. The connected components of the intersection of the
sectorial domains Ωǫ̂

D and Ωǫ̂
U , case x̂L =

√
ǫ̂ ∈ R∗

−.

The product W = HD(ǫ̂, x)FD(ǫ̂, x) is a fundamental matrix of solutions of (5)
on Ωǫ̂

D that can be analytically continuated (through Ωǫ̂
C) to the ramified domain

V ǫ̂ = Ωǫ̂
D ∪ Ωǫ̂

U illustrated in Figure 4 (which could have a spiraling part around
x̂R and x̂L, as in Figure 1).

To explain how the transition matrices between branches of W depend on the

Stokes matrices, let us consider the monodromy operators M̂L and M̂R around
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M̂L M̂R

Figure 4. Illustration of the definition of the monodromy oper-
ators M̂L and M̂R on the ramified domain V ǫ̂ = Ωǫ̂

D ∪ Ωǫ̂
U , case

x̂L =
√
ǫ̂ ∈ R∗

−.

the singular points as illustrated in Figure 4 (i.e. in the positive direction around
x = x̂L and in the negative direction around x = x̂R).

Lemma 2.7. The monodromy matrices representing the action of M̂l on the fun-
damental matrix of solutions F (ǫ, x) of the model system are

(12) D̂R = e
−2πi

(

−1

2
√

ǫ̂
Λ0(ǫ)+

1

2
Λ1(ǫ)

)

and D̂L = e
2πi

(

1

2
√

ǫ̂
Λ0(ǫ)+

1

2
Λ1(ǫ)

)

.

Proposition 2.8. For l = L,R, the monodromy matrix representing the action of
M̂l on the fundamental matrix of solutions W is ĈlD̂l.

Proof. Starting on Ωǫ̂
R, the operator M̂R acting on W gives HU (ǫ̂, x)FD(ǫ̂, x)D̂R.

Starting on Ωǫ̂
L, the operator M̂L acting on W gives HU (ǫ̂, x)FD(ǫ̂, x)D̂L. The

proposition follows from (11). �

Definition 2.9. We call an eigensolution at x = x̂l a solution that is an eigenvector
of the monodromy operator around the singular point x = x̂l.

When the singular points are nonresonant, the fundamental matrix of solutions
W has the property that its jth column is a linear combination of j eigensolutions
at x = x̂R, or n − j + 1 eigensolutions at x = x̂L, with coefficients depending on
the entries of the unfolded Stokes matrices and the formal invariants, as detailed
by Definition 2.10 and Proposition 2.11.

Definition 2.10. For values of ǫ̂ such that the diagonal entries of D̂l are distinct (in

particular for ǫ̂ ∈ S∩), we define T̂l as the unipotent triangular matrix diagonalizing

the matrix ĈlD̂l:

(13) (T̂l)
−1ĈlD̂lT̂l = D̂l l = L,R,

(T̂L is lower triangular while T̂R is upper triangular).

Proposition 2.11. For values of ǫ̂ such that the diagonal entries of D̂l are dis-
tinct, the columns of the fundamental matrix of solutions WT̂l are eigensolutions
at x = x̂l: the jth column of WT̂l is a nonzero multiple of the Floquet solution (for
example [11] p. 25) given by

(14) ŵj,l(x) = (x− x̂l)
1

2x̂l
(Λ0(ǫ))jj+

1

2
(Λ1(ǫ))jj ĝj,l(x),
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with ĝj,l(x) = ej + O(|x − x̂l|) an analytic function of x in a region containing
x = x̂l but no other singular point (ej is the jth column of the identity matrix).

In particular, when n = 2, W is composed of two eigensolutions at different
singular points : ŵ1,R(x) and ŵ2,L(x).

The modulus M of the systems (5) is given by the complete system of formal
invariants together with equivalence classes of unfolded Stokes matrices:

Definition 2.12. The unfolded Stokes matrices are equivalent if they are con-
jugated by the same invertible diagonal matrix K̂ which depends analytically on
ǫ̂ ∈ S, has an invertible limit at ǫ = 0 and satisfies

(15) |K̄ − K̃| ≤ c|ǭ| over S∩, for some c ∈ R+.

Theorem 2.13. [8] Two families of systems of the form (5) with the same model
system (6) are analytically equivalent if and only if their unfolded Stokes matrices
are equivalent (see Definition 2.12).

It is possible to choose representatives of the equivalence classes of unfolded
Stokes matrices that are 1

2 -summable in ǫ.

Here we want to characterize the set of moduli: under which conditions a set M,
consisting of formal invariants (depending analytically on ǫ) and of a germ of pairs
of unfolded Stokes matrices (defined up to conjugacy and depending analytically
on ǫ̂ with continuous limit at ǫ = 0), is realizable as the modulus of a system (4)?
Any such M is realizable as the modulus of a system (4) depending analytically on
ǫ̂. But an additional condition is needed so that the system (4) be uniform in ǫ. We
call it the auto-intersection relation, since it links the two presentations on S∩, the
auto-intersection of S. The auto-intersection relation implies that the two systems
for ǭ and ǫ̃ = ǭe2πi are equivalent with analytic dependence on (ǭ, x) ∈ S∩×Dr and
uniform convergence on compact sets of Dr when ǭ → 0. It is obtained from the
uniqueness, up to different normalizations, of eigensolutions. It states the invariance
(up to left and right multiplication by invertible diagonal matrices) of transition
matrices between fundamental matrices of eigensolutions.

We now make the auto-intersection relation precise. Let the symbolˆdenotes¯or .̃
For ǫ̂ ∈ S∩, the singular points (8) have nonzero imaginary part. We call xU , the
one with positive imaginary part and xD the other one:

(16) xU = x̄L = x̃R, xD = x̄R = x̃L.

We consider the monodromy around the singular points as illustrated in Figure
5 (in this way, the base points for the monodromy around the lower singular point
(Mx̃L

and Mx̄R
) belongs to Ωǭ

D ∩Ωǫ̃
D, whereas the base points for the monodromy

around the upper singular point (Mx̄L
and Mx̃R

) are taken on Ωǭ
U ∩ Ωǫ̃

U ).
Let us define FU (ǫ̂, x) as the analytic continuation of FD(ǫ̂, x) to Ωǫ̂

U when passing
through Ωǫ̂

R, hence satisfying

(17) FU (ǫ̂, x) =











FD(ǫ̂, x), on Ωǫ̂
R,

FD(ǫ̂, x)e2πiΛ1(ǫ), on Ωǫ̂
L,

FD(ǫ̂, x)D̂−1
R , on Ωǫ̂

C .
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We consider the following fundamental matrices of eigensolutions

(18)

W̄xU
= HU (ǭ, x)FU (ǫ, x)D̄RT̄LD̄

−1
R ,

W̃xU
= HU (ǫ̃, x)FU (ǫ, x)D̃RT̃RD̃

−1
R ,

W̄xD
= HD(ǭ, x)FD(ǫ, x)T̄R,

W̃xD
= HD(ǫ̃, x)FD(ǫ, x)T̃L,

and their analytic continuation along the related loop. We have that W̄xU
and

W̃xU
(respectively W̄xD

and W̃xD
) are fundamental matrices of solutions composed

of eigenvectors of MxU
(respectively MxD

), and they converge uniformly on compact
sets of Ω0

U (respectively Ω0
D) when ǫ̂ → 0 on S∩.

Mx̃L

Mx̃R

ǫ̃ ∈ S∩ ǭ ∈ S∩

Mx̄L

Mx̄R

Figure 5. Illustration of the monodromy operators Mx̂l
around

the singular points.

Let ÊL,xD→xU
be the (left) transition matrix such that, over a fixed compact set

of Ω0
L sufficiently far from the singular points,

(19) ÊL,xD→xU
= Ŵ−1

xD
ŴxU

.

(The right transition matrix obtained from the comparaison of the fundamental
matrices of solutions over Ω0

R can be considered too.)

Remark 2.14. A transition matrix ÊL,xD→xU
can be calculated using (19), (18),

(17), (12), (11) and (13). For example, we have

(20)

ĒL,xD→xU
= W̄−1

xD
W̄xU

= T̄−1
R F−1

D (ǫ, x)H−1
D (ǭ, x)HU (ǭ, x)FU (ǫ, x)D̄RT̄LD̄

−1
R

= T̄−1
R F−1

D (ǫ, x)H−1
D (ǭ, x)HU (ǭ, x)FD(ǫ, x)e2πiΛ1(ǫ)D̄RT̄LD̄

−1
R

= T̄−1
R F−1

D (ǫ, x)H−1
D (ǭ, x)HU (ǭ, x)FD(ǫ, x)D̄LT̄LD̄

−1
R

= T̄−1
R C̄LD̄LT̄LD̄

−1
R

= T̄−1
R T̄LD̄LD̄

−1
R

= T̄−1
R T̄Le

2πiΛ1(ǫ).

As the fundamental matrices of eigensolutions around a regular singular point
are unique up to different normalizations, the transition matrix ÊL,xD→xU

must be
invariant up to left and right multiplication by diagonal matrices, in both presen-
tations ǭ and ǫ̃. In a more general situation, this comes implicitely from the paper
[5] of A. Glutsyuk. When applying it to our situation, it results into:



Moduli space of unfolded differential linear systems 9

Proposition 2.15. The two systems for ǭ and ǫ̃ = ǭe2πi are equivalent, with ana-
lytic dependence on (ǭ, x) ∈ S∩ × Dr and uniform convergence on compact sets of
Dr when ǭ → 0, if and only if there exist Q̄U and Q̄D invertible diagonal matrices
depending analytically on ǭ ∈ S∩, with an invertible limit at ǫ = 0, and such that

(21) Q̄DĒL,xD→xU
= ẼL,xD→xU

Q̄U .

The exact expression of the transition matrices ÊL,xD→xU
(see Remark 2.14) in

relation (21) gives

(22) Q̄DN̄L = ÑLQ̄U ,

where

(23)
ÑL = D̃LT̃

−1
L T̃RD̃

−1
L = ẼL,xD→xU

e−2πiΛ1(ǫ),

N̄L = T̄−1
R T̄L = ĒL,xD→xU

e−2πiΛ1(ǫ).

Remark 2.16. Although the same letter is used, we see, by relation (23), that ÑL

and N̄L are different expressions that are not obtained by the replacements ǫ̂ = ǫ̃ or
ǫ̂ = ǭ into some N̂L.

What we call the auto-intersection relation includes (22) and an extra condition
on the diagonal matrices Q̄s coming from properties of Hs(ǫ̂, x) over S∩.

Definition 2.17. We say that the auto-intersection relation is satisfied if, in ad-
dition to the conditions of Proposition 2.15, we have

(24) |Q̄s − I| < cs|ǭ|, for some cs ∈ R+, ǭ ∈ S∩, s = U,D.

The auto-intersection relation for the family (5) is satisfied. Moreover, it is a
necessary condition for the realization of the modulus of analytic classification:

Theorem 2.18. [8] Let be given :

• a formal normal form (i.e. diagonal matrices Λ0(ǫ) and Λ1(ǫ) of formal
invariants which depend analytically on ǫ at the origin),

• a sector S′ = {ǫ̂ : |ǫ̂| < ρ′, arg(ǫ̂) ∈ (π − γ, 3π + γ)}, for some well-chosen
ρ′ and γ > 0, with γ depending on Λ0 (see Sections 4.3 to 4.5 of [8] for the
specifications),

• an equivalence class (see Definition 2.12) of unfolded Stokes matrices ĈR

and ĈL, which are respectively an upper triangular and a lower triangular
unipotent matrix depending analytically on ǫ̂ ∈ S′ (ρ′ can be chosen smaller
if necessary) and having a bounded limit when ǫ̂ → 0 on S′.

If the auto-intersection relation is satisfied on S′, then there exist r > 0, a sector

S = {ǫ̂ : |ǫ̂| < ρ, arg(ǫ̂) ∈ (π − γ, 3π + γ)} for some ρ < min
(

ρ′, r2

2

)

and a system

(x2 − ǫ)y′ = A(ǫ, x)y (y ∈ Cn) characterized by these analytic invariants, with
A(ǫ, x) analytic over Dρ × Dr.

The matrix N̂L appearing in the auto-intersection relation tends to the Stokes
matrix CL when ǫ → 0. In fact, we obtain a more precise statement given by
Proposition 2.20.

Definition 2.19. We say that a quantity c is exponentially close to 0 in
√
ǫ if it

satisfies |c| < be
− a√

|ǫ̃| for some a, b ∈ R∗
+.
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Proposition 2.20. The entries of the matrix N̂L− ĈL are exponentially close to 0
in

√
ǫ in the sense of Definition 2.19. Hence, the diagonal entries of N̂L are always

different from zero over S∩ (we choose the radius of S∩ sufficiently small).

Before giving a proof of Proposition 2.20, let us introduce the quantities ∆̂sj,l.

Definition 2.21. Let us define

(25) ∆̂sj,l = (D̂l)ss(D̂
−1
l )jj ,

where D̂l is given by (12).

Lemma 2.22. From (9), we have

(26) ∆̄sj,R = ∆̃js,L, ∆̄sj,L = ∆̃js,R.

When s < j and l = L,R, ∆̃sj,l is exponentially close to 0 in
√
ǫ (in the sense of

Definition 2.19).

Proof of Proposition 2.20. Relation (13) can be used to express recursively (off-

diagonal) entries of T̂l and T̂−1
l in terms of the entries of Ĉl:

(27) (T̂l)ij(1− ∆̂ij,l) = (Ĉl)ij +
∑

i<k<j, l=R
j<k<i, l=L

(Ĉl)ik(T̂l)kj∆̂kj,l,

and

(28) (T̂−1
l )ij(∆̂ij,l − 1) = (Ĉl)ij +

∑

i<k<j, l=R
j<k<i, l=L

(T̂−1
l )ik(Ĉl)kj .

Together with Lemma 2.22, equalities (27) and (28) (or the ones obtained by mul-

tiplication on each side of the equality by ∆̂ji,l) imply that, on S∩, entries from the
following matrices are exponentially close to 0 in

√
ǫ:

(29) C̄L − T̄L, I − T̄−1
R ,

(30) I − T̃−1
L , C̃R − T̃R,

(31) D̃LT̃
−1
L D̃−1

L − C̃L, D̃LT̃RD̃
−1
L − I

(relations (30) can be used when obtaining (31) from (27) and (28)). We then

decompose N̂l − Ĉl as

(32)

N̄L − C̄L = T̄−1
R T̄L − C̄L = (T̄−1

R − I)T̄L − (C̄L − T̄L),

ÑL − C̃L = D̃LT̃
−1
L T̃RD̃

−1
L − C̃L

= D̃LT̃
−1
L D̃−1

L (D̃LT̃RD̃
−1
L − I) + (D̃LT̃

−1
L D̃−1

L − C̃L)

to prove the statement of the proposition. �

3. Compatibility relations on S∩

We will now have a closer look at the relation (22), with the goal of translating
it directly in terms of the complete system of analytic invariants. This will then be
done in full detail in dimensions n = 2 and n = 3.
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3.1. General case n ≥ 2. First, let us now reformulate relation (22) and find
conditions for which it is satisfied.

Definition 3.1. Let us define the (left) normalized transition invariant as

(33) Ĝ = N̂Ldiag

{

1

(N̂L)11
,

1

(N̂L)22
, ...,

1

(N̂L)nn

}

.

(Proposition 2.20 ensures that diag
{

(N̂L)11, (N̂L)22, ..., (N̂L)nn

}

is invertible).

Remark 3.2. Elements (Ĝ)ij and (N̂L)ij vanish at the same order on S∩ ∪ {0}.
Theorem 3.3. The auto-intersection relation is satisfied if and only if there exists
an invertible diagonal matrix Q̄ depending analytically on ǭ ∈ S∩, with an invertible
limit at ǫ = 0, such that

(34) Q̄Ḡ = G̃Q̄,

and

(35) |Q̄− I| < c|ǭ|, for some c ∈ R+, ǭ ∈ S∩.

Proof. In terms of the normalized transition invariant, the relation (22) can be
written as

(36) Q̄DḠ = G̃Q̄Udiag

{

(ÑL)11

(N̄L)11
,
(ÑL)22

(N̄L)22
, ...,

(ÑL)nn

(N̄L)nn

}

.

Since the normalized transition invariant has 1’s on the diagonal, we must have

(37) Q̄D = Q̄Udiag

{

(ÑL)11
(N̄L)11

,
(ÑL)22
(N̄L)22

, ...,
(ÑL)nn
(N̄L)nn

}

.

�

Definition 3.4. The matrix G is said to be reducible it there exists a permutation
matrix P such that PGP−1 is the direct sum of diagonal blocs.

Lemma 3.5. If some element (Ḡ)ij (respectively (G̃)ij) of the normalized transition

invariant Ḡ (respectively G̃) vanishes, it corresponds to the following geometric
property: the j-th eigensolution at the upper singular point xU has no component
of the i-th eigensolution at the lower singular point xD.

Theorem 3.6. The existence of an invertible diagonal matrix Q̄ such that relation
(34) is satisfied is equivalent to have

• (Ḡ)ij ≡ 0 ⇐⇒ (G̃)ij ≡ 0,

• (Ḡ)ij and (G̃)ij vanishing at the same order on S∩ ∪ {0}, ∀i 6= j,

• a finite set of compatibility relations involving only elements of Ḡ and G̃.

The number of compatibility relations is equal to

(38) n2 − 2n− (number of zeros in Ḡ) + (number of irreducible blocs of Ḡ).

In particular, this number is (n − 1)2 in the most generic case where Ḡ has only
nonzero entries.
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Proof. From Theorem 3.3, we see that the existence of an invertible diagonal matrix
Q̄ such that relation (34) is satisfied yields relations between elements of Ḡ and G̃.
Indeed, denoting

(39) Q̄ = diag{q1, q2, ..., qn},
relation (34) is equivalent to

(40) qi(Ḡ)ij = (G̃)ijqj ,

which yields the first part of the theorem.
Let us count the number of compatibility relations. First, let us suppose that Ḡ

is irreducible. Without loss of generality, we can assume that qn = 1. From i = 2
to i = n, let us consider the i × i lower right submatrices of Ḡ and Q̄−1G̃Q̄ that
must be equal. Each time we increase i, each new entry which is not identically 1
or 0 allows either to

• calculate one qi that has not been calculated before,
• obtain a new compatibility relation.

Since there are (n−1) indeterminates (q1, q2,...,qn−1), the number of nonequivalent
compatibility relations is

(41) n2 − n− (number of zeros in Ḡ)− (n− 1).

If Ḡ is reducible, we repeat this process for each irreducible bloc of Ḡ. Each time,
we can take one indeterminate equal to 1 without loss of generality. The number
of indeterminates is then

(42) n− (number of irreducible blocs of Ḡ),

yielding the general formula (38).
If some element (Ḡ)ij of the normalized transition invariant Ḡ vanishes, then

(G̃)ij must vanish simultaneously by Lemma 3.5 and conversely. If (Ḡ)ij vanishes
at a value ǭ0 to order k, then, in a perturbation of the family (5) we could have
up to k zeros of the perturbed (Ḡ)ij , since all (Ḡ)ij are realizable for ǭ in a small
neighborhood of ǭ0. When ǫ0 = 0, it is possible to take a perturbation where the
k zeros would belong to S∩, and hence, to apply the same argument. This is why
the order of vanishing of (Ḡ)ij and (G̃)ij must be the same. �

Corollary 3.7. If Ḡ is irreducible and has (n − 1)2 elements that are identically
zero, then the set of compatibility relations in Theorem 3.6 is empty.

Proof. Theorem 3.6 gives the number of compatibility relations which is

(43) n2−2n−(number of zeros in Ḡ)+1 = (n−1)2−(number of zeros in Ḡ) = 0.

�

Theorem 3.8. In the generic case where all entries of Ḡ do not vanish identically,
the compatibility relations of Theorem 3.6 can be chosen as

(44) (G̃)ij(G̃)ji = (Ḡ)ij(Ḡ)ji, 1 ≤ i < j ≤ n,

and

(45) (Ḡ)ij(Ḡ)jn(Ḡ)ni = (G̃)ij(G̃)jn(G̃)ni, 1 ≤ i < j < n.
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Proof. Without loss of generality, we take qn = 1. We choose the (n− 1) equations
of (40) with j = n to evaluate all the indeterminates:

(46) qi =
(G̃)in
(Ḡ)in

, i = 1, 2, ..., n− 1.

Then, for each entry that is not on the diagonal or on the last column of the equal
matrices Ḡ and Q̄−1G̃Q̄, we must add a compatibility relation: each relation of the
form (40) must agree with (46). The nth row gives

(47)
1

qi
=

(G̃)ni
(Ḡ)ni

, i = 1, 2, ..., n− 1,

and hence, to agree with (46), we must have (44) for j = n and 1 ≤ i < n. The
entries above the diagonal (except for the last column) give

(48)
qi
qj

=
(G̃)ij

(Ḡ)ij
, 1 ≤ i < j < n,

and hence, to agree with (46), we must have (45). Of couse, if some (Ḡ)ij vanishes,

the expressions still make sense if (G̃)ij vanishes to the same order. Finally, the
entries under the diagonal (except for the last row) give

(49)
qj
qi

=
(G̃)ji
(Ḡ)ji

, 1 ≤ i < j < n.

In order that (49) agrees with (48), we must have (44) with j 6= n. �

When simplifying the compatibility relations in terms of N̂L, one may prefer to
work with polynomial expressions instead of rational expressions. In our case, this
is possible if we add one relation:

Theorem 3.9. In the generic case where all entries of Ḡ do not vanish identi-
cally, the set of compatibility relations of Theorem 3.6 can be replaced by the set of
relations

(50)
n
∏

i=1

(N̄L)iσ(i) =
n
∏

i=1

(ÑL)iσ(i), σ ∈ U ∪ {(1)},

where U is the subset of the symmetric group Sn composed of

• all the 2-cycles σ = (ij), for 1 ≤ i < j ≤ n,
• all the 3-cycles σ = (ijn), for 1 ≤ i < j < n.

Proof. Let us suppose that the conditions of Theorem 3.6 are satisfied. Then, we
have

(51) (Ḡ)ij = (G̃)ij
qj
qi
, 1 ≤ i, j ≤ n.

For any σ in the symmetric group Sn, if we replace the n relations (51) into
∏n

i=1(Ḡ)iσ(i), we get

(52)

n
∏

i=1

(Ḡ)iσ(i) =

n
∏

i=1

(G̃)iσ(i)

∏n

k=1 qk
∏n

j=1 qj
=

n
∏

i=1

(G̃)iσ(i),

implying

(53) det Ḡ = det G̃.



14 C.Lambert, C.Rousseau

Since det N̄L = det ÑL = 1 (recall that the definition of N̂L is given by (23)),
relations (33) and (53) imply

(54)

n
∏

i=1

(N̄L)ii =

n
∏

i=1

(ÑL)ii.

Replacing (33) into the compatibility relations (44) and (45) and the multiplication
by (54) yields (50). On the other hand, let us suppose that the set of compatibility
relations of Theorem 3.6 is replaced by the set of relations (50). With σ = (1), we
have (54). With other σ’s, the division by (54) yields the compatibility relations
(44) and (45). �

The compatibility relations in the generic case depend on specific products of
the elements of the unfolded Stokes matrices called invariants products, and become
simpler when written in terms of these products.

Definition 3.10. Let us define

(55) ĉij =











(ĈL)ij , i > j,

(ĈR)ij , i < j,

1, i = j,

and, for any cycle σ in the symmetric group Sn, the invariant product corresponding
to σ

(56) âσ =

n
∏

i=1

ĉiσ(i).

The invariant products are, generically, analytic invariants:

Proposition 3.11. Two families of systems of the form (5) with the same model
system (6) and all quantities ĉij and ĉ′ij not identically zero are analytically equiv-
alent if and only if

• ĉij and ĉ′ij vanish at the same order on S ∪ {0},
• for any cycle σ in U , with U as in Theorem 3.9, their corresponding invari-

ant products are equal on S (âσ = â′σ),
• we have

(57)

∣

∣

∣

∣

c̄in
c̄′in

− c̃in
c̃′in

∣

∣

∣

∣

≤ ki|ǭ| over S∩, for some ki ∈ R+, i = 1, 2, ..., n− 1.

Proof. Starting from Theorem 2.13, the proof is similar to that of Theorem 3.8. �

3.2. The case n = 2. In this section, we apply the last results to the case n = 2,
where we can simplify the conditions of Theorem 3.6 to express them directly in
terms of the analytic invariants. In fact, when n = 2 (and no more generically

when n > 2), the (i, j) entries of Ĝ are proportional to the (i, j) entries of the
unfolded Stokes matrices and the compatibility condition can be simplified to an
elegant expression given in Theorem 3.12 (Proposition 3.20 shows how this is no
more the case generically when n = 3).

Theorem 3.12. In the case n = 2, there exists an invertible diagonal matrix Q̄
such that relation (34) is satisfied if and only if:
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• the elements of each pair

(58)
c̄12 and c̃12,
c̄21 and c̃21

vanish simultaneously at the same order on S∩ ∪ {0}, or both vanish iden-
tically,

• and the product â(12) is analytic at ǫ = 0.

Proof. Note that the analyticity of â(12) at ǫ = 0 is equivalent to showing that

(59) c̄12c̄21 = c̃12c̃21.

Using (23), (13), (25) and (26), we obtain the relations between the entries of N̂L

and those of the unfolded Stokes matrices. When n = 2 (and no more generically
when n > 2), we have

(60)

(N̄L)22 = (ÑL)11 = 1,

(N̄L)11 = 1 + c̄12c̄21∆̃12,L(∆̃12,L − 1)−1(∆̃12,R − 1)−1,

(ÑL)22 = 1 + c̃12c̃21∆̃12,L(∆̃12,L − 1)−1(∆̃12,R − 1)−1,

(ÑL)12 = c̃12∆̃12,L(1− ∆̃12,R)
−1,

(ÑL)21 = c̃21(1− ∆̃12,L)
−1,

(N̄L)12 = c̄12∆̃12,L(1− ∆̃12,L)
−1,

(N̄L)21 = c̄21(1− ∆̃12,R)
−1.

The first part (58) comes from Theorem 3.6, Remark 3.2 and (60). The second part
(59) is automatically satisfied in nongeneric cases. In generic cases, it is obtained
from Theorem 3.8 since the only compatibility relation is

(61) (G̃)ij(G̃)ji = (Ḡ)ij(Ḡ)ji

and reduces to (59) using (33) and (60). �

Corollary 3.13. When n = 2, it is always possible to choose an analytic repre-
sentative of the equivalence classes of unfolded Stokes matrices, and the following
cases can occur for n12, n21 ∈ N = {0, 1, . . .}:

(1) c12(ǫ) = ǫn12 , c21(ǫ) = ǫn21g(ǫ), with g analytic satisfying g(0) 6= 0;
(2) c12(ǫ) ≡ 0, c21(ǫ) = ǫn21 ;
(3) c12(ǫ) = ǫn12 , c21(ǫ) ≡ 0;
(4) c12(ǫ) = c21(ǫ) ≡ 0.

Remark 3.14. Let us explain why Theorem 3.12 is natural. The coefficient (N̂L)12
(respectively (N̂L)21), which is proportional to ĉ12 (respectively ĉ21), tells us how
much the second (respectively first) eigensolution at xU contains of the first (re-

spectively second) eigensolution at xD (since from (19) and (23), we have ŴxU
=

ŴxD
ÊL,xD→xU

= ŴxD
N̂Le

2πiΛ1(ǫ)). These geometric informations have to be pre-
served in both presentations on S∩, taking into account that the eigensolutions are
only defined modulo a constant. If we make the calculation in the case of nonvan-
ishing ĉ12 and ĉ21 on S∩ ∪ {0}, we obtain that only the product â(12) matters and
that we must have the identity ā(12) = ã(12).
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3.3. The generic case n = 3. When n ≥ 3, the situation is generically completely
different from that in the case n = 2. In this section, we investigate the compati-
bility relations for n = 3 given by the system of conditions (44) and (45). It may

happen that some of these conditions imply that Ĝ has some identically zero entry
(and this would correspond to a nongeneric case).

Notation 3.15. We write

(62) Λq(ǫ) = diag{λ1,q(ǫ), ..., λn,q(ǫ)}, q = 0, 1,

where Λq(ǫ) are the diagonal matrices from (5).

Definition 3.16. Let us define

(63) q̂ = â(12)â(23) − â(132) − â(123),

(64) ∆̂sj =

√

∆̂sj,L∆̂sj,R = e
πi√
ǫ̂
((λs,0(ǫ))−(λj,0(ǫ)))

and

(65) δsj =

√

∆̂sj,L∆̂js,R = eπi(λs,1(ǫ)−λj,1(ǫ)).

Lemma 3.17. We have

(66) ∆̂sj,L = ∆̂sjδsj , ∆̂sj,R = ∆̂sjδ
−1
sj ,

(67) δsj = δskδkj ,

(68) ∆̂sj = ∆̂sk∆̂kj .

For n = 3, contrary to the case n = 2, the analyticity at ǫ = 0 of all the invariant
products âσ is neither necessary, nor sufficient for the compatibility relations to be
satisfied:

Theorem 3.18. Let us suppose that, for all σ ∈ S3, the invariant product âσ
defined by (56) is analytic in ǫ at ǫ = 0 (equivalently ãσ = āσ, which we write as
aσ). Let us define the following quantities which are then analytic in ǫ.

(69)

Aδ12 = a(123)(1 − δ12
2) + a(12)(a(13)δ12

2 − a(23)),
Bδ23 = a(123)(1 − δ23

2) + a(23)δ23
2(a(12) − a(13)),

Cδ12δ23 = (1− δ12
2δ23

2)(a(12)a(23) − 2a(123))
+a(123)(a(23)δ23

2(δ12
2 − 1) + a(12)δ12

2(δ23
2 − 1))

+δ23
2(δ12

2a(12)
2a(23) − a(12)a(23)

2)
+a(13)

(

δ23
2(1 + δ12

2)a(23) − δ12
2(1 + δ23

2)a(12)
)

.

Then, for ǫ ∈ S∩, the compatibility relations of Theorem 3.6 may be replaced by the
following conditions:

(70) a(12)a(23) − a(123) − a(132) = 0

and

• for λ1,0(ǫ)− λ2,0(ǫ) /≡ λ2,0(ǫ)− λ3,0(ǫ),

(71) A ≡ B ≡ C ≡ 0,
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• for λ1,0(ǫ)− λ2,0(ǫ) ≡ λ2,0(ǫ)− λ3,0(ǫ),

(72) A ≡ −B, C ≡ 0,

with λj,q(ǫ) as in Notation 3.15.

We postpone the proof.

Corollary 3.19. The analyticity at ǫ = 0 of all the invariant products âσ is not
necessary for realizability. Not all systems with a nonresonant irregular singular
point of Poincaré rank 1 have an unfolding with unfolded Stokes matrices depending
analytically on ǫ.

Proof. While for fixed ǫ = 0, any pair of Stokes matrices is realizable, the conditions
of Theorem 3.18 imply that the Stokes matrices at ǫ = 0 must have a special form in
order that the invariant products âσ be analytic at ǫ = 0. A particular example is
constructed as follows: consider a system x2y′ = A(x)y realizing the Stokes matrices
with all coefficients equal to 1. Then, when ǫ = 0, we have a(12) = a(23) = a(123) =

a(132) = 1, which does not satisfy (70). Hence, the unfolding (x2 − ǫ)y′ = A(x)y
cannot satisfy the conditions of Theorem 3.18. �

The following proposition is purely computational and will be used to prove
Theorem 3.18.

Proposition 3.20. In the generic case n = 3, there exists an invertible diagonal
matrix Q̄ such that relation (34) is satisfied if and only if the following relations
are satisfied

(73)
(ā(12) − ã(12))(−1 + ∆̃23,L)(−1 + ∆̃13,R)

= ∆̃23,L

(

(q̃ + ã(123) − ā(123))− ∆̃12,R(q̄ + ā(132) − ã(132))
)

,

(74)
(ā(23) − ã(23))(−1 + ∆̃12,R)(−1 + ∆̃13,L)

= ∆̃12,L

(

∆̃23,L(q̃ + ã(132) − ā(132))− (q̄ + ā(123) − ã(123))
)

,

(75)
(ā(13) − ã(13))(−1 + ∆̃12,L)(−1 + ∆̃23,R)

= −∆̃23,R

(

q̃ + ∆̃12,L(ã(123) − ā(123))
)

+
(

∆̃12,Lq̄ + ā(132) − ã(132)

)

,

(76)
(

q̃ + ã(123) − ā(123) − ∆̃12,R(q̄ + ā(132) − ã(132))
)

(−1 + ∆̃13,L)(−1 + ∆̃23,R)

=
(

q̃ + ã(132) − ā(132) − ∆̃12,L(q̄ + ā(123) − ã(123))
)

(−1 + ∆̃23,L)(−1 + ∆̃13,R),

(77)

∆̃13,L

(

ã(12)(ã(132) + ã(123)δ32
2 + ∆̃23,Rq̃)− ā(23)(ā(123) + ā(132)δ21

2 + ∆̃12,Rq̄)
)

=
(

ā(132) + ∆̃12,L(q̄ + ā(123))
)

(−1 + ∆̃23,L)(−1 + ∆̃13,R)

−
(

ã(132) + ∆̃23,R(q̃ + ã(123))
)

(−1 + ∆̃13,L)(−1 + ∆̃12,R)

+∆̃23,Lā(13)ā(23)(−1 + ∆̃12,L)(−1 + ∆̃12,R)

−∆̃12,Lã(12)ã(13)(−1 + ∆̃23,L)(−1 + ∆̃23,R),
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and the elements of each of the following pairs vanish simultaneously at the same
order on S∩ ∪ {0}
(78)
c̄12(−1 + ∆̄31,R)(−1 + ∆̄32,L) + ∆̄32,Rc̄32(c̄13 + ∆̄21,R(c̄12c̄23 − c̄13)) and c̃12,
c̄21(−1 + ∆̄32,R)(−1 + ∆̄31,L) + ∆̄32,Rc̄23(c̄31 + ∆̄21,L(c̄21c̄32 − c̄31)) and c̃21,

c̄23 and c̃23(−1 + ∆̃12,L)(−1 + ∆̃13,R) + ∆̃12,Lc̃21(c̃13 + ∆̃23,R(c̃23c̃12 − c̃13)),

c̄32 and c̃32(−1 + ∆̃13,L)(−1 + ∆̃12,R) + ∆̃12,Lc̃12(c̃31 + ∆̃23,L(c̃32c̃21 − c̃31)),

c̄13 + ∆̄21,R(c̄12c̄23 − c̄13) and c̃13 + ∆̃23,R(c̃12c̃23 − c̃13),

c̄31 + ∆̄21,L(c̄21c̄32 − c̄31) and c̃31 + ∆̃23,L(c̃21c̃32 − c̃31).

Proof. Relations (78) come from Theorem 3.6 and Remark 3.2, using (23), (13) and
(25) for the replacements.

The set of four compatibility relations from Theorem 3.6 may be replaced by a
set of five relations, by Theorem 3.9. We use the equivalent set obtained with σ ∈ S3

and σ 6= (1), thus having a set of equations {eqnσ = 0}, each of them indexed by
the corresponding σ ∈ S3. We use the simplified set of equivalent equations eqn(132)

and eqnσ − eqn(132) = 0 for σ 6= (132). Relations (73) to (77) are then obtained
with the required replacements. �

Proof of Theorem 3.18. By Proposition 3.20, the compatibility relations of Theo-
rem 3.6 may be replaced by the relations (73) to (77). Let us take the products
âσ analytic in ǫ. Relation (73) is satisfied if and only if (70) is satisfied. Replacing
(70) into relations (74) to (77) and using (66) yields the only relation

(79) A∆̃12 + B∆̃23 + C∆̃12∆̃23 + B∆̃12
2∆̃23 +A∆̃12∆̃23

2 ≡ 0,

with A, B, C given by (69).
We will now study further the identity (79). We will prove that it is satisfied if

and only (71) or (72). The relation λ1,0(ǫ)−λ2,0(ǫ) ≡ λ2,0(ǫ)−λ3,0(ǫ), is equivalent

to ∆̂12 = ∆̂23. In this case, if the conditions (72) are satisfied, it is clear that (79)
is also satisfied. Conversely, suppose that (79) is satisfied. It has the form

Ax+ By + Cxy + Bx2y +Axy2 ≡ 0

for x = ∆̃12, y = ∆̃23. Let us look at the different cases.

• If λ1,0(0) − λ2,0(0) 6= λ2,0(0)− λ3,0(0), then there is a direction in ǫ-space
where x is flatter that y ( x ≺ y) or the contrary. Let us consider the case
where x ≺ y. Then we need have A ≡ 0 and By + Cxy + Bx2y ≡ 0. For
the same reason we need have B ≡ 0 and Cxy ≡ 0, which yields (71). In
the case y ≺ x, we need have B ≡ 0 and x(A + Cy + Ay2) ≡ 0. Hence
A + Cy + Ay2 ≡ 0, which implies A ≡ 0, and we get the same conclusion
as before.

• In the case λ1,0(0)−λ2,0(0) = λ2,0(0)−λ3,0(0), then we have Ax
y
+B+Cx+

Bx2+Axy ≡ 0. But, x
y
= exp

(

c(ǫ)√
ǫ

)

for c(ǫ) analytic in ǫ such that c(0) = 0.

It follows that x
y

is an analytic function of
√
ǫ bounded away from 0 for ǫ

small. Hence, we need to have Ax
y
+ B ≡ 0 and Cx+ Bx2 +Ayx ≡ 0. The

relation C +Bx+Ay ≡ 0 gives C ≡ 0. If λ1,0(ǫ)− λ2,0(ǫ) is not identically
equal to λ2,0(ǫ) − λ3,0(ǫ), we conclude A ≡ B ≡ 0. If λ1,0(ǫ) − λ2,0(ǫ) ≡
λ2,0(ǫ)− λ3,0(ǫ), then this gives the equations A+ B ≡ 0.

�
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Let us now study in detail the systems of equations (71) and (72).

Proposition 3.21. In the generic case where λ1,0(ǫ)− λ2,0(ǫ) /≡ λ2,0(ǫ)− λ3,0(ǫ),
the system (71) is equivalent to the system of three equations

S1 = a(123)(1− δ12
2) + a(12)(a(13)δ12

2 − a(23)) = 0,(80)

S2 = a(123)(1− δ23
2) + a(23)(a(12) − a(13))δ23

2 = 0,(81)

S3 = a(12)a(13)δ12
2(δ23

2 − 1) + a(13)a(23)δ23
2(δ12

2 − 1)(82)

+ a(12)a(23)(1− δ12
2δ23

2) = 0.

The two equations (80) and (82) (respectively (81) and (82)) are sufficient when
δ12

2 /≡ 1 (respectively δ23
2 /≡ 1). The equation (82) yields that (a(12), a(13), a(23))

lie in a quadric in (a(12), a(13), a(23))-space, while (80) or (81) yields that a(123) is

uniquely determined by (a(12), a(13), a(23)), except at simultaneous zeroes of δ12
2− 1

and δ23
2 − 1.

If both δ12
2 ≡ 1 and δ23

2 ≡ 1 (this includes the case Λ1(ǫ) ≡ 0), then the system
reduces to one of the following:

a12 ≡ a23 ≡ a13,(83a)

a12 ≡ a23 ≡ 0,(83b)

a13 ≡ a23 ≡ 0,(83c)

a12 ≡ a13 ≡ 0.(83d)

Proof. It suffices to note that the right hand sides of (80), (81) and (82) form a
Groebner basis for the polynomials appearing in equations (71) and that the system
formed by (80) and (82) is equivalent to the one formed by (81) and (82) under the
hypotheses δ12

2 /≡ 1 and δ23
2 /≡ 1. �

Proposition 3.22. When λ1,0(ǫ)− λ2,0(ǫ) ≡ λ2,0(ǫ)− λ3,0(ǫ), the system of equa-
tions (72) is equivalent to a system of two equations which are linear in a(123):

Fa(123) + G = 0,(84)

Ka(123) + L = 0,(85)

where

(86)































F = (1 − δ12δ23)(δ12 + δ23),

G = δ23(a(12)(a(13)δ
2
12 − a(23)) + (a(12) − a(13)a(23)δ12δ23,

K = a(12)δ
2
12(1− δ223) + a(23)δ

2
23(1− δ212) + 2(δ212δ

2
23 − 1),

L = a(12)a(23)[1− δ212δ
2
23 − a(23)δ

2
23 + a(12)δ

2
12δ

2
23]

−a(12)a(13)δ
2
12(1 + δ223) + a(13)a(23)δ

2
23(1 + δ212).

In the generic case where F ,G,H and K do not vanish, this is in turn equivalent
to the system of the two equations (84) and M = 0, where

(87) M = FK − GH = S3N ,

for S3 given in (82) and

(88) N = a(12)δ
2
12δ23 − a(23)δ12δ

2
23 + (δ12 − δ23)(1 − δ12δ23).
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When δ12 ≡ δ23 ≡ 1, which includes the case Λ1(ǫ) ≡ 0, then the system reduces to

a12 ≡ a23,(89a)

a13 ≡ a23 ≡ 0,(89b)

a12 ≡ a13 ≡ 0.(89c)

Propositions 3.21 and 3.22 give the generic cases together with the particular
cases where Λ1(ǫ) ≡ 0. This case could occur naturally in some systems for sym-
metry reasons. There remains a number of particular cases that can be derived as
well. We have omitted them since their statement was quite tedious.

Perspective. Generically the sufficient conditions for having invariants depending
analytically on ǫ describe a set of codimension 3, and hence of dimension 2. When
we started this investigation, we were not sure to expect any invariant products to
be analytic in ǫ, except in some trivial decomposable cases. However, there are such
cases which fill a codimension 3 variety, and most of them do not correspond to a
decomposable system. The conditions obtained ensure that a geometric explanation
similar to the one in Remark 3.14 holds here too. Such an explanation is a form
of “symmetry” with respect to the two singular points: the geometric description
of the system is essentially the same from the point of view of one singular point
and from the point of view of the other. What is remarkable is that the condition
must hold on the system itself for ǫ = 0, and not only on the unfolding. Hence,
the Stokes matrices (at ǫ = 0) of an irregular singular point of Poincaré rank 1
already “know” if an analytic unfolding of its Stokes matrices will be realizable.
Understanding geometrically this “symmetry” at the limit ǫ = 0 is certainly a very
interesting question.
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