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Abstract. In this paper, we give a complete system of analytic invariants
for the unfoldings of nonresonant linear differential systems with an irregular
singularity of Poincaré rank 1 at the origin over a fixed neighborhood Dr . It
consists of a formal part, given by polynomials, and an analytic part, given by
an equivalence class of unfolded Stokes matrices. The unfolding parameter ǫ

is taken in a sector S pointed at the origin of opening larger than 2π in the
complex plane, thus covering a whole neighborhood of the origin. For each
parameter value ǫ ∈ S, we cover Dr with two sectors and, over each sector,
we construct a well chosen basis of solutions of the unfolded linear differen-
tial systems. This basis is used to find the unfolded Stokes matrices, which
are analytic invariants linked to the monodromy of the chosen basis around
the singular points. The unfolded Stokes matrices give a complete geomet-
ric interpretation to the well-known Stokes matrices at ǫ = 0: this includes
the link (existing at least for the generic cases) between the divergence of the
solutions at ǫ = 0 and the presence of logarithmic terms in the solutions for
resonant values of the unfolding parameter. Finally, we give a realization the-
orem for a given complete system of analytic invariants satisfying a necessary
and sufficient condition, thus identifying the set of modules.

1. Introduction

In this paper, we are interested in the unfolding of linear differential systems
written as

(1) y′ =
A(x)

xk+1
y,

with A(x) a matrix of germs of analytic functions at the origin such that A(0)
has distinct eigenvalues (nonresonant case), x ∈ (C, 0), y ∈ Cn, and k is a strictly
positive integer called the Poincaré rank. We investigate the case of Poincaré rank
k = 1, but a prenormal form, from which formal invariants can be calculated, is
obtained in the general case k ∈ N∗ (Section 3).

Most of the time, the solutions of the differential systems (1) at the irregular
singular point x = 0 are divergent and the Stokes phenomenon is observed. To
understand this phenomenon, the irregular singular point can be split into regular
singular points by a deformation depending on a parameter ǫ. A. Glutsyuk [3]
showed that the Stokes multipliers related to the system (1) can be obtained from
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the limits of transition operators of a perturbed system. In the generic deformations
of the system (1) he considered, the parameter ǫ is taken in sectors that do not cover
a whole neighborhood of ǫ = 0. In particular, he restricts his study to parameter
values for which the bases of solutions of the perturbed system around the regular
singular points never contain logarithmic terms. In our previous paper [6], we
studied the confluence of two regular singular points of the hypergeometric equation
into an irregular one. Our approach allowed us to cover a full neighborhood of the
origin in the parameter space, the occurrence of logarithmic terms being embedded
into a continuous phenomenon. Our description of the geometry however was not
uniform in the parameter space. In this paper, we use the same approach for the
unfolding of the systems (1): a whole neighborhood of ǫ = 0 is covered, in a ramified
way.

One of the main questions of the field is the equivalence problem for systems
of the form (1): under which conditions does there exist an invertible matrix of
germs of analytic functions at the origin, T (x), giving an equivalence between two
arbitrary systems of the form (1) with y1 = T (x)y2? The complete system of
invariants for this equivalence relation contains formal invariants and an equivalence
class of Stokes matrices. Many people have worked on it, and a final statement can
be found in the paper of W. Balser, W.B. Jurkat and D.A. Lutz [1]. In this paper,
we give the analog of this complete system of invariants for 1-parameter families
of systems that unfold generically the systems (1), with k = 1. Over a fixed
neighborhood Dr in x-space, the complete system of invariants for the unfolded
systems consists of formal and analytic invariants. Formal invariants are obtained
from the polynomial part of degree k of a prenormal form. The system composed
of this polynomial part is a formal normal form which we call the "model system".
When ǫ tends to 0, it converges to the usual polynomial formal normal form. Dr

is covered with two sectorial domains converging to sectors when ǫ → 0. These
sectorial domains are chosen so that, on their intersection, solutions of the model
have the same behavior when x tends to the singular points as solutions of the
formal normal form at ǫ = 0. Analytic invariants are given by an equivalence class
of unfolded Stokes matrices, obtained from the monodromy of a well chosen basis
of solutions that is the unique basis having the same asymptotic behavior, over the
intersection of the sectorial domains and near the singular points, as the "diagonal"
basis of the model system. In dimension n = 2 and k = 1, the well chosen basis
corresponds to a "mixed basis" composed of two solutions that are eigenvectors of
the monodromy operator at the two different singular points.

Furthermore, we give a geometric interpretation to the Stokes matrices in the
unfolded systems: in particular, we link the Stokes matrices to the presence of log-
arithmic terms in the general solution of the unfolded system for resonant values of
the parameter. We also relate these analytic invariants to the monodromy of first
integrals of associated Riccati systems. Unfolded Stokes matrices depend analyti-
cally on ǫ̂ over a ramified sector around the origin and we show that there exists a
representative in their equivalence class which is 1

2 -summable in ǫ.
Finally, we describe the moduli space. We give a necessary and sufficient condi-

tion for a given set of invariants to be realizable as the modulus of an equivalence
class of differential systems.
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2. The Stokes phenomenon and invariants, ǫ = 0

We consider the system (1) and we denote by λ1,0, ..., λn,0 the distinct eigenvalues
of the matrix A(0) that we can assume diagonal after a constant linear change of

coordinates in the y variable. There exists a formal transformation Ĥ(x) such that

Ĥ(0) = I and such that y = Ĥ(x)z conjugates (1) with its formal normal form

(2) z′ =
Λ0 + Λ1x + ... + Λkxk

xk+1
z,

with

(3) Λq = diag{λ1,q, ..., λn,q}, q = 0, 1, ..., k.

Generally, elements of the matrix Ĥ(x) are not analytic around x = 0. But, there
exists a covering of a punctured neighborhood of the origin in x-space by 2k sectors
Ωs such that on each of them there exists a unique invertible analytic transformation
Hs(x) conjugating (1) with (2) and having the asymptotic series Ĥ(x) in Ωs. The
comparison of these transformations on the intersections of the sectors Ωs leads to
the analytic invariants of the system (1). In this section, we recall these known
results (for instance [5]) in the case k = 1, since they will organize our study in the
unfolding.

Let us take the system (1) and its formal normal form (2) which are written in
the case k = 1 as

(4) y′ =
A(x)

x2
y

and

(5) z′ =
Λ0 + Λ1x

x2
z,

with the above assumptions on A(0). We permute the coordinates of y ∈ Cn in
order to have

(6) ℜ(λ1,0) > ℜ(λ2,0) > ... > ℜ(λn,0)

and, if ℜ(λq,0) = ℜ(λj,0),

(7) ℑ(λq,0) < ℑ(λj,0), q < j.

Then, we have arg(λq,0 − λj,0) ∈] − π
2 , π

2 ] for q < j. We rotate slightly the x-plane
in the positive direction such that

(8) ℜ(λq,0 − λj,0) > 0, q < j.

From now on, the order of the coordinates of y and the x-coordinate (for ǫ = 0)
are fixed. We are now ready to choose the covering sectors in x using the notion of
separation rays.

Definition 2.1. When k = 1, the separation rays corresponding to λq,0 6= λj,0 ∈ C

are the two rays such that

(9) ℜ
(

λq,0 − λj,0

x

)
= 0.
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Definition 2.2. We define two open sectors ΩD and ΩU as

(10)
ΩD = {x ∈ C : |x| < r,−(π + δ) < arg(x) < δ},
ΩU = {x ∈ C : |x| < r,−δ < arg(x) < π + δ},

with δ > 0 chosen sufficiently small so that the closure of ΩD (respectively ΩU )
does not contain any separation rays located in the upper (respectively lower) half
plane. Several restrictions on the radius of these sectors will be discussed later.
The sectors are illustrated in Figure 1 with their intersection ΩL ∩ ΩR.

ΩL ΩR

ΩU

ΩD

Figure 1. Sectors ΩD and ΩU and their intersection ΩL ∪ ΩR.

By the sectorial normalization theorem of Y. Sibuya [10], if r is chosen sufficiently
small, there exists over each sector Ωs (s = D, U) a unique invertible matrix of

analytic functions Hs(x), asymptotic at the origin in Ωs to a power series Ĥ(x)
independent of s, such that y = Hs(x)z conjugates (4) with its formal normal form
(5).

The Stokes phenomenon appears when considering the intersection of the sectors
ΩU and ΩD. Let F (x) be the diagonal fundamental matrix solution of the formal
normal form (5) in the ramified domain {x ∈ C : −(π + δ) < arg(x) < π + δ} given
by

(11) F (x) = xΛ1e−
1
x
Λ0 .

Let Fs(x) be the restriction of F (x) to Ωs, s = D, U . On each connected component
of the intersection ΩD ∩ΩU (Figure 1), we have two bases of solutions of (4) given
by HD(x)FD(x) and HU (x)FU (x), with

(12) FU (x) =

{
FD(x), on ΩR,

FD(x)e2πiΛ1 , on ΩL.

Each element of one basis may be expressed as a linear combination of elements of
the other basis, giving the existence of matrices CR and CL, such that

(13) HD(x)−1HU (x) =

{
FD(x)CR(FD(x))−1, on ΩR,

FD(x)CL(FD(x))−1, on ΩL.

The matrices CR and CL are unipotent, respectively upper and lower triangular,
and they are called the Stokes matrices. The Stokes phenomenon occurs when at
least one of these Stokes matrices is different from the identity matrix and it reflects

the divergence of the formal transformation Ĥ(x).
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As F (x)K is also a fundamental matrix of the normal system (5) for any non-
singular diagonal matrix K, two Stokes collections {CR, CL} and {C′

R, C′
L} are

equivalent if and only if there exists a nonsingular diagonal matrix K such that

(14) C′
l = KClK

−1, l = L, R.

The equivalence classes of Stokes collections are analytic invariants for the clas-
sification of the systems (4). The next two theorems are now standard in the
literature.

Definition 2.3. Two systems are locally analytically equivalent if there exists an
invertible matrix of germs of analytic functions at the origin H(x) such that the
substitution y1 = H(x)y2 transforms the system y′

1 = A1(x)y1 into y′
2 = A2(x)y2.

Theorem 2.4. Two systems (4) with the same formal normal form (5) are locally
analytically equivalent if and only if their Stokes collections are equivalent in the
sense (14).

Related to a system (4), we thus have formal invariants, which are the coef-
ficients of the matrices Λ0 and Λ1 in the formal normal form (5), and analytic
invariants, given by the equivalence class of the Stokes collections. The moduli
space corresponding to these invariants has been completely described:

Theorem 2.5. Any collection consisting of two unipotent matrices, an upper tri-
angular one and a lower triangular one, can be realized as the Stokes collection of
a nonresonant irregular singularity with a preassigned formal normal form.

Where do these invariants come from? What do they mean? The answer appears
when unfolding.

3. The prenormal form, k ∈ N∗

In this section, we unfold the systems (1), with k ∈ N∗, and introduce a prenor-
mal form in which formal invariants can be calculated from a polynomial part. The
transformation from a system (1) to its prenormal form is analytic.

3.1. Generic unfolding. We consider an unfolding of a system (1) of the form

(15) f(η, x)y′ = A(η, x)y,

where η = (η0, ..., ηk−1) ∈ Ck, f(η, x) are germs of analytic functions at the origin
such that f(0, x) = xk+1 and A(η, x) is a matrix of germs of analytic functions at
the origin satisfying A(0, x) = A(x). We will restrict ourselves to functions f(η, x)
such that the unfolding is generic. To define this term, we need the following
proposition.

Proposition 3.1. After a translation X = x + b(η), with b(η) a germ of analytic
map such that b(0) = 0, any linear differential system (15) may be written as

(16) q∗(η, X)y′ = A∗(η, X)y,

with A∗(η, X) a matrix of germs of analytic functions at the origin satisfying
A∗(0, X) = A(0, x) and with q∗(η, X) = Xk+1 + ǫk−1(η)Xk−1 + ǫk−2(η)Xk−2... +
ǫ0(η), where ǫj(η) are germs of holomorphic functions at the origin such that
ǫj(0) = 0, j = 0, 1, ..., k − 1.
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Proof. Given a particular f(η, x), there exist, from Weierstrass preparation the-
orem, a unique invertible germ of analytic functions at the origin u(η, x) and a
unique Weierstrass polynomial q(η, x) = xk+1 + αk(η)xk + αk−1(η)xk−1... + α0(η)
such that f(η, x) = u(η, x)q(η, x), where αj(η) are germs of analytic functions at
the origin satisfying αj(0) = 0 for j = 0, 1, ..., k. This yields the system

(17) q(η, x)y′ =
A(η, x)

u(η, x)
y.

The change of variable X = x + αk(η)
k+1 yields the result. �

Definition 3.2. An unfolding is generic if the analytic map η = (η0, ..., ηk−1) 7→
ǫ = (ǫ0(η), ..., ǫk−1(η)) defined in Proposition 3.1 has an analytic inverse.

We restrict our study to generic unfoldings of systems (1). From the equation
(16), the genericity condition allows us to take ǫ = (ǫ0, ..., ǫk−1) as our new param-
eter. Let us change the notation of the variable X by x and from now on we do
not make any more coordinate change on x. We write the generic unfoldings of the
differential linear systems (1) as

(18) p(ǫ, x)y′ = B(ǫ, x)y,

with

(19) p(ǫ, x) = xk+1 + ǫk−1x
k−1 + ... + ǫ0,

ǫ = (ǫ0, ..., ǫk−1) ∈ Ck and B(ǫ, x) a matrix of germs of analytic functions at the
origin satisfying B(0, x) = A(x) as in (1).

3.2. Equivalence classes of generic families of linear systems unfolding
(1). In this paper, we are interested in equivalence classes of systems (18). We use
the same terminology as the one used for the classification of the systems (1), since
it agrees with it when ǫ = 0:

Definition 3.3. Two systems y′ = A(ǫ, x)y and z′ = B(ǫ, x)z are locally ana-
lytically equivalent (respectively formally equivalent) if there exists an invertible
matrix of germs of analytic functions of (ǫ, x) at the origin (respectively an invert-
ible matrix of formal series in (ǫ, x)) denoted T (ǫ, x) such that the substitution
y = T (ǫ, x)z transforms one system into the other.

We search for a complete system of analytic invariants for the systems (18)
under analytic equivalence. First, we choose a representative of each equivalence
class called the prenormal form.

3.3. Prenormal form. The families of systems (18) have singularities at x = xl,
for xl such that p(ǫ, xl) = 0. When looking at solutions around these singularities,
we need to evaluate the eigenvalues of B(ǫ, xl). With the next theorem, we express
them as the values at xl of polynomials of degree less than or equal to k.

Theorem 3.4. The family of systems (18) is analytically equivalent to a family in
the prenormal form

(20) p(ǫ, x)y′ = B(ǫ, x)y,

where

(21) B(ǫ, x) = Λ(ǫ, x) + p(ǫ, x)R(ǫ, x),
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(22) Λ(ǫ, x) = diag{λ1(ǫ, x), ..., λn(ǫ, x)},

(23) λi(ǫ, x) = λi,0(ǫ) + λi,1(ǫ)x + ... + λi,k(ǫ)xk,

λj,q(ǫ) are germs of analytic functions at the origin, p(ǫ, x) is given by (19) and
R(ǫ, x) is a matrix of germs of analytic functions at the origin.

Proof. As A(0) in (1) is a diagonal matrix, B(0, 0) = A(0) is also diagonal with
distinct eigenvalues. We take x in a neighborhood Dr of the origin such that the
eigenvalues of A(x) are distinct. Let us prove that there exists P (ǫ, x) a matrix
of germs of analytic functions at the origin that diagonalizes B(ǫ, x) for x ∈ Dr

and for ǫ sufficiently small. P (0, 0) can be any nonsingular diagonal matrix, let us
take P (0, 0) = I. For ǫ small and x ∈ Dr, the eigenvalues of B(ǫ, x) are distinct
and are analytic functions νi(ǫ, x) of (ǫ, x) by the implicit function theorem. Also,
there exists a unique analytic eigenvector vi(ǫ, x) relative to the eigenvalue νi(ǫ, x)
having the ith component equal to one (this is obtained with the implicit function
theorem, taking Fi(w, ǫ, x) = 0, where Fi(w, ǫ, x) = Bi(ǫ, x)vi, w = (w1, ..., wn−1),
vi = (w1, ..., wi−1, 1, wi, ..., wn−1) and where Bi(ǫ, x) is the matrix obtained by
removing the ith line of (B(ǫ, x) − νi(ǫ, x)I)). We then take the ith column of
P (ǫ, x) equal to vi(ǫ, x).

Finally, by taking z = P (ǫ, x)−1y, the new system p(ǫ, x)z′ = B∗(ǫ, x)z satisfies

B∗(ǫ, x) = diag{ν1(ǫ, x), ..., νn(ǫ, x)} + p(ǫ, x)P (ǫ, x)−1 ∂P (ǫ,x)
∂x

and is analytically
equivalent to the original system. Dividing νi(ǫ, x) by p(ǫ, x), we get νi(ǫ, x) =
ci(ǫ, x)p(ǫ, x)+λi,0(ǫ)+λi,1(ǫ)x+ ...+λi,k(ǫ)xk, from which the result follows. �

Remark 3.5. The polynomial part Λ(ǫ, x) of the prenormal form is completely
characterized by n(k + 1) quantities λj,q(ǫ) (with q = 0, 1, ..., k and j = 1, 2, ..., n).
For ǫ fixed such that the singular points are nonresonant, the collection of the well-
known formal invariants at all singular points contains also n(k + 1) elements (for
instance the collection of the eigenvalues of the residue matrices if the singular
points are all distinct).

For the rest of the paper, we only discuss systems in prenormal form (20).

4. Complete system of invariants in the case k = 1

This section leads to the complete description of the analytic equivalence classes
of generic families of systems in the prenormal form (20), limiting ourselves to the
case k = 1. Let us write these systems as

(24) (x2 − ǫ)y′ = B(ǫ, x)y,

where

(25) B(ǫ, x) = Λ(ǫ, x) + (x2 − ǫ)R(ǫ, x),

with

(26)
Λ(ǫ, x) = diag{λ1(ǫ, x), ..., λn(ǫ, x)},

= Λ0(ǫ) + Λ1(ǫ)x,

and

(27) Λq(ǫ) = diag{λ1,q(ǫ), ..., λn,q(ǫ)}, q = 0, 1.
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The quantity λj,0(0) = λj(0, 0) correspond to λj,0 defined in Section 2. Hence,
relation (8) may be written as

(28) ℜ(λq(0, 0) − λj(0, 0)) > 0, q < j.

This ordering on the eigenvalues of Λ(ǫ, x) at (ǫ, x) = 0 will be kept for ǫ 6= 0 and

|x| ≤
√
|ǫ| by taking ǫ sufficiently small (see Remark 4.9).

We like to call

(29) (x2 − ǫ)z′ = Λ(ǫ, x)z

the model system. When ǫ = 0, it corresponds to the formal normal form.

Notation 4.1. We denote the zeros of x2 − ǫ by

(30) xL =
√

ǫ and xR = −
√

ǫ.

These points are respectively at the left and at the right of the origin when
√

ǫ ∈ R−
(this will make sense with Definition 4.10).

The model system has a fundamental matrix of solutions given by
(31)

F (ǫ, x) = diag{f1(ǫ, x), ..., fn(ǫ, x)} =

{
(x − xR)UR(x − xL)UL , ǫ 6= 0,

xΛ1(0) exp (−Λ0(0)
x

), ǫ = 0,

with

(32) Ul =
1

2xl

Λ(ǫ, xl) =
1

2xl

Λ0(ǫ) +
1

2
Λ1(ǫ) = diag{µ1,l, ..., µn,l}, l = L, R.

The functions fj(ǫ, x) will be at the core of the construction of the sectorial
domains in the x-space done in Section 4.4.

Remark 4.2. The solutions fj(ǫ, x) of the model system given by (31) are analytic
in (ǫ, x) for ǫ in a punctured neighborhood of ǫ = 0 and for x in a simply connected
domain that does not contain any singular point x = xl, for l = L, R. These
functions converge uniformly on compact sets to fj(0, x) when ǫ → 0.

Let us immediately state notations related to formal invariants that we will
frequently use in this paper.

Notation 4.3. We define

(33) DR = e−2πiUR , DL = e2πiUL .

and

(34)

∆sj,l = (Dl)ss(D
−1
l )jj , l = L, R,

=

{
e2πi(µs,l−µj,l), l = L,

e2πi(µj,l−µs,l), l = R,

with Ul and µj,l given by (32). We have

(35) D−1
R DL = e2πiΛ1(ǫ),

with Λ1(ǫ) given by (27). We will see that DL (respectively DR) is the matrix
representing the monodromy around x = xL in the positive direction (respectively
around x = xR in the negative direction) when acting on the fundamental matrix
of solutions (31) of the model system. e2πiΛ1(ǫ) represents the monodromy around
both singular points, in the positive direction.
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The model system (29) corresponding to a system (24) contains all the informa-
tion on the formal invariants:

Theorem 4.4. Two systems (24) are formally equivalent if and only if they have
the same model system. Hence, the complete system of formal invariants of the
systems (24) is given by the n (degree 1) polynomials λi(ǫ, x) in the polynomial part
of the prenormal form.

Proof. By the Poincaré-Dulac Theorem applied to the nonlinear system

(36)





ẏ = B(ǫ, x)y,

ẋ = x2 − ǫ,

ǫ̇ = 0,

there exists an invertible formal transformation Y = T (ǫ, x)y at (ǫ, x) = (0, 0)
eliminating nondiagonal terms in (24) and yielding a diagonal R(ǫ, x) in (25). Then,

the transformation z = e−
R

x
0

R(ǫ,x)dxY leads to the model. Hence, letting J(ǫ, x) =

e−
R

x

0
R(ǫ,x)dxT (ǫ, x), the invertible transformation z = J(ǫ, x)y conjugates formally

a system (24) to its model.
Let us take two systems of the form (24) with the same model system, each of

them formally conjugated to the model with J i(ǫ, x). The transformation Q(ǫ, x) =
(J1(ǫ, x))−1J2(ǫ, x) leads a formal equivalence between the two systems.

On the other hand, let us suppose that two systems (x2 − ǫ)y′
1 = B1(ǫ, x)y1 and

(x2 − ǫ)y′
2 = B2(ǫ, x)y2, with Bi(ǫ, x) = Λi(ǫ, x) + (x2 − ǫ)Ri(ǫ, x), are formally

equivalent via y1 = Q(ǫ, x)y2, each of them formally conjugated to its model with
zi = J i(ǫ, x)yi. We obtain that P (ǫ, x) = J1(ǫ, x)Q(ǫ, x)(J2(ǫ, x))−1 is an invertible
formal transformation from the second model system (x2 − ǫ)z′2 = Λ2(ǫ, x)z2 to the
first model system (x2 − ǫ)z′1 = Λ1(ǫ, x)z1. Formally, we thus have

(37) (x2 − ǫ)
∂

∂x
P (ǫ, x) + P (ǫ, x)Λ2(ǫ, x) = Λ1(ǫ, x)P (ǫ, x).

By considering this equality for each power of ǫpxq, we obtain that Λ1(ǫ, x) =
Λ2(ǫ, x) (and that P (ǫ, x) is a diagonal matrix depending only on ǫ). Hence, the
two systems have the same model system. �

Around each singular point, the system (24) has a well-known basis of solutions
(given by eigenvectors of the monodromy operator) that we present in Theorem
4.31, but the problem with this basis is that it is not defined for an infinite set of
resonant values of ǫ which accumulate at ǫ = 0. We want to give a unified treatment
which highlights the fact that the Stokes phenomenon at ǫ = 0 organizes, in the
unfolding, the form of solutions at the resonant parameter values. Thus, we rather
use a new basis that is defined for all parameter values in a sector of opening greater
than 2π in the universal covering of the ǫ-space punctured at ǫ = 0. To find this
particular basis, we choose to consider the solutions of the linear systems in the
complex projective space.

4.1. The projective space. The system (24) is invariant under y → cy, with
c ∈ C∗. Taking charts in the complex projective space, it gives n particular Riccati
matrix differential equations. We introduce t by dx

dt
= ẋ = x2 − ǫ and replace them
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by n systems of ordinary differential equations (indexed by j)
(38)



dx
dt

= x2 − ǫ,
d
dt

(y)q

(y)j
= (λq(ǫ, x) − λj(ǫ, x))

(y)q

(y)j

+(x2 − ǫ)
∑n

i=1
(y)i

(y)j

(
(R(ǫ, x))qi − (R(ǫ, x))ji

(y)q

(y)j

)
, q 6= j,

that we call the Riccati systems.

Notation 4.5. Let v be a n-dimensional column vector. We define

(39) [v]j =

(
− (v)1

(v)j

, ...,− (v)j−1

(v)j

,− (̂v)j

(v)j

,− (v)j+1

(v)j

, ...,− (v)n

(v)j

)T

,

where (v)i is the ith component of the column vector v and where the hat denotes
omission.

Remark 4.6. Following Notation 4.5, the jth Riccati system associated to the
linear system (24) may be written as

(40)

{
d
dt

x = x2 − ǫ,
d
dt

[y]j = −T 0
j (ǫ, x) + T 1

j (ǫ, x)[y]j +
(
T 2

j (ǫ, x)[y]j
)
[y]j ,

with, denoting I the (n − 1) × (n − 1) identity matrix,

(41)

T 0
j (ǫ, x) : jth column of B(ǫ, x) except (B(ǫ, x))jj ;

T 1
j (ǫ, x) :

(
B(ǫ, x) without jth column and jth line

)
− (B(ǫ, x))jj I;

T 2
j (ǫ, x) : jth line of B(ǫ, x) except (B(ǫ, x))jj .

4.2. Radius of the sectors in the x-space when ǫ = 0. In order to obtain a
basis of solutions of the linear system (24), we will find in Section 4.5 particular
solutions (defined for ǫ̂ in a ramified sector and for x in sectorial domains Ωǫ̂

s) of
the Riccati systems (40). To ensure that these solutions will converge uniformly
on compact sets to solutions [y]j = Gj,s(0, x) (defined over the sectors Ωs given by
(10) for s = D, U), we choose in this section the radius of Ωs.

Let us first define the solution [y]j = Gj,s(0, x). When ǫ = 0, if the radius r of Ωs

is chosen sufficiently small, there exists a unique fundamental matrix of solutions
of the system (24) that can be written as

(42) Ws(0, x) = Hs(0, x)Fs(0, x), on Ωs, s = D, U,

where Fs(0, x) is the restriction of F (0, x) given by (31) to the sectorial domain Ωs,
and where Hs(0, x) is an invertible matrix of functions which are analytic on Ωs

and continuous on its closure, satisfying Hs(0, 0) = I (Hs(0, x) links the system to
its formal normal form, as explained in Section 2).

Notation 4.7. The solution corresponding to the jth column of Ws(0, x) in the jth

Riccati system passes through (x, [y]j) = (0, 0) and is tangent to the x direction,
we denote it as [y]j = Gj,s(0, x).

Let us now specify how we restrict the radius of Ωs.

Proposition 4.8. Let us define the region

(43) Vj =

{
(x, [y]j) ∈ C × CP

n−1 :

∣∣∣∣
(y)i

(y)j

∣∣∣∣ ≤ |x|, ∀i ∈ {1, ..., n}\{j}
}

.
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The boundary of Vj is
⋃n

i=1
i6=j

Vj
i , with

(44)

Vj
i =

{
(x, [y]j) ∈ C × CP

n−1 :

∣∣∣∣
(y)i

(y)j

∣∣∣∣ = |x|,
∣∣∣∣
(y)k

(y)j

∣∣∣∣ ≤ |x| if k 6= i, j

}
, i 6= j.

The radius r of Ωs, s = D, U , is chosen sufficiently small so that the graph [y]j =
Gj,s(0, x) is confined inside Vj, for all j ∈ {1, ..., n}.
Proof. We consider (38) for ǫ = 0. We have

(45)

∣∣∣∣
d

dt
|x|
∣∣∣∣ =

|ℜ(x̄ẋ)|
|x| =

∣∣ℜ(x̄x2)
∣∣

|x| ≤ |x|2

and

(46)
1

|x|

∣∣∣∣
d

dt

∣∣∣∣
(y)i

(y)j

∣∣∣∣
∣∣∣∣ ≥ |ℜ(λi,0(0) − λj,0(0))| − vij(x),

with

(47)
vij(x) = |λi,1(0) − λj,1(0)||x| + |x|2

∑n
k=1
k 6=j

|(R(0, x))ik|
+|x| (|(R(0, x))ij | +

∑n
k=1 |(R(0, x))jk|) .

Let us choose 0 < η < 1. As |ℜ(λi,0(0) − λj,0(0))|>0, we can take the radius r of
ΩD and ΩU sufficiently small so that
(48)
vij(x) + |x| < (1 − η)|ℜ(λi,0(0) − λj,0(0))|, x ∈ ΩD ∪ ΩU , i, j ∈ {1, ..., n}, i 6= j.

This implies

(49)

∣∣∣∣
d

dt
|x|
∣∣∣∣ <

∣∣∣∣
d

dt

∣∣∣∣
(y)i

(y)j

∣∣∣∣
∣∣∣∣ , for





(x, [y]j) ∈ Vj
i ,

x ∈ Ωs, s = D, U,

i, j ∈ {1, ..., n}, i 6= j.

Since the graph [y]j = Gj,s(0, x) contains the point (x, [y]j) = (0, 0) and is tangent
to the x-plane, it is confined inside Vj (if a solution parametrized by a curve in
complex time living on the graph [y]j = Gj,s(0, x) were to intersect a boundary
component of Vj , then (49) would not be satisfied). We introduced the parameter
η in order to have in the unfolding a similar property (see Proposition 4.15). �

4.3. Sector in the parameter space. Let us specify the sector on the universal
covering of the ǫ-space punctured at the origin with which we will work.

Remark 4.9. We take ǫ sufficiently small in order to have:

(50) ℜ((λq(ǫ, x) − λj(ǫ, x)) > 0, |x| ≤
√
|ǫ|, q < j, l = L, R.

Hence, we have the same ordering of the eigenvalues of Λ(ǫ, xl) as the one for
Λ(0, 0) given by (28).

Definition 4.10. We define the sector S, of opening larger than 2π and covering
completely a punctured neighborhood of ǫ = 0, as

(51) S = {ǫ̂ ∈ C : 0 < |ǫ̂| < ρ, arg(ǫ̂) ∈ (π − 2γ, 3π + 2γ)}
(see Figure 2). In (51), any γ > 0 such that γ(1 + 2 γ

π
) < θ0 can be chosen, with θ0

the maximum angle in (0, π
2 ) such that

(52) ℜ(e±iθ0(λq(0, 0) − λj(0, 0))) ≥ 0, q < j,
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ℜ(
√

ǫ)

ℑ(
√

ǫ)

ℜ(ǫ)

ℑ(ǫ)

S
S

Figure 2. Sector S in terms of the parameters ǫ and
√

ǫ.

with λj(ǫ, x) as in (26) (θ0 exists because of (28)). Once γ is chosen, the radius ρ

is chosen to ensure that there exists C > 0 for which

(53) ℜ(e±iγ(1+2 γ
π

)(λq(ǫ, x̂l) − λj(ǫ, x̂l))) > C > 0, q < j, l = L, R, ǫ̂ ∈ S.

We will restrict a few other times the value of ρ (in particular, to construct the
sectorial domains in the x-variable in Section 4.4 and to ensure that Proposition
4.15 is true).

Notation 4.11. We denote the auto-intersection of S as S∩. For values of the
parameter in S∩, we denote

(54) ǫ̃ = ǭe2πi ∈ S∩

(see Figure 3).

ℜ(ǫ)

ℑ(ǫ)

S

ǭ

ǫ̃

ℜ(
√

ǫ)

ℑ(
√

ǫ)

√
ǭ

√
ǫ̃

S

Figure 3. Example of values of ǭ and ǫ̃ in S∩ (in terms of ǫ and
√

ǫ).

Notation 4.12. We frequently write the hat symbol over some quantities to recall
the dependence on ǫ̂ ∈ S (for example x̂L). When we use the hat symbol for values
of the parameter in S∩, we mean that ǫ̂ could either be ǭ or ǫ̃.

4.4. Sectorial domains in x. For the rest of Section 4, x belongs to a disk of
radius r determined by Proposition 4.8. Let us now explain the construction of the
sectorial domains in the complex plane for the x-variable. The boundary of these
domains will be defined from solutions of the system

(55) ẋ = (x2 − ǫ),

allowing complex time. More precisely, passing to the t-variable, we have

(56) t(x) =

{
1

2
√

ǫ
ln
(

x−√
ǫ

x+
√

ǫ

)
, ǫ 6= 0,

− 1
x
, ǫ = 0.
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For ǫ = 0, we cover the disk of radius r with two sectorial domains Ω0
D and Ω0

U

(see Figure 4) included respectively inside the sectors ΩD and ΩU defined by (10).
The sectorial domains Ω0

D and Ω0
U correspond respectively, in the t-variable, to the

sectorial domains Γ0
D and Γ0

U illustrated in Figure 5.

Ω0
L Ω0

R

Ω0
D

Ω0
U

Figure 4. Sectorial domains in the x-variable when ǫ = 0.

Γ0
D

Γ0
U

Γ0
LΓ0

R

Figure 5. Sectorial domains in the t-variable when ǫ = 0.

When ǫ 6= 0, as the function t(x) given by (56) is multivalued, its inverse function
x(t) is periodic of period T = πi√

ǫ
. Hence, the disk of radius r is sent to the exterior

of a sequence of deformed circles (of initial radius r−1 for ǫ = 0) repeated with
period T . To cover the disk, we take two strips (Γǫ̂

D and Γǫ̂
U , see Figure 6) in

the direction of T of width larger than T
2 , such that their union is a strip (with

a hole) of width w, T < w < 2T , containing ±πi
2
√

ǫ
. The singular points in the t-

variable are located at infinity in the direction perpendicular to the line of holes.
The intersection of the two domains Γǫ̂

D and Γǫ̂
U consists of three connected sets:

Γǫ̂
L and Γǫ̂

R linking a part of the boundary to a singular point, and Γǫ̂
C linking the

two singular points (coming from the periodicity).

Γǫ̂
D

Γǫ̂
U

Γǫ̂
LΓǫ̂

R

Γǫ̂
C

Figure 6. Sectorial domains in the t-variable when
√

ǫ ∈ R∗.
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For most values of ǫ̂ ∈ S, the line of holes is slanted and we need to slant the
strips. If we take pure slanted strips as in Figure 7, we get domains that do not
converge when ǫ̂ → 0 to the sectorial domains at ǫ = 0 (Figure 5). Hence, we take a
part of the boundary horizontal on a length c√

|ǫ|
for some fixed c > 0 independent

of ǫ̂, as illustrated in Figure 8.

Figure 7. Incorrectly slanted sectorial domains in the t-variable.

Γǫ̂
D

Γǫ̂
U

c√
|ǫ|

T = πi√
|ǫ|

Figure 8. Correctly slanted sectorial domains in the t-variable.

Then, we define the sectorial domain Ωǫ̂
s in the x-variable as the one corre-

sponding, via (56), to the sectorial domain in the t-variable Γǫ̂
s, s ∈ {U, D, L, R, C}

(Figures 10 and 11). The points x̂R and x̂L are not in the sectorial domains Ωǫ̂
s

but in their closure. The region Ωǫ̂
L (respectively Ωǫ̂

R) has the singular point x̂L

(respectively x̂R) in its closure and Ωǫ̂
C has both (Figure 11). Note that the point

x = 0 belongs to Ωǫ̂
C .

In the x-variable, the difference between Ωǫ̂
s and Ω0

s (s = D, U) is mainly located

inside a disk of radius c′
√
|ǫ| (Figure 12), due to the non-horizontal part of the

boundary of the sectorial domains in the t-variable. Quantitative details and proofs
can be found in [9]. The construction is possible for all ǫ̂ ∈ S, provided the radius
ρ of S is sufficiently small. Indeed, reducing ρ amounts to increase the distance
between the holes.

The angle of the slope is chosen as follows. We take

(57) θ̂ =
2γ

π
(π − arg(

√
ǫ̂)),

with γ as chosen in Definition 4.10. Then, on the trajectories in the x-plane cor-

responding to t = Ceiθ̂ + C′ near the singular points, with C′ ∈ C fixed for each
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ℜ(
√

ǫ)

ℑ(
√

ǫ)

Γǫ̂
D

Γǫ̂
D

Γǫ̂
D

Γǫ̂
U

Γǫ̂
U

Γǫ̂
U

Γ0
D

Γ0
U

Γǫ̂
L

Γǫ̂
L

Γǫ̂
L

Γǫ̂
R

Γǫ̂
R

Γǫ̂
R

Γ0
L

Γ0
R

Γǫ̂
C

Γǫ̂
C

Γǫ̂
C

S

Figure 9. Sectorial domains in the t-variable for some values of
ǫ̂ ∈ S ∪ {0}, with γ = π

4 .

ℜ(
√

ǫ)

ℑ(
√

ǫ)

Ωǫ̂
D

Ωǫ̂
D

Ωǫ̂
D

Ωǫ̂
U

Ωǫ̂
U

Ωǫ̂
U

S

x̂L

x̂L

x̂L

x̂R

x̂R

x̂R Ω0
D

Ω0
U

Figure 10. Sectorial domains in the x-variable for some values of
ǫ̂ ∈ S ∪ {0}.

trajectory and C ∈ R, we have

(58) lim
x(t)→x̂l

t=Ceiθ̂+C′

(x− x̂R)µ̂j,R−µ̂q,R (x− x̂L)µ̂j,L−µ̂q,L = 0, for

{
q > j, if l = R,

q < j, if l = L,
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Ωǫ̂
L Ωǫ̂

R

Ωǫ̂
D

Ωǫ̂
U

Ωǫ̂
C

x̂Rx̂L

Figure 11. The connected components of the intersection of the
sectorial domains Ωǫ̂

D and Ωǫ̂
U , case

√
ǫ̂ ∈ R∗

−.

Figure 12. Difference between the sectorial domains Ωǫ̂
s and Ω0

s

mainly located inside a small disk of radius c′
√
|ǫ|.

(this is obtained from the fact that ℜ(eiθ̂
√

ǫ̂) < 0 and that |θ̂| < γ(1 + 2 γ
π
) with γ

satisfying (53)). The limits (58) yield, with fj(ǫ, x) given by (31),

(59) lim
x→x̂l

x∈Ωǫ̂
s

fj(ǫ, x)

fq(ǫ, x)
= 0, for

{
q > j, if l = R,

q < j, if l = L.

Note that we have the same behavior when ǫ = 0:

(60) lim
x→0
x∈Ω0

s

fj(0, x)

fq(0, x)
= 0, for

{
q > j, if l = R,

q < j, if l = L.

4.5. Invariant manifolds in the projective space. In this section, we find an
invariant manifold [y]j = Gj,s(ǫ̂, x) of the jth Riccati system (40) that converges
when ǫ̂ → 0 (in S) to the invariant manifold [y]j = Gj,s(0, x) (Notation 4.7).

The Jacobian of the jth Riccati system at the singular point (x̂l, 0), l = L, R,
has eigenvalues

(61) 2x̂l; λ1(ǫ, x̂l) − λj(ǫ, x̂l); ... ; ̂(λj(ǫ, x̂l) − λj(ǫ, x̂l)); ... ; λn(ǫ, x̂l) − λj(ǫ, x̂l).

For q 6= j, the quotient of the eigenvalue in − (y)q

(y)j
over the one in x gives µ̂q,l − µ̂j,l,

with µ̂j,l given by (32).



Complete system of analytic invariants for unfolded differential linear systems 17

Definition 4.13. We define the resonant values of ǫ̂ as those for which µ̂q,l− µ̂j,l ∈
N∗ for q 6= j, l = L, R. These are true resonances of the nonlinear Riccati system:
they are exactly the values for which there is an obstruction to eliminate the terms
(y)j(x − x̂l)

m ∂
∂(y)q

in (24) when localizing the system at x = x̂l. The parameter ǫ̂

has been taken inside a sector which avoids half of these resonances.

Remark 4.14. All resonant values of the unfolding parameter ǫ can be integrated in
a continuous study: the consideration of half of them on the sector S is sufficient
since the change of parameter ε̂ = ǫ̂e2πi, under which the unfolded systems are
invariant, gives the new parameter ε̂ in a sector including the other half of the
resonant values.

When ǫ̂ ∈ S, the eigenvalues of the Jacobian, listed in (61), are separated in
two distinct groups by a real line passing through the origin. It gives, locally, the
existence of invariant manifolds that are tangent to the invariant subspaces of the
linearization operator of the vector field at the singular points (x̂l, 0). We will need
the following proposition to extend these local invariant manifolds.

Proposition 4.15. For ǫ̂ ∈ S, let us define the region

(62) Vj
ǫ̂ = Vj

ǫ̂,+ ∩ Vj
ǫ̂,−,

with

(63) Vj
ǫ̂,± =

{
(x, [y]j) ∈ C × CP

n−1 :

∣∣∣∣
(y)i

(y)j

∣∣∣∣ ≤ |x ±
√

ǫ̂|, i ∈ {1, 2, ..., n}\{j}
}

.

The boundary of Vj
ǫ̂,± is

⋃n
i=1
i6=j

Vj
ǫ̂,±,i, with, for i 6= j,

(64)

Vj
ǫ̂,±,i = {(x, [y]j) ∈ C × CP

n−1 :

∣∣∣∣
(y)i

(y)j

∣∣∣∣ = |x ±
√

ǫ̂|,
∣∣∣∣
(y)k

(y)j

∣∣∣∣ ≤ |x ±
√

ǫ̂| if k 6= i, j}.

We can take the radius of S sufficiently small so that

(65)

∣∣∣∣
d

dt
|x ±

√
ǫ̂|2
∣∣∣∣ <

∣∣∣∣∣
d

dt

∣∣∣∣
(y)i

(y)j

∣∣∣∣
2
∣∣∣∣∣ , for





(x, [y]j) ∈ Vj
ǫ̂,±,i,

x ∈ Ωǫ̂
s, s = D, U,

ǫ̂ ∈ S,

i, j ∈ {1, ..., n}, i 6= j.

Proof. Similarly to the proof of Proposition 4.8, we consider (38) and we have,
either with the upper or the lower sign,

(66)

∣∣∣∣
1

2

d

dt
|x ±

√
ǫ̂|2
∣∣∣∣ ≤ |x ±

√
ǫ̂|2|x ∓

√
ǫ̂|.

On Vj
ǫ̂,±,i, we have

(67)
1

2|x ±
√

ǫ̂|2

∣∣∣∣∣
d

dt

∣∣∣∣
(y)i

(y)j

∣∣∣∣
2
∣∣∣∣∣ ≥ |ℜ(λi,0(ǫ) − λj,0(ǫ))| − v±ij(ǫ̂, x),

with

(68)
v±ij(ǫ̂, x) = |λi,1(ǫ) − λj,1(ǫ)||x| + |x ±

√
ǫ̂|2∑n

k=1
k 6=j

|(R(ǫ, x))ik|
+|x ∓

√
ǫ̂| (|(R(ǫ, x))ij | +

∑n
k=1 |(R(ǫ, x))jk |) .
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Let us take α such that

(69) α ≤ η|ℜ(λi,0(0) − λj,0(0))|, ∀i 6= j,

with η as chosen in Proposition 4.8. We restrict the radius of S to ρ > 0 such that

(70)
∣∣|ℜ(λi,0(ǫ) − λj,0(ǫ))| − |ℜ(λi,0(0) − λj,0(0))|

∣∣ <
α

2

and such that

(71)
∣∣v±ij(ǫ̂, x) + |x ∓

√
ǫ̂| − |x| − vij(0, x)

∣∣ <
α

2
, ∀i 6= j,

implying

(72) v±ij(ǫ̂, x) + |x ∓
√

ǫ̂| < |ℜ(λi,0(ǫ) − λj,0(ǫ))|, ∀ǫ̂ ∈ S, ∀i 6= j.

This yields (65). �

Using Proposition 4.15, we now define the graph [y]j = Gj,s(ǫ̂, x) as consisting of
the union of all solutions, parametrized by curves in complex time of the jth Riccati
system, that are confined inside the region Vj

ǫ̂ when restricted to the sectors Ωǫ̂
s:

Theorem 4.16. In the jth Riccati system, there exists, over Ωǫ̂
s, a one-dimensional

invariant manifold given as a graph [y]j = Gj,s(ǫ̂, x), passing through the two sin-

gular points (x, [y]j) = (x̂l, 0), l = L, R, and located inside the region Vj
ǫ̂ over the

sector Ωǫ̂
s. Gj,s(ǫ̂, x) is an analytic function of (ǫ̂, x) for ǫ̂ ∈ S and x ∈ Ωǫ̂

s.

Proof. We always take x inside the sectorial domain Ωǫ̂
s and we omit the lower index

s within the proof : we write simply Gj(ǫ̂, x).
Let us take the first Riccati system and fix ǫ0 ∈ S. The choice of S allows to

separate, by a real line passing through the origin, the eigenvalue 2x̂R from the
other eigenvalues at (x̂R, 0) given by (61). From the Hadamard-Perron theorem for
holomorphic flows (see [5]), there exist holomorphic invariant manifolds W+

x̂R,1 and

W−
x̂R,1 tangent to the invariant subspaces of the linearization operator of the vector

field at (x̂R, 0). We denote by [y]1 = G1(ǫ0, x) the unique one-dimensional invari-
ant manifold W+

x̂R,1. Near x = x̂R, it is the unique invariant manifold contained

inside the region Vj
ǫ0

(defined by (62)) and its extension cannot escape from Vj
ǫ0

,
by Proposition 4.15.

Similarly, in the nth Riccati system, we take [y]n = Gn(ǫ0, x) as the extension of
the unique holomorphic one-dimensional invariant manifold W−

x̂L,n passing through

(x̂L, 0).
Now, let us take the jth Riccati system, with 1 < j < n. Around x = x̂R

(respectively x = x̂L), we have two invariant manifolds W+
x̂R,j and W−

x̂R,j of dimen-

sion j and n − j (respectively W+
x̂L,j and W−

x̂L,j of dimension j − 1 and n − j + 1)
tangent to the corresponding invariant subspaces of the linearization operator of
the vector field. We analytically extend the invariant manifold W+

x̂R,j tangent to

(x,
(y)1
(y)j

, ...,
(y)j−1

(y)j
) at (x̂R, 0) towards the singular point x = x̂L. Proposition 4.15

implies that any solution (with complex time) of this extended invariant manifold

cannot exit Vj
ǫ0

by its part of the boundary consisting of the Vj
ǫ0,±,i for i ≥ j + 1.

Near x = x̂L, the extension of W+
x̂R,j must then intersect the invariant manifold

W−
x̂L,j , which is tangent to (x,

(y)j+1

(y)j
, ...,

(y)n

(y)j
), along a unique one-dimensional in-

variant manifold denoted [y]j = Gj(ǫ0, x).
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In each Riccati system, we thus have one-dimensional invariant manifolds [y]j =

Gj(ǫ0, x) confined inside Vj
ǫ0

. Near ǫ0 6= 0, W±
x̂l,j

depends analytically on ǫ, implying

that the unique solution [y]j = Gj(ǫ̂, x) is analytic in ǫ̂ for ǫ̂ ∈ S. �

Remark 4.17. The invariant manifolds [y]1 = G1,s(ǫ̂, x) and [y]n = Gn,s(ǫ̂, x) are
uniform respectively near x̂R and near x̂L, whereas [y]j = Gj,s(ǫ̂, x) is ramified at
the two singular points. More precisely, Gj,U (ǫ̂, x) = Gj,D(ǫ̂, x) over Ωǫ̂

C (Figure
11) for j = 1, 2, ..., n, G1,U (ǫ̂, x) = G1,D(ǫ̂, x) over Ωǫ̂

R and Gn,U (ǫ̂, x) = Gn,D(ǫ̂, x)
over Ωǫ̂

L.

Solutions in the invariant manifold [y]j = Gj,s(ǫ̂, x) behave differently from the
other solutions of the jth Riccati system, since they are the only ones that are
bounded when x → x̂R and x → x̂L over Ωǫ̂

s. The fact that an invariant manifold

[y]j = Gj,s(ǫ̂, x) is bounded over the region Vj
ǫ̂ leads to its uniform convergence on

compact sets of Ω0
s:

Theorem 4.18. The invariant manifold [y]j = Gj,s(ǫ̂, x) converges uniformly on
compact subsets of Ω0

s, when ǫ̂ → 0, ǫ̂ ∈ S, to the invariant manifold at ǫ = 0
[y]j = Gj,s(0, x) (see Notation 4.7), for s = D, U .

Proof. Let us take a simply connected compact subset of Ω0
s. For |ǫ| sufficiently

small, it does not contain neither x̂R nor x̂L, nor the spiraling part of Ωǫ̂
s. Propo-

sition 4.15 implies that the invariant manifold [y]j = Gj,s(ǫ̂, x) satisfies

(73) |(Gj,s(ǫ̂, x))i| < min{|x − x̂R|, |x − x̂L|}, with





x ∈ Ωǫ̂
s, s = D, U,

ǫ̂ ∈ S,

i = 1, 2, ..., n− 1.

This implies the desired convergence to a bounded solution of the system for ǫ = 0
that can only be [y]j = Gj,s(x, 0). �

4.6. Basis of the linear system (24). In this section, we make the correspon-
dence between the invariant manifold [y]j = Gj,s(ǫ̂, x) of the jth Riccati system
(40) and multiples (by a complex constant) of a particular solution of the linear
system (24). We show that these n particular solutions form a basis of solutions of
the linear system which is valid for all values of ǫ̂ ∈ S and x ∈ Ωǫ̂

s.

Notation 4.19. Let FD(ǫ̂, x) be the restriction to Ωǫ̂
D of the fundamental matrix

of solutions of the model system F (ǫ, x) (given by (31)), and let FU (ǫ̂, x) be its
analytic continuation to Ωǫ̂

U , passing through Ωǫ̂
R.

Remark 4.20. The solution Fs(ǫ̂, x) is uniform over Ωǫ̂
s, s = D, U , and according

to Notation 4.19, we have

(74) FU (ǫ̂, x) =





FD(ǫ̂, x), on Ωǫ̂
R,

FD(ǫ̂, x)e2πiΛ1(ǫ), on Ωǫ̂
L,

FD(ǫ̂, x)D̂−1
R , on Ωǫ̂

C ,

with D̂R given by (33) and Λ1(ǫ) by (27), satisfying (35).

Theorem 4.21. Let s = D, U . There exists a fundamental matrix of solutions of
(24) that can be written as

(75) Ws(ǫ̂, x) = Hs(ǫ̂, x)Fs(ǫ̂, x), (ǫ̂, x) ∈ S × Ωǫ̂
s,
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with Hs(ǫ̂, x) analytic on S × Ωǫ̂
s, satisfying

(76) |Hs(ǭ, 0) − Hs(ǫ̃, 0)| ≤ c|ǭ|, for some c ∈ R+, ǭ, ǫ̃ = ǭe2πi ∈ S∩ ∪ {0},

(77) |Hs(ǫ̂, 0)| and |Hs(ǫ̂, 0)−1| are bounded, ǫ̂ ∈ S∩,

and

(78) lim
x→x̂l

x∈Ωǫ̂
s

Hs(x, ǫ̂) = Kl(ǫ̂), ǫ̂ ∈ S, l = L, R,

where Kl(ǫ̂) is an invertible diagonal matrix depending analytically on ǫ̂ ∈ S with a
nonsingular limit at ǫ = 0 (independent of s).

Proof. The proof is valid for s = D or s = U . For our needs, we write [y]j =
Gj,s(ǫ̂, x) on Ωǫ̂

s as

(79)

{ −(y)k

(y)j
= gkj,s(ǫ̂, x),

−1 = gjj,s(ǫ̂, x).

With (24), we can write

(80) (y′)j =
λj(ǫ, x)

x2 − ǫ
(y)j +

n∑

k=1

(R(ǫ, x))jk(y)k.

Dividing by (y)j , the known solutions of the jth Riccati system appear in the right
hand side:

(81)
(y′)j

(y)j

= −λj(ǫ, x)

x2 − ǫ
gjj,s(ǫ̂, x) −

n∑

k=1

(R(ǫ, x))jkgkj,s(ǫ̂, x).

The integration of equation (81) allows to recover (y)j and relation (79) leads to
the other (y)k, thus yielding a solution wj,s(ǫ̂, x) of the linear system (24) (and all
its multiples by a complex constant) that can be written as

(82) wj,s(ǫ̂, x) = fj,s(ǫ̂, x)hj,s(ǫ̂, x),

with fj,s(ǫ̂, x) the jth diagonal element of Fs(ǫ̂, x) (see Notation 4.19), and with

(83) (hj,s(ǫ̂, x))k = −e−
R

x

0

Pn
p=1(R(ǫ,x))jpgpj,s(ǫ̂,x)dxgkj,s(ǫ̂, x),

where the integration path is taken inside Ωǫ̂
s. Such a path can be found in the

t-variable (see Section 4.4) since t(0) ∈ Γǫ̂
C . With the n Riccati systems, we obtain

in this way n solutions wj,s(ǫ̂, x) of the linear system (24) defined for ǫ̂ ∈ S and
x ∈ Ωǫ̂

s. We take

(84) Ws(ǫ̂, x) = [w1,s(ǫ̂, x) ...wn,s(ǫ̂, x)]

and

(85) Hs(ǫ̂, x) = [h1,s(ǫ̂, x) ...hn,s(ǫ̂, x)]

to obtain (75) from (82). The limit (78) follows from

(86) lim
x→x̂l

x∈Ωǫ̂
s

gkj,s(x, ǫ̂) = 0, k 6= j, l = L, R,

and

(87) (Kl(ǫ̂))jj = lim
x→x̂l

(hj,s(ǫ̂, x))j = e−
R x̂l
0

Pn
p=1(R(ǫ,x))jpgpj,s(ǫ̂,x)dx,
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which is independent of s since the integration path in (87) may be taken inside
Ωǫ̂

C (see Remark 4.17).
The solutions w1,s(ǫ̂, x), ..., wn,s(ǫ̂, x) form a basis of solutions since the columns

of Fs(ǫ̂, x) are linearly independent and since Kl(ǫ̂) in (78) is invertible.
The property (77) comes from (73). Let us now prove (76). From its definition,

Hs(ǫ̂, 0)Fs(ǫ̂, 0) is a solution of (24) at x = 0, so

(88) Λ(ǫ, 0)Hs(ǫ̂, 0) − Hs(ǫ̂, 0)Λ(ǫ, 0) = ǫ (H ′
s(ǫ̂, 0) − R(ǫ, 0)Hs(ǫ̂, 0)) .

With ǭ and ǫ̃ in S∩ (see Notation 4.11), we thus have

(89)
Λ(ǫ, 0)(Hs(ǭ, 0) − Hs(ǫ̃, 0)) − (Hs(ǭ, 0) − Hs(ǫ̃, 0))Λ(ǫ, 0)

= ǫ (H ′
s(ǭ, 0) − H ′

s(ǫ̃, 0) − R(ǫ, 0)(Hs(ǭ, 0) − Hs(ǫ̃, 0))) ,

yielding, for some k ∈ R+,

(90) | (Hs(ǭ, 0) − Hs(ǫ̃, 0))jq | ≤ k|ǫ|, j 6= q, ǭ ∈ S∩ ∪ {0}, i = 1, 2,

by the boundedness of |H ′
s(ǭ, 0) − H ′

s(ǫ̃, 0)|, |R(ǫ, 0)| and |Hs(ǭ, 0) − Hs(ǫ̃, 0)| over
S∩ ∪{0} (recall that Λ(ǫ, 0) has distinct eigenvalues for ǫ ∈ S ∪ {0}). Relation (76)
comes from (90) and from the fact that the diagonal elements of Hs(ǭ, 0)−Hs(ǫ̃, 0)
are zeros (since (Hs(ǫ̂, 0))jj = 1). �

We have seen that the solutions in the invariant manifold [y]j = Gj,s(ǫ̂, x) con-
verge uniformly on compact sets of Ω0

s. This property remains for the corresponding
solutions of the linear system:

Corollary 4.22 (of Theorem 4.18). Elements of the fundamental matrix Ws(ǫ̂, x)
converges uniformly on compact sets of Ω0

s to the fundamental matrix Ws(0, x)
defined in (42), s = D, U .

Proof. From (75) and the convergence of F (ǫ̂, x) to F (0, x), it suffices to prove
the desired convergence of Hs(ǫ̂, x). This is immediate, since each column has an
expression in terms of the solution [y]j = Gj,s(ǫ̂, x) as in (83), using the notation
(79). �

Remark 4.23. The transformation y = Hs(ǫ̂, x)z (with Hs(ǫ̂, x) given by Theorem
4.21) conjugates the system (24) to its model (29) over Ωǫ̂

s, for ǫ̂ ∈ S ∪ {0}.
The bases WD(ǫ̂, x) and WU (ǫ̂, x) defined respectively on Ωǫ̂

D and Ωǫ̂
U will allow

the calculation of the analytic invariants of the linear system.

4.7. Definition of the unfolded Stokes matrices. In this section, we define
the unfolded Stokes matrices by comparing the fundamental matrices of solutions
WD(ǫ̂, x) and WU (ǫ̂, x) on the connected components of the intersection of Ωǫ̂

D and
Ωǫ̂

U (Figure 11).

Theorem 4.24. There exist matrices CR(ǫ̂) and CL(ǫ̂) such that

(91) HD(ǫ̂, x)−1HU (ǫ̂, x) =





FD(ǫ̂, x)CR(ǫ̂)(FD(ǫ̂, x))−1, on Ωǫ̂
R,

FD(ǫ̂, x)CL(ǫ̂)(FD(ǫ̂, x))−1, on Ωǫ̂
L,

I, on Ωǫ̂
C .

CR(ǫ̂) and CL(ǫ̂) are respectively an upper triangular and a lower triangular unipo-
tent matrix. They depend analytically on ǫ̂ ∈ S and converge when ǫ̂ → 0 (ǫ̂ ∈ S) to
the Stokes matrices defined by (13). Hence, we call CR(ǫ̂) and CL(ǫ̂) the unfolded
Stokes matrices and {CR(ǫ̂), CL(ǫ̂)} an unfolded Stokes collection.
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Proof. As WD(ǫ̂, x) and WU (ǫ̂, x) are two fundamental matrices of solutions on the
intersection of Ωǫ̂

D and Ωǫ̂
U (see Theorem 4.21), there exist matrices expressing the

fact that columns of WU (ǫ̂, x) are linear combinations of columns of WD(ǫ̂, x) on
the intersection parts Ωǫ̂

L, Ωǫ̂
R and Ωǫ̂

C . With (74) and (75), these relations become
equivalent to

(92) HD(ǫ̂, x)−1HU (ǫ̂, x) =





FD(ǫ̂, x)CR(ǫ̂)(FD(ǫ̂, x))−1 on Ωǫ̂
R

FD(ǫ̂, x)CL(ǫ̂)(FD(ǫ̂, x))−1 on Ωǫ̂
L

FD(ǫ̂, x)C0(ǫ̂)(FD(ǫ̂, x))−1 on Ωǫ̂
C .

Then, taking the limit x → x̂L on Ωǫ̂
L, x → x̂R on Ωǫ̂

R and both limits on Ωǫ̂
C

leads, with (59) and (78), to C0(ǫ̂) = I and to the unipotent triangular form of
the matrices CR(ǫ̂) and CL(ǫ̂). Since Ws(ǫ̂, x) and Fs(ǫ̂, x) converge uniformly on
compact sets of Ω0

s (see Corollary 4.18 and Remark 4.2), so does Hs(ǫ̂, x) . Then,
the matrices CR(ǫ̂) and CL(ǫ̂) must converge to the Stokes matrices when ǫ̂ → 0,
ǫ̂ ∈ S. �

Proposition 4.25. A fundamental matrix of solutions of (24) that can be written
as (75), with Hs(ǫ̂, x) analytic on S×Ωǫ̂

s, satisfying (76), (77) and with a limit when
x → x̂l, x ∈ Ωǫ̂

s that is bounded, invertible and independent of s, is unique up to
right multiplication by any nonsingular diagonal matrix K(ǫ̂) depending analytically
on ǫ̂ ∈ S with a nonsingular limit at ǫ = 0 and such that

(93) |K(ǭ) − K(ǫ̃)| ≤ c|ǭ| over S∩, for some c ∈ R+.

Proof. Let us suppose that we have two fundamental matrices of solutions that
can be written as Hs(ǫ̂, x)Fs(ǫ̂, x) and H∗

s (ǫ̂, x)Fs(ǫ̂, x) with properties listed in the
proposition. Having two bases of solutions over Ωǫ̂

C , there exists a matrix K(ǫ̂) such
that

(94) H∗
s (ǫ̂, x)Fs(ǫ̂, x) = Hs(ǫ̂, x)Fs(ǫ̂, x)K(ǫ̂), x ∈ Ωǫ̂

C .

Since the limits when x → x̂l, l = L, R, of Hs(ǫ̂, x) and of H∗
s (ǫ̂, x) are bounded

and invertible, K(ǫ̂) must be a diagonal matrix. Then, we have

(95) Hs(ǫ̂, x)−1H∗
s (ǫ̂, x) = K(ǫ̂), x ∈ Ωǫ̂

C ,

and in particular

(96) Hs(ǫ̂, 0)−1H∗
s (ǫ̂, 0) = K(ǫ̂).

From (96), (76) and (77), we obtain (93). �

As the uniqueness of Ws(ǫ̂, x) is ensured by the choice of a nonsingular diagonal
matrix K(ǫ̂) having properties listed in Proposition 4.25, it is natural to adopt the
following definition:

Definition 4.26. Two unfolded Stokes collections written as {CR(ǫ̂), CL(ǫ̂)} and
{C′

R(ǫ̂), C′
L(ǫ̂)} (see Theorem 4.24) are equivalent if and only if

(97) C′
l(ǫ̂) = K(ǫ̂)Cl(ǫ̂)K(ǫ̂)−1, l = L, R,

for some nonsingular diagonal matrix K(ǫ̂) depending analytically on ǫ̂ ∈ S with a
nonsingular limit at ǫ = 0 and such that (93) is satisfied.
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Using results obtained from the study of the monodromy of the solutions, we will
prove in Section 4.13 that these equivalence classes of unfolded Stokes collections
constitute the analytic part of the complete system of invariants for the systems
(24).

4.8. Unfolded Stokes matrices and monodromy in the linear system. In
this section, we show how the unfolded Stokes matrices are linked to the monodromy
operator acting on Ws(ǫ̂, x), how they give information on the existence of the bases
of solutions composed of eigenvectors of the monodromy operator, and how they
provide a meaning to the Stokes matrices at ǫ = 0.

To study the action of the monodromy operator, we consider the ramified domain

(98) V ǫ̂ = Ωǫ̂
D ∪ Ωǫ̂

U ,

illustrated in Figure 13, which could have a (non illustrated) spiraling part around
x̂R and x̂L.

x̂Rx̂L

V ǫ̂

Figure 13. Domain of H(ǫ̂, x), denoted V ǫ̂, case
√

ǫ̂ ∈ R∗
−.

Notation 4.27. Let FV (ǫ̂, x) be the analytic continuation of FD(ǫ̂, x) from Ωǫ̂
D to

V ǫ̂ (through Ωǫ̂
C).

The well chosen basis of solutions we consider on this domain is the analytic
continuation of WD(ǫ̂, x) from Ωǫ̂

D to V ǫ̂, that we write as

(99) WV (ǫ̂, x) = [w1(ǫ̂, x) ... wn(ǫ̂, x)] = H(ǫ̂, x)FV (ǫ̂, x),

where

(100) H(ǫ̂, x) =

{
HD(ǫ̂, x), on Ωǫ̂

D,

HU (ǫ̂, x), on Ωǫ̂
U ,

which is well-defined because of (91).
The fundamental group of C\{xR, xL} based at a nonsingular point acts on a

solution (valid at this base point) by giving its analytic continuation at the end
of a loop. In this way we have monodromy operators around each singular point
x = xl. We can extend this action of the fundamental group to any function of
the solutions. When the monodromy operator acts on a fundamental matrix of
solutions W , its is represented by a matrix acting by right multiplication on W .

Notation 4.28. We denote Mx̂R
(respectively Mx̂L

) the monodromy operator as-
sociated to the loop which makes one turn around the singular point x = x̂R

(respectively x = x̂L) in the negative (respectively positive) direction and which
does not surround any other singular point, with the fundamental group based,
independently of ǫ̂ ∈ S, at a point belonging to Ωǫ̂

R (respectively Ωǫ̂
L) and taken on

Ωǫ̂
D (see Figure 14).
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Mx̂L
Mx̂R

Figure 14. Illustration of the definition of the monodromy oper-
ators Mx̂L

and Mx̂R
, case x̂L =

√
ǫ̂ ∈ R∗

−.

Proposition 4.29. For l = L, R, the action of the monodromy operator Mx̂l
on

WV (ǫ̂, x) is represented by the matrix m̂l satisfying

(101) m̂l = Cl(ǫ̂)D̂l,

where Cl(ǫ̂) is the unfolded Stokes matrix defined by (91) and D̂l, given by (33), is
the matrix representing the action of the monodromy operator Mx̂l

on the funda-
mental matrix of solutions FV (ǫ̂, x) of the model system.

Proof. Starting on Ωǫ̂
R, the operator Mx̂R

acting on WV (ǫ̂, x) = HD(ǫ̂, x)FD(ǫ̂, x)

gives HU (ǫ̂, x)FD(ǫ̂, x)D̂R. Starting on Ωǫ̂
L, the operator Mx̂L

acting on WV (ǫ̂, x) =

HD(ǫ̂, x)FD(ǫ̂, x) gives HU (ǫ̂, x)FD(ǫ̂, x)D̂L. As we have (91), equation (101) is
verified for l = L, R. �

Remark 4.30. Relation (101) gives a geometric meaning to zeros in unfolded
Stokes matrices Cl(ǫ̂). For example, if a permutation P is such that PCl(ǫ̂)P

−1

is in a block diagonal form, it indicates a decomposition of the solution space into
invariant subspaces under the action of the monodromy operator Mx̂l

. A trivial jth

column of Cl(ǫ̂) points out that wj(ǫ̂, x) is eigenvector of Mx̂l
. A trivial unfolded

Stokes matrix Cl(ǫ̂) would imply that all the elements of WV (ǫ̂, x) are eigenvectors
of Mx̂l

.

Via the Jordan normal form of the monodromy matrix Cl(ǫ̂)D̂l, we will now ex-
press how the elements of the unfolded Stokes matrices are linked to the existence of
the solutions that are eigenvectors of the monodromy operator around the singular
points. This will give a geometric interpretation of the elements of Cl(ǫ) and, in
particular, of their limits, the elements of Cl(0).

Theorem 4.31. t ∈ Cn is an eigenvector of the monodromy matrix m̂l if and
only if WV (ǫ̂, x)t is a solution eigenvector of the monodromy operator Mx̂l

with the
same eigenvalue. Hence, for l = L, R, the number of independent solutions which
are eigenvectors of Mx̂l

is equal to the number of Jordan blocks in the Jordan matrix

associated to m̂l = Cl(ǫ̂)D̂l. The values for which the monodromy matrix m̂l may
not be diagonalizable are the resonant values of ǫ̂ specified in Definition 4.13 (which
exactly correspond to multiple eigenvalues of m̂l).

When ǫ̂ is not resonant, let T̂l be the unipotent triangular matrix diagonalizing

the monodromy matrix m̂l = Cl(ǫ̂)D̂l:

(102) (T̂l)
−1m̂lT̂l = D̂l.

The fundamental matrix of solutions

(103) Wx̂l
(x) = WV (ǫ̂, x)T̂l
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is composed of eigenvectors of the monodromy operator around x = x̂l. A funda-
mental matrix having this property is unique up to its normalization: the jth column
of Wx̂l

is a nonzero multiple of the well-known Floquet solution (for example [11])
given by

(104) ŵj,l(x) = (x − x̂l)
µ̂j,l ĝj,l(x),

with µ̂j,l given by (32) and ĝj,l(x) = ej + O(|x− x̂l|) an analytic function of x in a
region containing x = x̂l but no other singular point.

When ǫ̂ is resonant, the matrix m̂l = Cl(ǫ̂)D̂l is no more diagonalizable with no
jth eigenvector if and only it the jth Floquet solution ŵj,l(x) does not exist and has
to be replaced, in the basis of solutions around x = x̂l, by a solution containing
logarithmic terms.

Proof. By Proposition 4.29, we have Mx̂l
WV (ǫ̂, x) = WV (ǫ̂, x)m̂l. Let t ∈ Cn and

β ∈ C. The first assertion of the theorem is obtained from

(105)
m̂lt = βt ⇐⇒ WV (ǫ̂, x)m̂lt = βWV (ǫ̂, x)t

⇐⇒ Mx̂l
WV (ǫ̂, x)t = βWV (ǫ̂, x)t.

To prove the uniqueness (up to normalization) of Wx̂l
(x), let us suppose that

W ∗ is such that Mx̂l
W ∗ = W ∗D̂l. Since we have two bases of solutions, there exists

a nonsingular matrix K such that Wx̂l
(x) = W ∗K. Since Mx̂l

Wx̂l
= Wx̂l

D̂l, we

must have D̂lK = KD̂l. Since ǫ̂ is not resonant, the eigenvalues of D̂l are distinct
and K can only be diagonal. �

Remark 4.32. For nonresonant values of ǫ̂, (102) implies that the unfolded Stokes

matrices are equal to the multiplicative commutator of the matrices T̂l and D̂l:

(106) Cl(ǫ̂) = T̂lD̂lT̂
−1
l D̂−1

l = [T̂l, D̂l].

Corollary 4.33. There exist polynomials in terms of the elements of the unfolded
Stokes matrices Cl(ǫ̂) and the elements of D̂l indicating, when they are nonzero at
a resonant value, the nonexistence of a Floquet solution ŵj,l(x) at the resonance.
CR(ǫ̂) (respectively CL(ǫ̂)) is linked to the presence of logarithmic terms in solutions
around x = x̂R (respectively x = x̂L).

In particular cases, the obstruction to the existence of Floquet solutions can be
forced by the special form of the Stokes matrix Cl = Cl(0). This is the case when

• (CR)12 6= 0: ŵ2,R(x) does not exist at the resonance µ̂1,R − µ̂2,R ∈ N∗;
• (CL)n(n−1) 6= 0: ŵn−1,L(x) does not exist at the resonance µ̂n,L − µ̂n−1,L ∈

N∗;
• arg(λs,0 − λj,0) are distinct for all s 6= j: a nonvanishing sth polynomial

in terms of the elements of the Stokes matrices Cl with integer coefficients
yields an obstruction to the existence of ŵj,l(x) at the resonance µ̂s,l−µ̂j,l ∈
N∗, with s > j if l = L and s < j if l = R.

Proof. The polynomials of the corollary could be obtained by analytic or algebraic
arguments, by counting the number of eigenvectors of Cl(ǫ̂)D̂l. We present the

proof in the analytic way. Recall that the matrices T̂l are triangular and unipotent.
Since T̂l = Cl(ǫ̂)D̂lT̂lD̂

−1
l (see (106)), elements (T̂l)ij , for i 6= j, can be calculated

from the recurrent equations

(107) (T̂l)ij(1 − ∆̂ij,l) = (Cl(ǫ̂))ij +
∑

i<k<j, l=R
j<k<i, l=L

(Cl(ǫ̂))ik(T̂l)kj∆̂kj,l,
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with ∆̂sj,l given by (34). At the resonance, ∆̂sj,l = 1 for some s, j, l. Conditions to

the nonexistence of the jth column of T̂l at the resonance can be calculated from
(107): they are given by polynomials in terms of elements of D̂l and of elements of
the unfolded Stokes matrices. In some special cases, these polynomials have a limit
at ǫ = 0 and the conditions can be formulated with polynomials in the elements
of the Stokes matrices at ǫ = 0: the nonvanishing of the polynomials for small ǫ̂ is
ensured by the nonvanishing of the limit polynomial at ǫ = 0 which depends on Cl.
In particular, this is the case

• for the second column of T̂R;
• for the (n − 1)th column of T̂L;
• for all columns if arg(λs,0 − λj,0) are distinct for all s 6= j. In that case,

the resonance ∆̂ij,l = 1 is distinct from the resonance ∆̂kj,l = 1 for k 6= i.

On the sequence ǫ̂n → 0 corresponding to the resonance ∆̂ij,l = 1, the

limit of
(

∆̂kj,l

1−∆̂kj,l

)
is 0 or −1, hence the polynomial at the limit has integer

coefficients (independent of ǫ̂).

�

Example 4.34. Let us consider the case n = 3, with distinct arguments of λ2−λ3,
λ1 − λ2 and λ1 − λ3. Equation (107) gives

(108)

(T̂R)12(1 − ∆̂12,R) = (CR(ǫ̂))12,

(T̂R)13(1 − ∆̂13,R) = (CR(ǫ̂))13 + (CR(ǫ̂))12(CR(ǫ̂))23

(
∆̂23,R

1−∆̂23,R

)
,

(T̂R)23(1 − ∆̂23,R) = (CR(ǫ̂))23,

(T̂L)21(1 − ∆̂21,L) = (CL(ǫ̂))21,

(T̂L)31(1 − ∆̂31,L) = (CL(ǫ̂))31 + (CL(ǫ̂))21(CL(ǫ̂))32

(
∆̂21,L

1−∆̂21,L

)
,

(T̂L)32(1 − ∆̂32,L) = (CL(ǫ̂))32.

Decreasing values of ǫ̂ such that µ̂1,R−µ̂3,R ∈ N∗ and µ̂3,L−µ̂1,L ∈ N∗ are approach-
ing the ray arg(

√
ǫ) = arg(λ3,0 − λ1,0). The following comes from the inequalities

arg(λ1,0 − λ2,0) < arg(λ1,0 − λ3,0) < arg(λ2,0 − λ3,0). When ǫ̂ → 0 on resonant
values

• µ̂1,R − µ̂3,R ∈ N∗ making ∆̂13,R = 1, we have ℑ(µ̂2,R − µ̂3,R) > 0 and then(
∆̂23,R

1−∆̂23,R

)
=
(

1
∆̂32,R−1

)
tends to −1, since ∆̂32,R → 0;

• µ̂3,L − ˆ̂µ1,L ∈ N∗ making ∆̂31,L = 1, we have ℑ(µ̂1,L − µ̂2,L) > 0 and then(
∆̂21,L

1−∆̂21,L

)
=
(

1
∆̂12,L−1

)
tends to −1, since ∆̂12,L → 0.

These limits imply that the right hand side of the equations (108) at the resonance
is minus an element of the inverse of the unfolded Stokes matrices. We immediately
see that

• if (CR)12 6= 0, (T̂R)12 (and hence ŵ2,R(x)) does not have a limit at the

resonances µ̂1,R − µ̂2,R ∈ N∗ making ∆̂12,R = 1;

• if (CR)23 6= 0, (T̂R)23 (and hence ŵ3,R(x)) does not have a limit at the

resonances µ̂2,R − µ̂3,R ∈ N∗ making ∆̂23,R = 1;

• if (CR)13 − (CR)12(CR)23 6= 0, (T̂R)13 (and hence ŵ3,R(x)) does not have

a limit at the resonances µ̂1,R − µ̂3,R ∈ N∗ making ∆̂13,R = 1;
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• if (CL)21 6= 0, (T̂L)21 (and hence ŵ1,L(x)) does not have a limit at the

resonances µ̂2,L − µ̂1,L ∈ N∗ making ∆̂21,L = 1;

• if (CL)32 6= 0, (T̂L)32 (and hence ŵ2,L(x)) does not have a limit at the

resonances µ̂3,L − µ̂2,L ∈ N∗ making ∆̂32,L = 1;

• if (CL)31 − (CL)21(CL)32 6= 0, (T̂L)31 (and hence ŵ1,L(x)) does not have a

limit at the resonances µ̂3,L − µ̂1,L ∈ N∗ making ∆̂31,L = 1.

4.9. Stokes matrices and monodromy in the Riccati systems. In this sec-
tion, we give a meaning to the unfolded Stokes matrices in the corresponding Riccati
systems. This allows an interpretation of the Stokes matrices at ǫ = 0. This section
is not prerequisite to state the complete system of analytic invariants of the systems
(24) .

We will look at the monodromy of first integrals in the Riccati systems. These
first integrals are obtained from the basis of the linear system.

Proposition 4.35. For x ∈ V ǫ̂, the jth Riccati system has first integrals Hj
q, for

q ∈ {1, 2, ..., n}\{j}, that can be written as

(109) Hj
q = (−1)q−j

∣∣∣bj
1(ǫ̂, x, [y]j) ...

̂
b
j
q(ǫ̂, x, [y]j) ... bj

n(ǫ̂, x, [y]j)

∣∣∣
∣∣∣bj

1(ǫ̂, x, [y]j) ...
̂

b
j
j(ǫ̂, x, [y]j) ... bj

n(ǫ̂, x, [y]j)

∣∣∣
,

with

(110) b
j
i (ǫ̂, x, [y]j) = (−1)i−j(wi(ǫ̂, x))j ([y]j − [wi]j) ,

and wi(ǫ̂, x) the ith column of the fundamental matrix of solutions WV (ǫ̂, x) given

by (99) (for [wi]j, see Notation 4.5). (Hj)q has values in (CP
1) for q 6= j.

Proof. Let wi(ǫ̂, x) be the columns of the fundamental matrix of solutions WV (ǫ̂, x)
given by (99). The general solution of a linear system (24) may be expressed as
a linear combination y =

∑n
q=1 kqwq(ǫ̂, x) of the particular solution wq(ǫ̂, x), with

kq ∈ C. In particular, the jth component of this general solution y satisfies

(111) (y)j =

n∑

q=1

kq(wq(ǫ̂, x))j ,

so

(112)

n∑

q=1

kq(wq(ǫ̂, x))j

y

(y)j

=

n∑

q=1

kqwq(ǫ̂, x),

and

(113)

n∑

q=1

kq

kj

(
wq(ǫ̂, x) − (wq(ǫ̂, x))j

y

(y)j

)
= 0.

Solving for
kq

kj
, q 6= j, and using Notation 4.5 and (110) gives (109). �

As detailed in the next theorem, elements of the inverse of the unfolded Stokes
matrices appear in the expression of the monodromy of the first integrals Hj

q around
x = x̂l.

Theorem 4.36. The monodromy of a first integral Hj
q around x = x̂l may be

written as the composition of
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• a wild part depending on the formal invariants,
• a map depending on the elements of the inverse of the unfolded Stokes

matrices and having a limit for ǫ = 0.

More precisely, with Hj
j = 1, the monodromy if the first integrals may be expressed

as

(114) Mx̂R
(Hj

q) = ∆̂jq,1

Hj
q +

∑n
p=q+1(CR(ǫ̂)−1)qpHj

p

1 +
∑n

p=j+1(CR(ǫ̂)−1)jpHj
p

,

and

(115) Mx̂L
(Hj

q) = ∆̂jq,2

Hj
q +

∑q−1
p=1(CL(ǫ̂)−1)qpHj

p

1 +
∑j−1

p=1(CL(ǫ̂)−1)jpHj
p

.

Denoting

(116) Hj = (Hj
1, ...,Hj

n)T ,

this is equivalent to

(117) Mx̂l
(Hj) = diag{∆̂j1,l, ..., ∆̂jn,l}

Cl(ǫ̂)
−1Hj

[(Cl(ǫ̂)−1)j1, ..., (Cl(ǫ̂)−1)jn]Hj
,

with ∆̂jq,l as defined by (34).

Proof. In order to calculate the monodromy of the first integrals given by (109), we
need to compute the monodromy of

(118) Bj(ǫ̂, x, [y]j) = [bj
1(ǫ̂, x, [y]j) ... bj

n(ǫ̂, x, [y]j)],

with b
j
i (ǫ̂, x, [y]j) given by (110). Since the monodromy of wq(ǫ̂, x) is given by

Proposition 4.29, we have

(119) Mx̂l
(Bj(ǫ̂, x, [y]j)) = Bj(ǫ̂, x, [y]j)m̂l,

with m̂l given by (101). With Hj defined in (116), relation (113) implies

(120) Bj(ǫ̂, x, [y]j)Hj = 0,

and thus, using (119),

(121) Bj(ǫ̂, x, [y]j)m̂lMx̂l
(Hj) = 0.

Equations (120) and (121) imply that

(122) Mx̂l
(Hj

q) =
(m̂−1

l Hj)q

(m̂−1
l Hj)j

,

leading to the equations of the theorem, using (101). �

Theorem 4.36 yields the following interpretation of the Stokes matrices at ǫ = 0:

Corollary 4.37. The first integral Hj
q is an eigenvector of the monodromy operator

around a singular point x = x̂l (by this we means Mx̂l
Hj

q = ∆̂jq,lHj
q ) if and only if

the rows j and q in the inverse of the unfolded Stokes matrix Cl(ǫ̂) are trivial. Hence,
a nontrivial ith row in the inverse of the right (respectively left) Stokes matrix at
ǫ = 0 is an obstruction for the first integrals Hi

k to be eigenvectors of the monodromy
operator around the right (respectively left) singular point, for k ∈ {1, ..., n}\{i}.
Proof. This is immediate from equations (114) and (115). �
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The wild part in the monodromy of the first integrals of the Riccati system is
due to the definition of the fundamental matrix of solutions of the model system
over the considered domain and is not a consequence of the Stokes phenomenon:

Remark 4.38. If we compare first integrals over the intersections of the secto-
rial domains Ωǫ̂

U and Ωǫ̂
D instead of over the auto-intersection of V ǫ̂ (thus taking

Notation 4.19 for Fs(ǫ̂, x) over Ωǫ̂
s instead of Notation 4.27 for FV (ǫ̂, x) over V ǫ̂),

the wild part is only present in the comparison over Ωǫ̂
C (which does not exist at

ǫ = 0). When we compare the first integrals over Ωǫ̂
R and Ωǫ̂

L, there is no wild part
in equations corresponding to (114), (115) and (117).

4.10. Auto-intersection relation and 1
2 -summable representative of the

equivalence class of unfolded Stokes matrices. In this section, we compare
the two points of view that we have on S∩, the auto-intersection of S. This will
yield a relation that is satisfied for all ǫ ∈ S∩. We call it the auto-intersection
relation. It allows to prove to the existence of a representative of the equivalence
class of unfolded Stokes matrices which is 1

2 -summable in ǫ. Further, it will be
a necessary and sufficient condition for the realization of the complete system of
analytic invariants.

For ǭ and ǫ̃ = ǭe2πi in S∩ (Figure 3), we have two different presentations of
the dynamics of the same linear differential system. By the choice of the sector
S, these values are never resonant, allowing the existence of transition matrices
between fundamental matrices of solutions composed of eigenvectors of the mon-
odromy operators around the singular points. First, let us take the monodromy
operators with the base point taken on the upper (respectively lower) sectorial do-
main when the corresponding loop surrounds the upper (respectively lower) singular
point.

Notation 4.39. In Notation 4.28, we defined the monodromy operators Mx̂R
and

Mx̂L
, for ǫ̂ ∈ S. Over S∩, let us denote

• M∗
x̃L

= Mx̃L
,

• M∗
x̄R

= Mx̄R
,

• M∗
x̄L

= M−1
x̄L

,

• M∗
x̃R

= M−1
x̃R

.

Hence, the base points of M∗
x̃L

and M∗
x̄R

belongs to Ωǭ
D ∩ Ωǫ̃

D, whereas the base

points of M∗
x̄L

(respectively M∗
x̃R

) are taken on Ωǭ
U ∩ Ωǫ̃

U (Figures 15 and 16).

Ωǫ̃
D

Ωǫ̃
U

x̃L

x̃R

ǫ̃ ∈ S∩ ǭ ∈ S∩

Ωǭ
D

Ωǭ
U

x̄L

x̄R

Figure 15. Sectorial domains in the x-variable for ǫ̂ ∈ S∩.
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M∗
x̃L

M∗
x̃R

ǫ̃ ∈ S∩ ǭ ∈ S∩

M∗
x̄L

M∗
x̄R

Figure 16. Illustration of the definition of the monodromy oper-
ators M∗

x̃L
, M∗

x̄R
, M∗

x̄L
and M∗

x̃R
.

Definition 4.40. For l = L, R, let us take Wx̂l
(x) a fundamental matrix of solu-

tions of (24) composed of eigenvectors of the monodromy operator M∗
x̂l

, depending

analytically on ǫ̂ ∈ S∩ and converging uniformly over compact sets of Ω0
s when

ǫ̂ → 0 (and ǫ̂ ∈ S∩) to Ws(0, x) defined by (42), with s = D if ℑ(x̂l) < 0 and s = U

otherwise. Let EL,x̂L→x̂R
be the matrix such that, over a fixed compact set of Ω0

L

sufficiently far from the singular points,

(123) EL,x̂L→x̂R
= (Wx̂L

(x))−1Wx̂R
(x).

Let Ex̂L→x̂R
be the matrix such that, over a fixed compact set of Ω0

R sufficiently
far from the singular points,

(124) ER,x̂L→x̂R
= (Wx̂L

(x))−1Wx̂R
(x).

We call EL,x̂L→x̂R
(respectively Ex̂L→x̂R

) the left (respectively right) transition
matrix from x̂L to x̂R. These transition matrices are unique up to multiplication
on each side by nonsingular diagonal matrices depending analytically on ǫ̂ ∈ S∩,
with a nonsingular limit at ǫ = 0 (coming from the normalization of the chosen
fundamental matrices of solutions).

The following proposition is implicit from the paper [3] of A. Glutsyuk. The
proof will be useful later.

Proposition 4.41. Let us take two families of systems

(125) (x2 − ǫ̂)y′
i = Bi(ǫ̂, x)yi, i = 1, 2,

having the form (24) with the same model system and depending on ǫ̂ ∈ S∩. Let

(126) xU = x̄L = x̃R, xD = x̄R = x̃L.

Let us take for each family of systems a right transition matrix from xD to xU ,
i.e. Ei

R,xD→xU
(Definition 4.40). The two family of systems (125) are analytically

equivalent, the equivalence depending analytically on (ǫ, x) ∈ S∩×Dr and converging
uniformly on compact sets of Dr when ǫ → 0, if and only if there exist QU (ǫ̂) and
QD(ǫ̂) nonsingular diagonal matrices depending analytically on ǫ̂ ∈ S∩, with a
nonsingular limit at ǫ = 0, and such that

(127) E1
R,xD→xU

QU (ǫ̂) = QD(ǫ̂)E2
R,xD→xU

.
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Proof. Let us denote by W i
x̂l

(x), l = L, R, the fundamental matrix of solutions

taken to calculate the right transition matrices Ei
R,xD→xU

, i = 1, 2. Let us take two

domains G ǫ̂
U and G ǫ̂

D covering Dr (Figure 17), such that G ǫ̂
U (respectively G ǫ̂

D) con-
tains xU but not xD (respectively xD but not xU ) and has the limit Ω0

U (respectively
Ω0

D) when ǫ̂ → 0 in S∩.

xD

xU

G ǫ̂
U

G ǫ̂
D

Figure 17. Domains G ǫ̂
U and G ǫ̂

D and their intersection.

Let us suppose that (127) is satisfied. The transformation y1 = Pǫ̂(x)y2, with

(128) Pǫ̂(x) =

{
W 1

xU
(x)QU (ǫ̂)(W 2

xU
(x))−1, on G ǫ̂

U ,

W 1
xD

(x)QD(ǫ̂)(W 2
xD

(x))−1, on G ǫ̂
D,

is well-defined on Dr because of (127), for any ǫ̂ ∈ S∩ ∪ {0}. It conjugates the
two systems, depends analytically on (ǫ̂, x) ∈ S∩ × Dr and converges uniformly on
compact sets of Dr when ǫ̂ → 0.

On the other hand, let us suppose that the change y1 = Pǫ̂(x)y2 yields an analytic
equivalence (as in the statement of the proposition) between the two systems. Then,
by uniqueness (up to normalization) of W i

x̂L
(x) and W i

x̂R
(x), we must have

(129) Pǫ̂(x)W 2
xU

(x) = W 1
xU

(x)QU (ǫ̂), over G ǫ̂
U ,

and

(130) Pǫ̂(x)W 2
xD

(x) = W 1
xD

(x)QD(ǫ̂), over G ǫ̂
D,

with QU (ǫ̂) and QD(ǫ̂) nonsingular diagonal matrices depending analytically on
ǫ̂ ∈ S∩ and having a nonsingular limit at ǫ = 0. Isolating Pǫ̂(x) in (129) and (130),
we get, over a compact in Ω0

R and for ǫ̂ sufficiently small,

(131) W 1
xD

(x)QD(ǫ̂)(W 2
xD

(x))−1 = W 1
xU

(x)QU (ǫ̂)(W 2
xU

(x))−1,

which is equivalent to (127), using (124). �

Remark 4.42. Taking the left transition matrices instead of the right transition
matrices in Proposition 4.41 (and taking in the proof a compact set on Ω0

L instead
of Ω0

R) yields similar result.

When taking a system of the form (24), the right transition matrices ER,x̃L→x̃R

and ER,x̄R→x̄L
both correspond to the transition from the lower point to the upper

point. By Proposition 4.41, we know they satisfy a relation like (127). We formulate
it more precisely in Proposition 4.50.



32 C.Lambert, C.Rousseau

Definition 4.43. For r(ǫ) analytic in ǫ ∈ S∩, we say that r(ǫ) is exponentially

close to 0 in
√

ǫ if it satisfies |r(ǫ)| < be
− a√

|ǫ| for some a, b ∈ R∗
+.

Lemma 4.44. Following its definition given by (34),

(132) ∆̃sj,l = (D̃l)ss(D̃
−1
l )jj , s < j, l = L, R

is exponentially close to 0 in
√

ǫ (to prove it, use (53)). We also have

(133) (∆̂sj,l)
−1 = ∆̂js,l

and

(134) ∆̂sj,l∆̂ji,l = ∆̂si,l.

By (30), (33) and (54), we obtain

(135) D̃L = D̄−1
R , D̃R = D̄−1

L

and, by (34),

(136)
∆̄sj,R = ∆̃js,L,

∆̄sj,L = ∆̃js,R.

Hence, ∆̄sj,l is exponentially close to 0 in
√

ǫ for s > j and l = L, R.

Lemma 4.45. On S∩, elements from the following matrices are exponentially close
to 0 in

√
ǫ in the sense of Definition 4.43:

(137)
CL(ǭ) − T̄L, I − T̃L,

CR(ǫ̃) − T̃R, I − T̄R.

(138)
CL(ǭ)−1 − T̄−1

L , I − T̃−1
L ,

CR(ǫ̃)−1 − T̃−1
R , I − T̄−1

R ,

(139)
CL(ǫ̃) − D̃LT̃−1

L D̃−1
L ,

CR(ǭ) − D̄RT̄−1
R D̄−1

R ,

and

(140)
I − D̄RT̄LD̄−1

R , I − D̄LT̄LD̄−1
L , I − D̄RT̄−1

L D̄−1
R

I − D̃RT̃RD̃−1
R I − D̃LT̃RD̃−1

L I − D̃LT̃−1
R D̃−1

L .

Proof. The proof follows from Lemma 4.44 and (106). Relation (107) is used to

obtain (137). Since T̂−1
l = D̂lT̂

−1
l D̂−1

l Cl(ǫ̂)
−1, we have, for i 6= j,

(141) (T̂−1
l )ij(1 − ∆ij,l) = (Cl(ǫ̂)

−1)ij +
∑

i<k<j, l=R
j<k<i, l=L

(T̂−1
l )ik(Cl(ǫ̂)

−1)kj∆ik,l,

Relation (141) leads to (138). Since D̂lT̂
−1
l D̂−1

l = T̂−1
l Cl(ǫ̂), we have, for i 6= j,

(142) (T̂−1
l )ij(∆ij,l − 1) = (Cl(ǫ̂))ij +

∑

i<k<j, l=R
j<k<i, l=L

(T̂−1
l )ik(Cl(ǫ̂))kj ,

Relations (142) and (138) yield (139). Finally, (140) follows from (137) and (138),
using (35) if necessary. �
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Definition 4.46. Let the unfolded Stokes matrices and the formal invariants be
given, and let T̂l be obtained by (102) from them. Let

(143)
ÑL = D̃LT̃−1

L T̃RD̃−1
L , ÑR = T̃−1

L T̃R,

N̄L = T̄−1
R T̄L, N̄R = D̄RT̄−1

R T̄LD̄−1
R .

We call the matrix N̂L (respectively N̂R) the left (respectively right) transition
invariant. Note that the equivalence classes of unfolded Stokes matrices induce an
equivalence class on the transition invariants.

Corollary 4.47 (of Lemma 4.45). On S∩, the difference between a left (respectively
right) transition invariants and a left (respectively right) unfolded Stokes matrix is
exponentially close to 0 in

√
ǫ in the sense of Definition 4.43, i.e.

(144) ÑR − CR(ǫ̃), N̄L − CL(ǭ), ÑL − CL(ǫ̃), N̄R − CR(ǭ).

Remark 4.48. From Corollary 4.47, the diagonal entries of the transition invari-
ants N̂l, l = L, R, tend to 1 when ǫ̂ → 0 in S∩. They are thus always different from
zero if the radius ρ of the sector S is sufficiently small.

Definition 4.49. Let the unfolded Stokes matrices and the formal invariants be
given. Let T̂l as obtained by (102). We say that the auto-intersection relation is
satisfied if there exist QU (ǭ) and QD(ǭ) nonsingular diagonal matrices depending
analytically on ǭ ∈ S∩, with a nonsingular limit at ǫ = 0, such that

(145) |Qi(ǭ) − I| < ci|ǭ|, ci ∈ R, ǭ ∈ S∩, i = U, D,

and

(146) QD(ǭ)D̄RT̄−1
R T̄LD̄−1

R = T̃−1
L T̃RQU (ǭ),

which is equivalent to

(147) QD(ǭ)N̄l = ÑlQU (ǭ), l = L, R.

because of (135) and Definition 4.46.

Proposition 4.50. The auto-intersection relation (147) for the family (24) is sat-
isfied.

Proof. We proceed similarly as the proof of Proposition 4.41, taking

(a) WU (ǭ, x)D̄RT̄LD̄−1
R and WU (ǫ̃, x)D̃RT̃RD̃−1

R as the fundamental matrices
of solutions composed of eigenvectors of M∗

x̄L
(to verify, use (74), (91) and

(106)),

(b) WD(ǭ, x)T̄R and WD(ǫ̃, x)T̃L as the fundamental matrices of solutions com-
posed of eigenvectors of M∗

x̄R
,

with Ws(ǫ, x) given by (75). By Lemma 4.45 and Corollary 4.22, these solutions
converge uniformly to Ws(0, x) (defined by (42)) on compact sets of Ω0

s when ǭ → 0,
ǭ ∈ S∩, for s = D or s = U . The corresponding transition matrices are here given
by

(148) EL,x̃L→x̃R
= ÑLe2πiΛ1(ǫ), ER,x̃L→x̃R

= ÑR,

(149) EL,x̄R→x̄L
= N̄Le2πiΛ1(ǫ), ER,x̄R→x̄L

= N̄R,

leading to (147).
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Let us now prove (145) for i = D (the case i = U is similar). We have ob-
tained the existence of nonsingular diagonal matrices QU (ǭ) and QD(ǭ) depending
analytically on ǭ ∈ S∩, with a nonsingular limit at ǫ = 0, such that

(150) WU (ǭ, x)D̄RT̄LD̄−1
R = WU (ǫ̃, x)D̃RT̃RD̃−1

R QU (ǭ)

and

(151) WD(ǭ, x)T̄R = WD(ǫ̃, x)T̃LQD(ǭ).

Extending the solution WD(ǭ, x)T̄R (respectively WD(ǫ̃, x)T̃L) to x = 0 along a
path in Ωǭ

D (respectively Ωǫ̃
D), we obtain

(152) WD(ǭ, 0)T̄R = WD(ǫ̃, 0)T̃LQD(ǭ)D̄R

or equivalently, because of (75),

(153) HD(ǭ, 0)FD(ǭ, 0)T̄R = HD(ǫ̃, 0)FD(ǫ̃, 0)T̃LQD(ǭ)D̄R.

Since FD(ǭ, 0) = FD(ǫ̃, 0)D̄R, we have

(154) HD(ǭ, 0)FD(ǭ, 0)T̄RFD(ǭ, 0)−1 = HD(ǫ̃, 0)FD(ǫ̃, 0)T̃LFD(ǫ̃, 0)−1QD(ǭ).

FD(ǭ, 0)T̄RFD(ǭ, 0)−1 and FD(ǫ̃, 0)T̃LFD(ǫ̃, 0)−1 are exponentially close in
√

ǫ to I.
We use (76) and (77) in order to obtain (145) for i = D. �

We now show that the auto-intersection relation implies that there exists a repre-
sentative of the equivalence class of unfolded Stokes matrices which is 1

2 -summable
in ǫ.

Theorem 4.51. There exists a representative of the equivalence class of unfolded
Stokes matrices which is 1

2 -summable in ǫ.

Proof. The strategy consists in using the Ramis-Sibuya Theorem (see for instance
[8]): if C(ǫ̂) depends analytically on ǫ̂ on a ramified sector around the origin and if
the difference on the auto-intersection of the sector is exponentially close to 0 in

√
ǫ,

i.e. |C(ǭ) − C(ǫ̃)| < Be
− A√

|ǫ| for some positive A and B, then C(ǫ) is 1
2 -summable

in ǫ.
By Proposition 4.50, the auto-intersection relation (147) is satisfied. Hence,

(155) QD(ǭ)N̄l = ÑlQD(ǭ)Q(ǭ),

with Q(ǭ) = QD(ǭ)−1QU (ǭ). We then have

(156) (N̄l)ii = (Ñl)ii(Q(ǭ))ii,

Corollary 4.47 says that N̄l (respectively Ñl) is exponentially close in
√

ǫ to Cl(ǭ)
(respectively Cl(ǫ̃)). Since the unfolded Stokes matrices has 1’s on the diagonal,
relation (156) implies that Q(ǭ) is exponentially close (in

√
ǫ) to I. Let K(ǫ̂) be a

nonsingular diagonal matrix depending analytically on ǫ̂ ∈ S, with a nonsingular
limit at ǫ = 0, such that K(ǫ̃)−1K(ǭ) = QD(ǭ) (recall that (145) is satisfied).
Relation (155) becomes

(157) K(ǭ)N̄lK(ǭ)−1 = K(ǫ̃)ÑlK(ǫ̃)−1Q(ǭ),

since Q(ǭ) is diagonal, and hence commutes with K(ǭ). Let us take the representa-
tive of the equivalence class of unfolded Stokes matrices C′

l(ǫ̂) = K(ǫ̂)Cl(ǫ̂)K
−1(ǫ̂).

Using Corollary 4.47 with

(158) N ′
l (ǫ̂) = K(ǫ̂)Nl(ǫ̂)K

−1(ǫ̂),
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we obtain that N̄ ′
l (respectively Ñ ′

l ) is exponentially close to C′
l(ǭ) (respectively

C′
l(ǫ̃)). On the other hand, relation (157) implies

(159) N̄ ′
l = Ñ ′

lQ(ǭ)

with Q(ǭ) exponentially close in
√

ǫ to I. The difference between the representatives
C′

l(ǭ) and C′
l(ǫ̃) is hence exponentially close to 0 in

√
ǫ, for l = L, R. �

Remark 4.52. In dimension n = 2, it is always possible to choose an analytic
representative of the equivalence classes of unfolded Stokes matrices, all the cases
have been enumerated in [2]. Indeed, in the case of nonvanishing elements (CL(ǫ̂))21
and (CR(ǫ̂))12, the auto-intersection relation is equivalent to the analyticity of the
product (CL(ǫ̂))21(CR(ǫ̂))12. Preliminary investigation in the case n = 3 shows that
this could not be the case generically. We study this in more details in [7].

4.11. Unfolded Stokes matrices reducible in block diagonal form. We will
now state a sufficient condition for the decomposition of a system (24) in dimension
n as the direct product of irreducible systems of lower dimension (this may require
a permutation), using the following lemma.

Lemma 4.53. For ǫ̂ ∈ S∩, the matrix P−1CL(ǫ̂)P (respectively P−1CR(ǫ̂)P ), with
a permutation matrix P , is lower (respectively upper) triangular, unipotent and in

a block diagonal form if and only if P−1T̂LP (respectively P−1T̂RP ) has the same
form.

CR(ǭ) and CL(ǭ) have a common block diagonal form with the same permutation
matrix P (when staying triangular) if and only if CR(ǫ̃) and CL(ǫ̃) have the same
block diagonal form with the same permutation matrix P (and stay triangular).

Proof. The first assertion comes from the fact that columns of P−1T̂lP are eigen-

vectors of P−1Cl(ǫ̂)D̂lP (note that there are no resonances for ǫ̂ in S∩). Let us

prove the converse. P−1T̂lP is unipotent, triangular and in a block diagonal form if
and only if P−1D̂lT̂lD̂

−1
l P has the same structure with the same permutation ma-

trix P . Then, the product (P−1T̂lP )(P−1D̂lT̂lD̂
−1
l P )−1 = P−1Cl(ǫ̂)P (by (106))

has the desired property.
The second assertion follows directly from (146) and from the first assertion. �

Theorem 4.54. A family of systems (24) with both unfolded Stokes matrices ad-
mitting, after conjugation by the same permutation matrix P if necessary, the same
decomposition in diagonal blocks for all ǫ̂ ∈ S (when staying triangular) is analyti-
cally equivalent (with permutation P ) to the direct product of families of systems.

Proof. First, let us take a system (24) which has unfolded Stokes matrices in block
diagonal form with the same positions of the blocks: Cl(ǫ̂) = cl

n1
(ǫ̂)⊕ cl

n2
(ǫ̂)⊕ ...⊕

cl
nk

(ǫ̂) for l = L, R, with n1 + n2 + ... + nk = n. We will prove that this system is
analytically equivalent to a direct product of smaller systems of dimensions n1, ...,
nk. Looking at (91), we notice that these relations would still hold if we replace by
zero each element (Hs(ǫ̂, x))ij such that the position (i, j) is outside the diagonal
blocks of Cl(ǫ̂). This leads us to define Js(ǫ̂, x), for x ∈ Ωǫ̂

s, by
(160)

(Js(ǫ̂, x))ij =

{
0, if (Cl(ǫ̂))ij is outside the diagonal blocks,

(Hs(ǫ̂, x))ij , otherwise.
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Js(ǫ̂, x) is in block diagonal form Js,n1(ǫ̂, x) ⊕ Js,n2(ǫ̂, x) ⊕ ... ⊕ Js,nk
(ǫ̂, x) and it

follows from (78) that it is invertible. From (91), we have

(161) JD(ǫ̂, x)−1JU (ǫ̂, x) =





FD(ǫ̂, x)CR(ǫ̂)(FD(ǫ̂, x))−1, on Ωǫ̂
R,

FD(ǫ̂, x)CL(ǫ̂)(FD(ǫ̂, x))−1, on Ωǫ̂
L,

I, on Ωǫ̂
C .

These relations imply that the transformation

(162) Q(ǫ̂, x) =

{
JD(ǫ̂, x)HD(ǫ̂, x)−1, x ∈ Ωǫ̂

D,

JU (ǫ̂, x)HU (ǫ̂, x)−1, x ∈ Ωǫ̂
U ,

is well-defined on the intersections of the domains and is an analytic function of x

in a whole neighborhood of x = 0, including the points x̂R and x̂L. We will now
prove that Q(ǫ̂, x) is unramified in ǫ. Since it is bounded at ǫ = 0, this will imply
the analyticity of Q(ǫ, x) at ǫ = 0. To prove that

(163) Q(ǫ̃, x) = Q(ǭ, x),

i.e.

(164) Js(ǫ̃, x)−1Js(ǭ, x) = Hs(ǫ̃, x)−1Hs(ǭ, x), s ∈ {1, 2},
we will consider x ∈ Ωǫ̃

C ∩ Ωǭ
C . In this region, we have JU (ǫ̂, x) = JD(ǫ̂, x) and

HU (ǫ̂, x) = HD(ǫ̂, x). By uniqueness of the Floquet solutions (Theorem 4.31), we
have

(165) HD(ǭ, x)FD(ǭ, x)T̄RK = HD(ǫ̃, x)FD(ǫ̃, x)T̃L

with K a nonsingular diagonal matrix. Hence,

(166) HD(ǭ, x)FD(ǭ, x) = HD(ǫ̃, x)FD(ǫ̃, x)Z,

with Z = T̃LK−1T̄−1
R . By Lemma 4.53, Z is in the block diagonal form Zn1 ⊕Zn2 ⊕

... ⊕ Znk
. By definition of JD(ǫ̂, x), we have

(167) JD(ǭ, x)FD(ǭ, x) = JD(ǫ̃, x)FD(ǫ̃, x)Z.

Relations (166) and (167) yield (164). Finally, limǫ→0 Q(ǫ, x) is bounded, so Q(ǫ, x)
is an analytic function of (ǫ, x) in a whole neighborhood of (0, 0). The trans-
formation v = Q(ǫ, x)y gives a system with the fundamental matrix of solutions
Js(ǫ̂, x)Fs(ǫ̂, x) on Ωǫ̂

s, and hence with the matrix in block diagonal form B(ǫ, x) =
Bn1(ǫ, x) ⊕ Bn2(ǫ, x) ⊕ ... ⊕ Bnk

(ǫ, x).
Finally, let us take a system (24) in which the unfolded Stokes matrices conju-

gated by a permutation matrix have the same decomposition in diagonal blocks:
P−1Cl(ǫ̂)P = cl

n1
⊕ cl

n2
⊕ ... ⊕ cl

nk
for l = L, R, with n1 + n2 + ... + nk = n. We

apply the previous result to the system transformed by y 7→ Py. �

4.12. Unfolded Stokes matrices with trivial rows or column. We include
here the study of the cases when both unfolded Stokes matrices have a trivial row
or column (this is not a prerequisite to obtain the complete system of invariants of
the systems (24)). When this happens, the system is analytically equivalent to a
simpler one.

Lemma 4.55. For ǫ̂ in S∩ and j ∈ {1, 2, ..., n}, the following properties are equiv-
alent, and they are satisfied for ǭ if and only if they are satisfied for ǫ̃:
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(1) the jth solution that is eigenvector of the monodromy operator around x =
x̂R is a multiple of the jth solution that is eigenvector of the monodromy
operator around x = x̂L;

(2) the jth column of the transition invariants N̂L and N̂R (Definition 4.46) is
trivial (it corresponds to the jth column of the identity matrix);

(3) the jth columns of T̂R and T̂L are trivial;
(4) the jth columns of CR(ǫ̂) and CL(ǫ̂) are trivial;
(5) the solution wj(ǫ̂, x), corresponding to the jth column of WV (ǫ̂, x) given by

(99), is eigenvector of the monodromy around both singular points.

Proof. It follows from (147). �

Theorem 4.56. A family of systems (24) with both unfolded Stokes matrices having
the jth column trivial for all ǫ̂ ∈ S is analytically equivalent to a family of system
(24) with an invariant subsystem formed by the equations i 6= j (i.e. the (i, j)
entries are null for all i 6= j).

Proof. We follow the same steps as in the proof of Theorem 4.54, considering the jth

column with nondiagonal elements null (instead of null elements outside diagonal
blocks in Theorem 4.54), and taking a different definition of Js(ǫ̂, x). We take
Js(ǫ̂, x) = Qs(ǫ̂, x)Hs(ǫ̂, x), with

(168) (Qs(ǫ̂, x))ik =





1, if i = k,
−(Hs(ǫ̂,x))ij

(Hs(ǫ̂,x))jj
, if k = j, i 6= k,

0, otherwise.

The jth column of Js(ǫ̂, x) then has zero nondiagonal elements. The rest fol-
lows as in the proof of Theorem 4.54, using Lemma 4.55 instead of Lemma 4.53
(and forgetting about the last part of the proof about the permutation of the y-
coordinates). �

Lemma 4.57. For ǫ̂ in S∩ and j ∈ {1, 2, ..., n}, the following properties are equiv-
alent, and they are satisfied for ǭ if and only if they are also for ǫ̃:

(1) the jth row of the transition invariants N̂L and N̂R is trivial;

(2) the jth rows of T̂R and T̂L are trivial;
(3) the jth rows of CR(ǫ̂) and CL(ǫ̂) are trivial.

Hence, in the jth Riccati system, the property of a first integral Hj
q to be an eigen-

vector of the monodromy around both singular points is conserved in both points of
view ǭ and ǫ̃.

Proof. The first part follows from (147). The last part comes from Corollary 4.37: a
first integral Hj

q is eigenvector of the monodromy around both singular points if and
only if rows q and j of the inverse of two unfolded Stokes matrices are trivial. �

Theorem 4.58. A family of systems (24) with both unfolded Stokes matrices having
the jth row trivial for all ǫ̂ ∈ S is analytically equivalent to a family of system (24)
where the jth equation is independent of the others, hence integrable (i.e. the (j, i)
entries are null for all i 6= j).

Proof. The proof of the analytic equivalence (to a system having (j, i) entries null
for all i 6= j with j fixed) is very similar to the proof of Theorem 4.54, considering the
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jth row with nondiagonal elements null (instead of null elements outside diagonal
blocks in Theorem 4.54), and taking a different definition of Js(ǫ̂, x), namely

(169) (Js(ǫ̂, x))ik =





(Hs(ǫ̂, x))ik, i 6= j,

0, i = j, 6= j

1, i = j = k.

We then follow the proof of Theorem 4.54, using Lemma 4.57 instead of Lemma 4.53
and forgetting about the last section of the proof that concerns permutation. �

4.13. Analytic invariants. We now have the tools to prove that the equivalent
unfolded Stokes collections are analytic invariants for the classification of the sys-
tems (24).

Theorem 4.59. Two families of systems of the form (24) with the same model
system (29) are analytically equivalent if and only if their unfolded Stokes collections
are equivalent. In particular, a family (24) is analytically equivalent to its model if
and only if the unfolded Stokes collection is trivial.

Proof. We consider two systems of the form (24):

(170) (x2 − ǫ)y′
i = Bi(ǫ, x)yi,

with

(171) Bi(ǫ, x) = Λ(ǫ, x) + (x2 − ǫ)Ri(ǫ, x), i = 1, 2,

and Λ(ǫ, x) given by (26). We choose a neighborhood of the origin Dr common to the
two systems for which the modulus is defined. We denote the fundamental matrix
of solutions of (170) given by Theorem 4.21 as Hi,s(ǫ̂, x)Fs(ǫ̂, x) (for (ǫ̂, x) ∈ S×Ωǫ̂

s,
s = D, U).

Let us suppose that these two systems are analytically equivalent via a transfor-
mation y2 = Q(ǫ, x)y1. By Proposition 4.25, we must have

(172) H2,s(ǫ̂, x) = Q(ǫ, x)H1,s(ǫ̂, x)K(ǫ̂) on Ωǫ̂
s, s = D, U,

with K(ǫ̂) a nonsingular diagonal matrix depending analytically on ǫ̂ ∈ S with a
nonsingular limit at ǫ = 0 and such that (93) is satisfied. Then, on the intersections
of Ωǫ̂

D and Ωǫ̂
U , we have

(173) (H2,D(ǫ̂, x))−1H2,U (ǫ̂, x) = K(ǫ̂)−1(H1,D(ǫ̂, x))−1H1,U (ǫ̂, x)K(ǫ̂).

This implies that the unfolded Stokes collections given by (91) are equivalent.
Let us prove the other direction. Let us suppose that the two systems above have

equivalent Stokes collections {Ci
R(ǫ̂), Ci

L(ǫ̂)} with a matrix K(ǫ̂) as in Definition
4.26, i.e.

(174) C2
l (ǫ̂) = K(ǫ̂)C1

l (ǫ̂)K(ǫ̂)−1, l = L, R.

By taking, for the second system, an adequate normalization of the fundamental ma-
trix of solutions (namely changing from H2,s(ǫ̂, x)Fs(ǫ̂, x) to H2,s(ǫ̂, x)Fs(ǫ̂, x)K(ǫ̂),
s = D, U), we can, without loss of generality, suppose that

(175) C2
l (ǫ̂) = C1

l (ǫ̂), l = L, R.

First, let us suppose that the unfolded Stokes matrices Ci
R(ǫ̂) and Ci

L(ǫ̂) cannot
have a block diagonal form (for all ǫ̂ ∈ S) with the same positions of the blocks,
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neither after conjugation of each of them by the same permutation matrix (that
keeps their triangular form). We take

(176) Q(ǫ̂, x) =

{
H2,D(ǫ̂, x)(H1,D(ǫ̂, x))−1, on Ωǫ̂

D,

H2,U (ǫ̂, x)(H1,U (ǫ̂, x))−1, on Ωǫ̂
U ,

which is well-defined because of (175). Since limx→x̂l
Q(ǫ̂, x) is bounded, invertible

and independent of s for l = L, R (see (78)), Q(ǫ̂, x) is an analytic function of x

on the whole neighborhood Dr of x = 0 which includes the points x̂R and x̂L, for
ǫ̂ ∈ S. We will now choose carefully η(ǫ̂) such that η(ǫ̂)Q(ǫ̂, x) becomes analytic at
ǫ = 0. We will prove that η(ǫ̂)Q(ǫ̂, x) is uniform in ǫ and bounded near ǫ = 0. The
transformation Q(ǭ, x)Q(ǫ̃, x)−1 is an automorphism of the second family of systems
(170). Hence, over each domain Ωǭ

s, s = D, U , we have the following automorphism
of the model

(177) (H2,s(ǭ, x))−1Q(ǭ, x)Q(ǫ̃, x)−1H2,s(ǭ, x) = Ds(ǭ),

giving Ds(ǭ) a diagonal matrix depending on ǭ. With relations (91) applied to the
second system, (177) leads to

(178) C2
l (ǭ)DU (ǭ) = DD(ǭ)C2

l (ǭ), l ∈ {R, L}.
As the diagonal entries of Cl(ǭ) are 1’s, we have DU (ǭ) = DD(ǭ). The hypothesis
that the Stokes matrices have no common reduction to block diagonal form (neither
after conjugation by a permutation matrix that keeps their triangular form) implies
that this relation can only be satisfied for DU (ǭ) = µ(ǭ)I for some µ(ǭ) analytic
function over S∩. Relation (177) becomes

(179) Q(ǭ, x)Q(ǫ̃, x)−1 = µ(ǭ)I.

In particular,

(180) Q(ǭ, 0)Q(ǫ̃, 0)−1 = µ(ǭ)I.

Using properties (76) and (77)(which remained valid when we modified H2,s(ǫ̂, x)
to H2,s(ǫ̂, x)K(ǫ̂), s = D, U), the definition (176) implies there exists C ∈ R+ such
that

(181) |Q(ǭ, 0)Q(ǫ̃, 0)−1 − I| ≤ C|ǫ|, ǭ ∈ S∩.

Relation (180) and (181) imply there exists c ∈ R+ such that

(182) |µ(ǭ) − 1| ≤ c|ǫ|, ǭ ∈ S∩.

Reducing slightly the radius ρ of S and its opening, let η(ǫ̂) be an analytic function
of ǫ̂ on S satisfying

(183) η(ǭ)−1η(ǫ̃) = µ(ǭ).

Of course, such a function can be found with limǫ̂→0 η(ǫ̂) = 1. Let Q∗(ǫ̂, x) =
η(ǫ̂)Q(ǫ̂, x). From (179) and (183), we get

(184) Q∗(ǭ, x) = Q∗(ǫ̃, x).

Then,

(185) lim
ǫ→0

Q∗(ǫ, x) = H2,s(0, x)(H1,s(0, x))−1, x ∈ Ω0
s, s = D, U,

which is finite, so Q∗(ǫ, x) is analytic in ǫ at ǫ = 0. Hence, Q∗(ǫ, x) analytically
conjugates the two systems.
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Finally, let us suppose that both unfolded Stokes matrices of each system admit,
after conjugation if necessary by the same permutation matrix that keeps their
triangular form, the same maximal decomposition in diagonal blocks for all ǫ̂ ∈ S.
By Theorem 4.54, each system is analytically equivalent (with permutation P ) to a
system decomposed in smaller indecomposable systems. The decomposed systems
have equivalent unfolded Stokes collections and the smaller indecomposable systems
too. By applying the former argument to each pair of indecomposable systems, we
find that they are analytically equivalent. Hence, the two decomposed systems are
analytically equivalent, and so are the initial systems. �

5. Realization of the analytic invariants

By Section 4, the complete system of analytic invariants for the systems (24)
consists of the formal invariants (the model system) and an equivalence class of
unfolded Stokes matrices. In this section, we give the realization theorem for these
invariants by proceeding in two steps. First, we consider the local realization :

Theorem 5.1. Let a complete system of analytic invariants be given:

• a model system (i.e. formal invariants λj,q(ǫ), j = 1, 2, ..., n, q = 0, 1,
depending analytically on ǫ at the origin),

• an equivalence class (see Definition 4.26) of unfolded Stokes matrices CR(ǫ̂)
and CL(ǫ̂), which are respectively an upper triangular and a lower triangular
unipotent matrix depending analytically on ǫ̂ ∈ S and having a bounded
limit when ǫ̂ → 0 on S (the sector S of radius ρ0 and of opening 2π + γ0 is
chosen from the formal invariants as in Section 4.3, and ρ0 can obviously
be chosen smaller to ensure the analyticity, over S, of the entries of CR(ǫ̂)
and CL(ǫ̂)).

Then, there exist r > 0, a radius ρ < min{ρ0,
r2

2 } of S and a system (x2 − ǫ)y′ =
A(ǫ̂, x)y (y ∈ Cn) characterized by these analytic invariants, with A(ǫ̂, x) analytic
over S × Dr. A(ǫ̂, x) is ramified in ǫ and its limit when ǫ̂ → 0 (ǫ̂ ∈ S) is analytic
in x over Dr.

We prove Theorem 5.1 from Sections 5.1 to 5.5. Then, we show that the auto-
intersection relation (146) is sufficient for the global realization of the analytic
invariants, i.e.:

Theorem 5.2. Let a complete system of analytic invariants as described in The-
orem 5.1 be given and satisfying the auto-intersection relation (146). Then, there

exist r > 0, a radius ρ < min{ρ0,
r2

2 } of S and a system (x2 − ǫ)y′ = B(ǫ, x)y
(y ∈ Cn) characterized by these analytic invariants, with B(ǫ, x) analytic over
Dρ × Dr.

The proof of Theorem 5.2 is presented from Sections 5.6 to 5.9. It uses the
ramified system constructed in the proof of Theorem 5.1. The auto-intersection
relation (146) will be the key ingredient to prove Theorem 5.2, namely to correct
the family to a uniform family. It will guarantee the triviality of the abstract vector
bundle realizing the family of Stokes matrices.

5.1. Introduction to the proof of Theorem 5.1. Considering ǫ̂ fixed, we realize
the invariants on an abstract vector bundle which we then show to be trivial. For
this, using ideas from the proof of the realization theorem at ǫ = 0 in [10] and from
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the proof of Cartan’s Lemma in [4], we will prove that, for s = D, U and sufficiently
small radii ρ of S and r of Ωǫ̂

s, there exist matrices Hs(ǫ̂, x) depending analytically
on (ǫ̂, x) ∈ S × Ωǫ̂

s, having a limit when ǫ̂ → 0 in S that is analytic in x over Ω0
s,

and such that, for ǫ̂ ∈ S ∪ {0},
(186) HD(ǫ̂, x)−1HU (ǫ̂, x) = I + Z(ǫ̂, x), x ∈ Ωǫ̂

U ∩ Ωǫ̂
D,

where

(187) Z(ǫ̂, x) =





FD(ǫ̂, x)CR(ǫ̂)FD(ǫ̂, x)−1 − I on Ωǫ̂
R,

FD(ǫ̂, x)CL(ǫ̂)FD(ǫ̂, x)−1 − I on Ωǫ̂
L,

0 on Ωǫ̂
C ,

with Fs(ǫ̂, x) a fundamental matrix of solutions of the model system (as in Notation
4.19) which is completely determined by the given formal invariants.

Then, we consider

(188) Ws(ǫ̂, x) = Hs(ǫ̂, x)Fs(ǫ̂, x), (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂
s, s = D, U.

Relations (186) implies that

(189) W ′
D(ǫ̂, x)WD(ǫ̂, x)−1 = W ′

U (ǫ̂, x)WU (ǫ̂, x)−1, on Ωǫ̂
∩, ǫ̂ ∈ (S ∪ {0}),

so that

(190) A(ǫ̂, x) =

{
(x2 − ǫ)W ′

D(ǫ̂, x)WD(ǫ̂, x)−1, on Ωǫ̂
D,

(x2 − ǫ)W ′
U (ǫ̂, x)WU (ǫ̂, x)−1, on Ωǫ̂

U ,

is well-defined and hence analytic over (Dr\{x̂R, x̂L}) × (S ∪ {0}).
We will prove the boundedness of Hs(ǫ̂, x), Hs(ǫ̂, x)−1 and H ′

s(ǫ̂, x) near x = x̂l,
for ǫ̂ ∈ (S ∪ {0}), s = D, U and l = L, R. This implies that A(ǫ̂, x) is analytic over
S ×Dr and has a limit when ǫ̂ → 0 (with ǫ̂ ∈ S) that is analytic in x over Dr, since

(191)
(x2 − ǫ)W ′

s(ǫ̂, x)Ws(ǫ̂, x)−1

= (x2 − ǫ)H ′
s(ǫ̂, x)Hs(ǫ̂, x)−1 + Hs(ǫ̂, x)Λ(ǫ, x)Hs(ǫ̂, x)−1.

Hs(ǫ̂, x) will be obtained in Section 5.5 from a specific sequence of matrices
constructed in Section 5.4. This proof needs adequate choice of radii r of Ωǫ̂

s and ρ

of S.

5.2. Choice of the radius r for the domains in the x-variable. First, we
choose r by considering the case ǫ = 0. For r > 0, let us take ΩD and ΩU as in
Definition 2.2 (Figure 1) and let

(192)
ΩD,β = {x ∈ C : |x| < r,−(π + δ + β) < arg(x) < δ + β},
ΩU,β = {x ∈ C : |x| < r,−(δ + β) < arg(x) < π + δ + β},

with β > 0 sufficiently small so that the closure of Ωs,β does not contain more
separation rays (Definition 2.1) than Ωs, s = D, U (Figure 18). From these domains,
we define domains having their part of the boundary other than the part {|x| = r}
included in some solution curves of the system ẋ = x2 − ǫ allowing complex time.
The procedure explained in Section 4.4 yields Ω0

s (respectively Ω0
s,β) included in

Ωs (respectively Ωs,β), for s = D, U (Figure 18). In the course of the proof, for
domains denoted by the letter Ω, we use the notation

(193) Ω∩ = ΩU ∩ ΩD = ΩL ∪ ΩC ∪ ΩR.
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ΩD

ΩD,β

Ω0
D

Ω0
D,β

Figure 18. Sectorial domains ΩD, ΩD,β, Ω0
D and Ω0

D,β .

We now define domains Ω0
s(ν) included in Ω0

s,β and converging when ν → ∞
to Ω0

s. In the t-variable (see Section 4.4), let us define the neighborhoods Γ0
s(ν)

(Figure 19) of Γ0
s (which is the domain corresponding to Ω0

s in the t-variable):

(194) Γ0
s(ν) = {z : ∃t ∈ Γ0

s s.t. |z − t| |z||t| < 2−νθ}, ν ≥ 1, s = D, U.

We choose θ > 0 such that Γ0
s(1) is included in Γ0

s,β (which is the domain corre-

Γ0
D

Γ0
U

Γ0
D(ν)

Γ0
U (ν)

Figure 19. A neighborhood Γ0
s(ν) of Γ0

s, s = D, U .

sponding to Ω0
s,β in the t-variable). In the x-variable, the domains Γ0

s(ν) correspond
to

(195) Ω0
s(ν) = {y : ∃x ∈ Ω0

s s.t. |y − x| < 2−νθ|y|2}, ν ≥ 0, s = D, U.

As illustrated in Figure 20, we write the boundary of Ω0
∩(ν) = Ω0

U (ν) ∩ Ω0
D(ν)

as

(196) ∂Ω0
∩(ν) = γ0

ν,U ∪ γ0
ν,D,

denoting γ0
ν,s ⊂ ∂Ω0

∩(ν) the path included in the boundary of Ω0
s(ν), s = D, U

starting at x = −r and ending at x = r.
Asymptotic properties of Z(0, x) imply that ∀N ∈ N∗ there exists K0

N ∈ R+

such that

(197) |Z(0, x)| ≤ K0
N |x|N , x ∈ Ω0

l (θ), l = L, R.
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γ0
ν,D

γ0
ν,U Ω0

D(ν)

Ω0
U (ν)

Figure 20. Integration path γ0
ν,s ⊂ ∂Ω0

s(ν), s = D, U .

We take r sufficiently small so that the length of each path γ0
ν,s is bounded by a

constant c0
s such that

(198)

∫

γ0
ν,s

|dh| < c0
s < min

{
πθ

24K0
2

,
π

K0
1

}
, ν ≥ 1, s = D, U.

5.3. Choice of radius ρ of S and sequence of spiraling domains. First, let

us take the radius ρ > 0 for S such that ρ < min{ρ0,
r2

2 }. Restricting ρ if necessary,

we construct, as in Section 4.4, sectorial domains Ωǫ̂
s (respectively Ωǫ̂

s,β) that differ

from Ω0
s (respectively Ω0

s,β) mainly inside a small disk. Ωǫ̂
s,β is a neighborhood of

Ωǫ̂
s (see Figure 21). As in Figure 10, these sectorial domains may spiral around the

singular points, depending on the value of ǫ̂. Nevertheless, Ωǫ̂
s always stay inside

Ωǫ̂
s,β.

Ωǫ̂
D

Ωǫ̂
D,β

x̂Rx̂L

Figure 21. Sectorial domains Ωǫ̂
D and Ωǫ̂

D,β , case
√

ǫ̂ ∈ R.

For ν ≥ 1, we define the spiraling domains Ωǫ̂
s(ν) which converge when ν → ∞

to Ωǫ̂
s and are included in Ωǫ̂

s,β for ρ sufficiently small:

(199)
Ωǫ̂

s(ν) = Ωǫ̂
s∪l=L,R{y : ∃x ∈ Ωǫ̂

l s.t. |y−x| < 2−νθ|y−x̂l|2}, ǫ̂ ∈ S∪{0}, s = D, U.

The spirals of Ωǫ̂
s(ν) near x = x̂l are approximately logarithmic.

As illustrated in Figure 22, we denote as γ ǫ̂
ν,s = γ ǫ̂

ν,s,L ∪ γ ǫ̂
ν,s,R the broken path

included in the boundary of Ωǫ̂
s(ν), s = D, U . The path γ ǫ̂

ν,s,L starts at x = −r and

ends at x = x̂L, whereas γ ǫ̂
ν,s,R starts at x = x̂R and ends at x = r. Remember

that they may spiral near the singular points.
Reducing ρ if necessary, properties of Z(ǫ̂, x) (from (187)) on Ωǫ̂

L,β and Ωǫ̂
R,β

imply that, for N = 1, 2, 3, 4, there exists KN ∈ R+ (KN ≥ K0
N) such that

(200) |Z(ǫ̂, x)| ≤ KN |x − x̂l|N , (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂
l (1), l = L, R.
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γ ǫ̂
ν,U,L

γ ǫ̂
ν,D,L γ ǫ̂

ν,D,R

γ ǫ̂
ν,U,R Ωǫ̂

D(ν)

Ωǫ̂
U (ν)

x̂L

x̂L

x̂R

x̂R

Figure 22. Integration path γ ǫ̂
ν,s = γ ǫ̂

ν,s,L ∪ γ ǫ̂
ν,s,R, s = D, U , case√

ǫ̂ ∈ R∗
−.

Also,

(201) Z(ǫ̂, x) = 0 (ǫ̂, x) ∈ S × Ωǫ̂
C(1).

We reduce ρ in order to have

(202)

∫

γ ǫ̂
ν,s

|dh| = cs ≤ min

{
πθ

24K2
,

π

22K1

}
, ν ≥ 1, ǫ̂ ∈ S ∪ {0}, s = D, U,

(since the spirals are logarithmic, they have finite length).

5.4. Construction of a specific sequence Zν, Zν
U and Zν

D. In this section,
starting from Z1 = Z(ǫ̂, x), we construct, for ν = 2, 3, ..., a sequence of matrices
Zν , Zν

U and Zν
D such that the following four conditions are satisfied:

(I) Zν−1 = Zν
U − Zν

D, for (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂
∩(ν − 1);

(II) for s = D, U ,
• Zν

s (ǫ̂, x) is analytic on S × Ωǫ̂
s(ν − 1),

• Zν
s (0, x) is analytic for x ∈ Ω0

s(ν − 1),

• |Zν
s | ≤ 2−(ν+1) for (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂

s(ν)

(III) I + Zν = (I + Zν
D)(I + Zν−1)(I + Zν

U )−1, (ǫ̂, x) ∈ (S ∪ {0})×Ωǫ̂
∩(ν − δ) for

some 0 < δ < 1;
(IV) • Zν(0, x) is analytic over Ω0

∩(ν − δ),

• Zν(ǫ̂, x) = 0 on S × Ωǫ̂
C(ν − δ),

• Zν(ǫ̂, x) is analytic on S × Ωǫ̂
∩(ν − δ) and satisfies, for N = 1, 2, 3, 4,

|Zν | ≤ 2−2(ν−1)KN |x − x̂l|N for (ǫ̂, x) ∈ (S ∪ {0}) × Ωǫ̂
l (ν), l = L, R.

In order to obtain condition (I), we define the matrices Zν
D(ǫ̂, x) and Zν

U (ǫ̂, x) for
ν = 2, 3, ... by
(203)

Zν
s (ǫ̂, x) =

1

2πi

∫

γ ǫ̂
ν−1,s

Zν−1(ǫ̂, h)

h − x
dh, (ǫ̂, x) ∈ (S ∪ {0}) × Ωǫ̂

s(ν − 1), s = D, U.

Condition (I) is satisfied since, for (ǫ̂, x) ∈ (S ∪ {0}) × Ωǫ̂
∩(ν − 1),

(204) Zν
U (ǫ̂, x) − Zν

D(ǫ̂, x) =
1

2πi

∫

γ ǫ̂
ν−1

Zν−1(ǫ̂, h)

h − x
dh = Zν−1(ǫ̂, x),
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where γ ǫ̂
ν−1 (Figure 23) is a union of two paths surrounding Ωǫ̂

L(ν−1) and Ωǫ̂
R(ν−1):

(205) γ ǫ̂
ν−1 = γ ǫ̂

ν−1,U,L(γ ǫ̂
ν−1,D,L)−1 ∪ γ ǫ̂

ν−1,U,R(γ ǫ̂
ν−1,D,R)−1.

Ωǫ̂
D(ν − 1)

Ωǫ̂
U (ν − 1)

Ωǫ̂
L(ν − 1) Ωǫ̂

R(ν − 1)
x̂L x̂R

Figure 23. Integration path γ ǫ̂
ν−1, case

√
ǫ̂ ∈ R∗

−.

Let us now prove (II) for ν ≥ 2, taking into account that (IV) is satisfied (it is
indeed for ν = 1). When integrating in (203), we have
(206)

|h − x| ≥ 2−νθ|h − x̂l|2, h ∈ γ ǫ̂
ν−1,s, x ∈ Ωǫ̂

s(ν), ǫ̂ ∈ S ∪ {0}, s = D, U, l = L, R.

Then, using (IV) as well as relations (202) and (206), we have, for s = D, U ,

(207)
|Zν

s (ǫ̂, x)| ≤ 1
2π

∫
γ ǫ̂

ν−1,s

|Zν−1(ǫ̂,h)|
|h−x| |dh|, (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂

s(ν),

≤ 2−2(ν−2)K2cs

2π2−νθ
≤ 2−(ν+1), (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂

s(ν).

Let us now prove condition (IV), taking Zν defined by relation (III) (there exists
some 0 < δ < 1 such that (I + Zν

U ) is invertible for (ǫ̂, x) ∈ (S ∪ {0})×Ωǫ̂
∩(ν − δ)).

On each side of (III), multiplying by (I + Zν
U ) on the right yields

(208) Zν
U + Zν(I + Zν

U ) = Zν−1 + Zν
D + Zν

DZν−1, (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂
∩(ν).

Using condition (I), it yields

(209) Zν(I + Zν
U ) = Zν

DZν−1, (ǫ̂, x) ∈ (S ∪ {0}) × Ωǫ̂
∩(ν).

Hence,

(210)
|Zν | ≤ |Zν

D||Zν−1||(I + Zν
U )−1| (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂

∩(ν)
≤ |Zν

D||Zν−1| 1
1−|Zν

U
| (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂

∩(ν),

the last inequality obtained since |Zν
U | < 1

2 . Because of (201), we have

(211) Zν(ǫ̂, x) = 0 on S × Ωǫ̂
C(ν).

Finally, we finish the proof of (IV) from condition (II) and the induction hypothesis
into (210): for N ≤ 4 and l = L, R, we have
(212)
|Zν | ≤ 2−(ν+1)(2−2(ν−2)KN |x − x̂l|N )( 1

1−2−(ν+1) ), (ǫ̂, x) ∈ (S ∪ {0}) × Ωǫ̂
l (ν),

≤ 2−2(ν−1)KN |x − x̂l|N , (ǫ̂, x) ∈ (S ∪ {0}) × Ωǫ̂
l (ν).
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5.5. Construction of HD(ǫ̂, x) and HU (ǫ̂, x). The sequence of matrices Zν , Zν
U

and Zν
D constructed in Section 5.4 satisfies condition (III) and hence, for (ǫ̂, x) ∈

(S ∪ {0})× Ωǫ̂
∩(ν),

(213)
I + Z(ǫ̂, x) = I + Z1 =[

(I + Zν
D)...(I + Z3

D)(I + Z2
D)
]−1

(I + Zν)
[
(I + Zν

U )...(I + Z3
U )(I + Z2

U )
]
.

Since

(214) lim
ν→∞

Zν = 0, (ǫ̂, x) ∈ (S ∪ {0}) × Ωǫ̂
∩(ν),

and

(215)
∞∏

ν=2

|1 + Zν
s | ≤

∞∏

ν=2

(1 + 2−(ν+1)), (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂
s(ν), s = D, U,

the products in brackets are convergent in (213) when ν → ∞ and we are led to
matrices satisfying (186) (details in Lemma 4 from the proof of Cartan’s Lemma in
[4]):
(216)

Hs(ǫ̂, x) = lim
ν→∞

(I + Zν
s )...(I + Z3

s )(I + Z2
s ), (ǫ̂, x) ∈ (S ∪ {0})×Ωǫ̂

s(ν), s = D, U.

The boundedness of Hs(ǫ̂, x) and Hs(ǫ̂, x)−1 when x → x̂l, x ∈ Ωǫ̂
s, ǫ̂ ∈ S ∪ {0},

s = D, U , l = L, R, is obtained from (IV) and from the fact that the limit of the
products in brackets in (213) are invertible and convergent when ν → ∞.

Let us now prove that H ′
s(ǫ̂, x) = ∂Hs(ǫ̂,x)

∂x
is bounded when x → x̂l, x ∈ Ωǫ̂

s,
ǫ̂ ∈ S ∪ {0}, l = L, R and s = D, U , by proving there exists K ∈ R+ such that

(217) |Hs(ǫ̂, x̂l + t) − Hs(ǫ̂, x̂l)| ≤ K|t|, x̂l + t ∈ Ωǫ̂
s.

First, let us prove there exists k ∈ R+ such that

(218) |Zν
s (ǫ̂, x̂l + t) − Zν

s (ǫ̂, x̂l)| ≤ 2−νk|t|, x̂l + t ∈ Ωǫ̂
s(ν).

Using (203), (IV), (206) and (202), we have, for t such that x̂l + t ∈ Ωǫ̂
s(ν),

(219)

|Zν
s (ǫ̂, x̂l + t) − Zν

s (ǫ̂, x̂l)| = 1
2π

∣∣∣
∫

γ ǫ̂
ν−1,s

Zν−1(ǫ̂, h)
(

1
h−(x̂l+t) − 1

h−x̂l

)
dh
∣∣∣

≤ |t|
2π

∣∣∣
∫

γ ǫ̂
ν−1,s

|Zν−1(ǫ̂,h)|
|h−(x̂l+t)||h−x̂l| |dh|

∣∣∣
≤ |t|

2π
K32

νcs

22(ν−2)θ

≤ |t| K3

2ν+1K2
,

thus proving (218) with k = K3

2K2
. To obtain (217) from (218), let us denote shortly

(220) Zν
s (ǫ̂, x̂l) = Ẑν

s,l, Zν
s (ǫ̂, x̂l + t) = Ẑν

s,t.

From (216), we have
(221)
|Hs(ǫ̂, x̂l + t) − Hs(ǫ̂, x̂l)|

= limν→∞ |(I + Ẑν
s,t)...(I + Ẑ3

s,t)(I + Ẑ2
s,t) − (I + Ẑν

s,l)...(I + Ẑ3
s,l)(I + Ẑ2

s,l)|.
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Using (218) and (II), we can bound (221) and obtain (217) from:

(222)

|Hs(ǫ̂, x̂l + t) − Hs(ǫ̂, x̂l)|
≤ limν→∞

∑ν
i=2 |Ẑi

s,t − Ẑi
s,l|
∏i−1

q=2 |I + Ẑ
q
s,t|
∏ν

p=i+1 |I + Ẑ
p
s,l|

≤ limν→∞
∑ν

i=2

|I+Ẑi
s,l|

1−2−(i+1) |Ẑi
s,t − Ẑi

s,l|
∏i−1

q=2 |I + Ẑ
q
s,t|
∏ν

p=i+1 |I + Ẑ
p
s,l|

≤ limν→∞
∑ν

i=2

|Ẑi
s,t−Ẑi

s,l|
1−2−(i+1)

∏ν
p=2(1 + 2−(p+1))

≤ limν→∞
∑ν

i=2
k|t|

2i(1−2−(i+1))

∏ν
p=2(1 + 2−(p+1))

≤ limν→∞ k|t|∑ν
i=2 2−(i−1)

∏ν
p=2(1 + 2−(p+1)).

This section concludes the proof of Theorem 5.1. 2

5.6. Introduction to the proof of Theorem 5.2. From now on and until the
end of Section 5, we present the proof of Theorem 5.2, using the proof of Theorem
5.1.

Since the given system of invariants satisfy the auto-intersection relation (146),
Theorem 4.51 allows us to take, without loss of generality, the unfolded Stokes
matrices as 1

2 -summable in ǫ and then, by (159), the corresponding matrices ÑR

and N̄R (Definition 4.46) satisfy

(223) N̄R = ÑRQ(ǭ),

with Q(ǭ) a nonsingular diagonal matrix exponentially close to I in
√

ǫ. Let

(224) (x2 − ǫ)v′ = A(ǫ̂, x)v

be the system constructed in the proof of Theorem 5.1 by using the 1
2 -summable

unfolded Stokes matrices. We will correct the system (224) by a transformation
y = J(ǫ̂, x)v (defined for (ǫ̂, x) ∈ S × Dr) to obtain a system (x2 − ǫ)y′ = B(ǫ, x)y
with B(ǫ, x) analytic in ǫ at ǫ = 0. The condition (223) will be used in the correction
of the family.

5.7. The correction to a uniform family. Let ǭ and ǫ̃ = ǭe2πi in S∩. Similarly
as in Proposition 4.50, N̄R (respectively ÑR) is the transition matrix ER,x̄R→x̄L

(re-

spectively ER,x̃L→x̃R
) between HD(ǭ, x)FD(ǭ, x)T̄R and HU (ǭ, x)FU (ǭ, x)D̄RT̄LD̄−1

R

(respectively HD(ǫ̃, x)FD(ǫ̃, x)T̃L and HU (ǫ̃, x)FU (ǫ̃, x)D̃RT̃RD̃−1
R ). Because the

transition matrices satisfy (223), Proposition 4.41 implies that there exists an in-
vertible transformation P (ǭ, x) analytic in (ǭ, x) ∈ S∩ × Dr and conjugating the
systems (x2 − ǫ)v′ = A(ǭ, x)v and (x2 − ǫ)v′ = A(ǫ̃, x)v, i.e.

(225) A(ǫ̃, x) = P (ǭ, x)A(ǭ, x)P (ǭ, x)−1 + (x2 − ǫ)P (ǭ, x)′P (ǭ, x)−1.

We need to go inside the details of the construction of P (ǭ, x) to estimate its growth.
P (ǭ, x) is as follows:
(226)

P (ǭ, x) =





HU (ǫ̃, x)FU (ǫ̃, x)D̃RT̃RD̃−1
R Q(ǭ)

×
(
HU (ǭ, x)FU (ǭ, x)[D̄RT̄LD̄−1

R ]
)−1

, x ∈ Ωǭ
U ∩ Ωǫ̃

U ,

HD(ǫ̃, x)FD(ǫ̃, x)T̃L

(
HD(ǭ, x)FD(ǭ, x)T̄R

)−1
, x ∈ Ωǭ

D ∩ Ωǫ̃
D.

P (ǭ, x) is well-defined (to verify, use (186), (74) and (106)) and can be analytically
extended to Dr. It satisfies P (0, x) = I (see Lemma 4.45).

In Section 5.8, we will show that there exists K1 ∈ R+ such that

(227) |P (ǭ, x) − I| ≤ K1|ǭ|, (ǭ, x) ∈ (S∩ ∪ {0})× Dr.
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This leads to the proof, sketched in Section 5.9, of the existence of J(ǫ̂, x), a non-
singular matrix depending analytically on (ǫ̂, x) ∈ S × Br such that

(228) J(ǫ̃, x)−1J(ǭ, x) = P (ǭ, x)

on S∩ and such that J(ǫ̂, x), J ′(ǫ̂, x) and J(ǫ̂, x)−1 have a bounded limit at ǫ = 0
(this proof requires slight reductions of the radius and opening of S).

Let (x2 − ǫ)y′ = B(ǫ̂, x)y be the system obtained by the change y = J(ǫ̂, x)v into
(224). We have

(229) B(ǫ̂, x) = J(ǫ̂, x)A(ǫ̂, x)J(ǫ̂, x)−1 + (x2 − ǫ)J(ǫ̂, x)′J(ǫ̂, x)−1.

Replacing (228) into (225), we get

(230)
J(ǫ̃, x)A(ǫ̃, x)J(ǫ̃, x)−1 + (x2 − ǫ)J(ǫ̃, x)′J(ǫ̃, x)−1

= J(ǭ, x)A(ǭ, x)J(ǭ, x)−1 + (x2 − ǫ)J(ǭ, x)′J(ǭ, x)−1,

and hence we will have B(ǫ̃, x) = B(ǭ, x) on S∩ (for x fixed). B(ǫ, x) will be analytic
in ǫ because it will be unramified and because limǫ→0 B(ǫ, x) will exist.

In conclusion, once (227) and the existence of the desired J(ǫ̂, x) will be proved
(in Sections 5.8 and 5.9), we will have constructed an analytic family of systems
with the given complete system of analytic invariants.

5.8. Properties of P (ǭ, x) near ǭ = 0. In this section, we show that the conju-
gating transformation P (ǭ, x) satisfies (227).

5.8.1. Proof of (227). Let us detail how to obtain (227) for ǭ 6= 0 from the con-
struction of P (ǭ, x) given by (226). We will prove that (227) is satisfied for x ∈
(Ωǭ

U ∩ Ωǫ̃
U ) ∪ (Ωǭ

D ∩ Ωǫ̃
D). By the Maximum Modulus Theorem, this implies that

(227) is satisfied for x ∈ Dr.
With the shorter notations

(231) ĤD = HD(ǫ̂, x) and F̂D = FD(ǫ̂, x),

we have, for x ∈ Ωǭ
D ∩ Ωǫ̃

D,
(232)

|P (ǭ, x) − I| = |H̃DF̃DT̃LT̄−1
R F̄−1

D H̄−1
D − I|

= |H̃DF̃D(T̃LT̄−1
R − I)F̄−1

D H̄−1
D + (H̃DH̄−1

D − I)|
≤ |H̄−1

D ||H̃D||F̃D||F̄−1
D ||T̃LT̄−1

R − I| + |H̄−1
D ||H̃D − H̄D|

≤ |H̄−1
D ||H̃D||F̃D||F̄−1

D |(|T̃L − I| + |T̄−1
R − I| + |T̃L − I||T̄−1

R − I|)
+|H̄−1

D ||H̃D − H̄D|,
as well as a similar relation on Ωǭ

U ∩ Ωǫ̃
U . From Lemma 4.45 (and using (35)), the

following matrices appearing in (232) and in the similar relation on Ωǭ
U ∩ Ωǫ̃

U are
exponentially close in

√
ǫ to I:

(233) D̃RT̃RD̃−1
R , D̄RT̄−1

L D̄−1
R , T̃L, T̄−1

R .

Hence, in order to obtain the relation (227) for x ∈ (Ωǭ
U ∩ Ωǫ̃

U ) ∪ (Ωǭ
D ∩ Ωǫ̃

D), it
suffices to bound |Hs(ǫ̃, x) − Hs(ǭ, x)| . From (216), we have
(234)

|Hs(ǫ̃, x) − Hs(ǭ, x)|
= limν→∞ |(I + Z̃ν

s )...(I + Z̃3
s )(I + Z̃2

s ) − (I + Z̄ν
s )...(I + Z̄3

s )(I + Z̄2
s )|.

We will prove in Section 5.8.2 that there exists k1 ∈ R+ such that, for ν ≥ 2,

(235) |Z̃ν
s − Z̄ν

s | ≤ 2−νk1|ǭ|, (ǭ, x) ∈ S∩ × (Ωǭ
s(ν) ∩ Ωǫ̃

s)(ν), s = D, U.
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Using (234), (235) and condition (II) in Section 5.4, we then have

(236)

|Hs(ǫ̃, x) − Hs(ǭ, x)|
≤ limν→∞

∑ν
i=2 |Z̃i

s − Z̄i
s|
∏i−1

q=2 |I + Z̃q
s |
∏ν

p=i+1 |I + Z̄p
s |

≤ limν→∞
∑ν

i=2 |Z̃i
s − Z̄i

s|
∏i−1

q=2 |I + Z̃q
s |
∏ν

p=i+1 |I + Z̄p
s |

|I+Z̃i
s|

1−2−(i+1)

≤ limν→∞
∏ν

p=2(1 + 2−(p+1))
∑ν

i=2
|Z̃i

s−Z̄i
s|

1−2−(i+1)

≤ limν→∞
∏ν

p=2(1 + 2−(p+1))
∑ν

i=2
k1|ǭ|

2i(1−2−(i+1))

≤ limν→∞ k1|ǭ|
∏ν

p=2(1 + 2−(p+1))
∑ν

i=2 2−(i−1),

yielding the existence of K∗
1 ∈ R+ such that

(237) |Hs(ǫ̃, x) − Hs(ǭ, x)| ≤ K∗
1 |ǭ|, (ǭ, x) ∈ S∩ × (Ωǭ

s ∩ Ωǫ̃
s), s = D, U.

5.8.2. Property (235) of Zν
s . Let us now prove (235), the remaining ingredient of

the proof of (227) for x ∈ (Ωǭ
U ∩ Ωǫ̃

U ) ∪ (Ωǭ
D ∩ Ωǫ̃

D). From the definition of Ẑν
s in

(203), we have, for (ǫ̂, x) ∈ S × Ωǭ
s(ν) ∩ Ωǫ̃

s(ν) and s = D, U ,

(238)
∣∣∣Z̃ν

s − Z̄ν
s

∣∣∣ =
∣∣∣∣∣

1

2πi

∫

γ ǫ̃
ν−1,s

Zν−1(ǫ̃, h)

h − x
dh − 1

2πi

∫

γ ǭ
ν−1,s

Zν−1(ǭ, h)

h − x
dh

∣∣∣∣∣

The integration paths in (238) differ near the singular points but have a nonvoid
common part. For s = D, U , we denote by iǭν,s the common part of γ ǫ̃

ν,s and

γ ǭ
ν,s, and by rǫ̃

ν,s and rǭ
ν,s their respective remaining broken paths (i.e. we have

γ ǫ̂
ν,s = iǭν,s + rǫ̂

ν,s). Finally, as illustrated in Figure 24, we separate the left and right

parts of rǫ̂
ν,s, denoting rǫ̂

ν,s = rǫ̂
ν,s,L ∪ rǫ̂

ν,s,R. With these notations, we can write

rǫ̃
ν,U,L

rǭ
ν,U,L rǫ̃

ν,U,R

rǭ
ν,U,R

iν,U

rǭ
ν,D,R

rǫ̃
ν,D,R

rǭ
ν,D,L

rǫ̃
ν,D,L

iν,D

x̃Rx̃R

x̃Lx̃L

Figure 24. Integration paths iǭν,s, rǫ̃
ν,s = rǫ̃

ν,s,L ∪ rǫ̃
ν,s,R and rǭ

ν,s =

rǭ
ν,s,L ∪ rǭ

ν,s,R, s = D, U .

(238) as

(239)

∣∣∣Z̃ν
s − Z̄ν

s

∣∣∣ =
∣∣∣ 1
2πi

∫
iǭ
ν−1,s

Zν−1(ǫ̃,h)−Zν−1(ǭ,h)
h−x

dh

+ 1
2πi

∫
rǫ̃

ν−1,s

Zν−1(ǫ̃,h)
h−x

dh − 1
2πi

∫
rǭ

ν−1,s

Zν−1(ǭ,h)
h−x

dh
∣∣∣ ,

and hence

(240)

∣∣∣Z̃ν
s − Z̄ν

s

∣∣∣ ≤ 1
2π

∫
iǭ
ν−1,s

|Zν−1(ǫ̃,h)−Zν−1(ǭ,h)|
|h−x| |dh|

+ 1
2π

∣∣∣
∫

rǫ̃
ν−1,s

Zν−1(ǫ̃,h)
h−x

dh
∣∣∣+ 1

2π

∣∣∣
∫

rǭ
ν−1,s

Zν−1(ǭ,h)
h−x

dh
∣∣∣ .

In order to prove (235) from (240), we will bound its last row, and then use induc-
tion.
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By condition (IV) in Section 5.4, we have

(241) |Zν−1(ǫ̂, h)| ≤ 2−2(ν−2)K4|h − x̂l|4, (ǫ̂, x) ∈ (S ∪ {0})× Ωǫ̂
l (ν).

Using (206), we thus have, for x ∈ Ωǭ
l (ν) ∩Ωǫ̃

l (ν) s = D, U , l = L, R and ǫ̂ ∈ {ǫ̃, ǭ},

(242)

∣∣∣
∫

rǫ̂
ν−1,s,l

Zν−1(ǫ̂,h)
h−x

dh
∣∣∣ ≤

∫
rǫ̂

ν−1,s,l

|Zν−1(ǫ̂,h)|
|h−x| |dh|

≤
∫

rǫ̂
ν−1,s,l

2−2(ν−2)K4|h−x̂l|2
2−νθ

|dh|.

The integration paths rǫ̂
ν,s are located inside a disk of radius c

√
|ǭ| for some c ∈ R∗

+

(Section 4.4), yielding

(243)

∣∣∣
∫

rǫ̂
ν−1,s,l

Zν−1(ǫ̂,h)
h−x

dh
∣∣∣ ≤

∫
rǫ̂

ν−1,s,l

θ−124−νK4(|h| +
√
|ǫ|)2|dh|

≤
∫

rǫ̂
ν−1,s,l

θ−124−νK4|ǫ|(c + 1)2|dh|
= θ−124−νK4|ǫ|(c + 1)2

∫
rǫ̂

ν−1,s,l

|dh|.

Thus, a bound for the last row of (240) is, using (202) and the fact that the length
of the path rǫ̂

ν−1,s is smaller than the length of the path γ ǫ̂
ν−1,s,

(244)

1
2π

(∣∣∣
∫

rǫ̃
ν−1,s

Zν−1(ǫ̃,h)
h−x

dh
∣∣∣+
∣∣∣
∫

rǭ
ν−1,s

Zν−1(ǭ,h)
h−x

dh
∣∣∣
)

≤ (2πθ)−124−νK4|ǫ|(c + 1)2
(∫

rǫ̃
ν−1,s

|dh| +
∫

rǭ
ν−1,s

|dh|
)

≤ (2πθ)−124−νK4|ǫ|(c + 1)2
(∫

γ ǫ̃
ν−1,s

|dh| +
∫

γ ǭ
ν−1,s

|dh|
)

≤ (2πθ)−124−νK4|ǫ|(c + 1)22cs

=
k∗
1

2ν+5 |ǫ|,
where

(245) k∗
1 =

25K4(c + 1)2

K2
.

Hence, (240) becomes

(246)

∣∣∣Z̃ν
s − Z̄ν

s

∣∣∣ ≤ 1
2π

∫
iǭ
ν−1,s

|Zν−1(ǫ̃,h)−Zν−1(ǭ,h)|
|h−x| |dh| + k∗

1

2ν+5 |ǭ|,
(ǭ, x) ∈ S∩ × (Ωǭ

l (ν) ∩ Ωǫ̃
l (ν)).

From (246), we will prove (235) for ν = 2, ν = 3 and ν > 3.
Beginning with ν = 2, we have, from

(247) Fs(ǭ, x) = Fs(ǫ̃, x), x ∈ Ωǭ
s ∩ Ωǫ̃

s, s = D, U,

and from (187),

(248) |Z̃1 − Z̄1| ≤
{
|FD(ǭ, x) (CR(ǫ̃) − CR(ǭ))FD(ǭ, x)−1|, on Ωǫ̃

R ∩ Ωǭ
R,

|FD(ǭ, x) (CL(ǫ̃) − CL(ǭ)) FD(ǭ, x)−1|, on Ωǫ̃
L ∩ Ωǭ

L.

By the 1
2 -summability of the unfolded Stokes matrices, |Cl(ǫ̃) − Cl(ǭ)| is exponen-

tially close to 0 in
√

ǫ. Then, (248) implies that there exists w1 ∈ R+ such that

(249) |Z̃1 − Z̄1| ≤ w1

24
K2|ǭ||x − x̄l|2, l = L, R, (ǭ, x) ∈ S∩ × (Ωǭ

l (ν) ∩ Ωǫ̃
l (ν)),

with K2 given by (200). Using relations (202) and (206) and the fact that the
length of the path iǭν,s is smaller than the length of the path γ ǫ̂

ν,s, the integral in



Complete system of analytic invariants for unfolded differential linear systems 51

(246) for ν = 2 is bounded by

(250)

1
2π

∫
i1,s

|Z1(ǫ̃,h)−Z1(ǭ,h)|
|h−x| |dh| ≤ 1

2π

∫
i1,s

w1K2|ǭ||h−x̄l|2
24|h−x| |dh|

≤ 1
2π

∫
i1,s

w1K2|ǭ||h−x̄l|2
242−2θ|h−x̄l|2 |dh|

≤ w1|ǭ| K2

23θπ

∫
i1,s

|dh|
≤ w1|ǭ|K2cs

23θπ

≤ 1
27 w1|ǭ|.

From (246) and (250), we have

(251) |Z̃2
s − Z̄2

s | ≤
1

26
k1|ǭ|, (ǭ, x) ∈ S∩ × (Ωǭ

s(2) ∩ Ωǫ̃
s)(2), s = D, U,

with

(252) k1 = max{k∗
1 , w1}.

Relation (235) is thus satisfied for ν = 2.

Now, let us study |Z̃ν−1 − Z̄ν−1| in order to bound (246) for ν ≥ 3. From the
equality

(253) ÃB̃C̃−1 − ĀB̄C̄−1 =
(
(Ã − Ā)B̃ + Ā(B̃ − B̄) + ĀB̄C̄−1(C̄ − C̃)

)
C̃−1,

applied to relation Zν−1 = Zν−1
D Zν−2(I + Zν−1

U )−1 coming from (209), we have

(taking Zν−1 = ABC−1, Zν−1
D = A, Zν−2 = B and (I + Zν−1

U ) = C)
(254)

|Z̃ν−1 − Z̄ν−1|
≤
(
|Z̃ν−1

D − Z̄ν−1
D ||Z̃ν−2| + |Z̄ν−1

D ||Z̃ν−2 − Z̄ν−2| + |Z̄ν−1||Z̄ν−1
U − Z̃ν−1

U |
)

×|(I + Z̃ν−1
U )−1|.

Let us remark that, because of (247), we have

(255) |Ẑν | ≤ 2−2(ν−1)K1|x − x̄l|, (ǫ̂, x) ∈ S∩ × Ωǭ
l (ν) ∩ Ωǫ̃

l (ν), l = L, R,

coming from condition (IV) of Section 5.4.
For ν = 3, equation (254) yields, with the use of (249), (251), (252), (255) and

|Zν−1
s | ≤ 2−ν (from (II) ),

(256)
|Z̃2 − Z̄2| ≤ k1|ǭ|K2|x − x̄l|2

(
1
26 + 1

2324 + 1
2226

) (
1

1−2−3

)
, l = L, R,

≤ k1|ǭ|K2|x − x̄l|2 1
24 , l = L, R,

for (ǭ, x) ∈ S∩ × (Ωǭ
s(2) ∩ Ωǫ̃

s)(2). In the same way as when we bounded (250), we
use (256) to bound the integral in (246) for ν = 3 :

(257)

1
2π

∫
i2,s

|Z2(ǫ̃,h)−Z2(ǭ,h)|
|h−x| |dh| ≤ 1

2π

∫
i2,s

k1|ǭ|K2|h−x̄l|2
242−3θ|h−x̄l|2 |dh|

≤ k1|ǭ|K2

22πθ

∫
i2,s

|dh|
≤ k1|ǭ|K2

22πθ

∫
γ ǭ
2,s

|dh|
≤ 1

22 k1|ǭ|K2cs

πθ

≤ 1
26 k1|ǭ|.

Then, (257) into (246) gives

(258) |Z̃3
s − Z̄3

s | ≤
1

25
k1|ǭ|, (ǭ, x) ∈ S∩ × (Ωǭ

s(3) ∩ Ωǫ̃
s(3)), s = D, U.

Relation (235) is hence satisfied for ν = 3.
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We are now ready to prove (235) for ν > 3 by induction on ν. Let us suppose
that we have

(259)
|Z̃ν−2 − Z̄ν−2| ≤ k1

22(ν−3) |ǭ|K2|x − x̄l|2,
(ǭ, x) ∈ S∩ × (Ωǭ

s(ν − 2) ∩ Ωǫ̃
s(ν − 2)), l = L, R,

and

(260) |Z̃ν−1
s −Z̄ν−1

s | ≤ 1

2ν−1
k1|ǭ|, (ǭ, x) ∈ S∩×(Ωǭ

s(ν−1)∩Ωǫ̃
s(ν−1)), s = D, U,

(this is indeed satisfied for ν = 4 because of (256) and (258)). For ν > 3, relation

(254) yields, using (259), (260), (255) and |Ẑν−1
s | ≤ 2−ν (from (II)),

(261)
|Z̃ν−1 − Z̄ν−1| ≤ k1|ǭ|K2|x − x̄l|2

(
1

2ν−122(ν−3) + 1
2ν22(ν−3) + 1

22(ν−2)2ν−1

)

×
(

1
1−2−ν

)
,

and thus, for (ǭ, x) ∈ S∩ × (Ωǭ
s(ν − 1) ∩ Ωǫ̃

s(ν − 1)) and l = L, R,

(262) |Z̃ν−1 − Z̄ν−1| ≤ k1

22(ν−2) |ǭ|K2|x − x̄l|2.
In the same way as when we bounded (250) and (257), we use (262) to bound the
integral in (246) for ν > 3:

(263)

1
2π

∫
iǭ
ν−1,s

|Zν−1(ǫ̃,h)−Zν−1(ǭ,h)|
|h−x| |dh| ≤ 1

2π

∫
iǭ
ν−1,s

k1K2|ǭ||h−x̄l|2
22(ν−2)|h−x| |dh|

≤ 1
2π

∫
iǭ
ν−1,s

k1K2|ǭ||h−x̄l|2
22(ν−2)2−νθ|h−x̄l|2 |dh|

≤ k1K2|ǭ|
π2ν−3θ

∫
iǭ
ν−1,s

|dh|
≤ k1K2|ǭ|

π2ν−3θ

∫
γ ǫ̂

ν−1,s
|dh|

≤ 1
2ν−3 k1|ǭ|K2cs

πθ

≤ 1
2ν+1 k1|ǭ|.

Then, (263) and (246) gives (235) for ν > 3 (using (252)).

5.9. Construction of J(ǫ̂, x). For fixed x, the existence of J(ǫ̂, x) follows from the
triviality of the vector bundle on the punctured disk in ǫ-space. But, we need to
show that J(ǫ̂, x) depends analytically on the "parameter" x ∈ Dr and also that we
can fill the hole at ǫ = 0. So we need to go into the details of the construction of
J(ǫ̂, x). We do this in a sketchy way since the details are completely similar (and
simpler) to those we have done in Sections 5.1 to 5.5.

S has been taken previously with an opening 2π + γ0. We reduce slightly the
opening of S to 2π + γ with 0 < γ < γ0, denoting the sector with the previous
opening Sprev, such that, for some α > 0,

(264) S(1) = S ∪ {ǫ : ∃ǫ̂ ∈ S∩ s.t. |ǫ − ǫ̂| < 2−1α|ǫ|} ⊂ Sprev.

We write S as the union of two sectors VU and VD

(265)
VD = {ǫ ∈ C : 0 < |ǫ| < ρ, arg(ǫ) ∈ (π − γ, 2π + γ)},
VU = {ǫ ∈ C : 0 < |ǫ| < ρ, arg(ǫ) ∈ (2π − γ, 3π + γ)}.

We take the following domains converging when ν → ∞ to Vs and included into
Sprev:

(266) Vs(ν) = Vs ∪ {ǫ : ∃ǫ̂ ∈ VU ∩ VD s.t. |ǫ − ǫ̂| < 2−να|ǫ|}, ν ≥ 1, s = D, U.

We separate the intersection of VU (ν) and VD(ν) into a left and a right domain:

(267) V∩(ν) = VU (ν) ∩ VD(ν) = VL(ν) ∪ VR(ν).
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We divide the boundary of V∩(ν) in two parts: as illustrated in Figure 25, we denote
tν,s = tν,s,L ∪ tν,s,R the path included in the boundary of Vs(ν), s = D, U . The
path tν,s,L begins at ǫ = −ρ and ends at ǫ = 0, whereas tν,s,R begins at ǫ = 0 and
ends at ǫ = ρ.

tν,U

tν,D

VD(ν)

VU (ν)

0
0

Figure 25. Integration path tν,s = tν,s,L ∪ tν,s,R, s = D, U .

We reduce the radius ρ of S (and hence of Vs and Vs(ν), s = D, U) a last time
so that the length of each path tν,s is bounded as follows:

(268)

∫

tν,s

|dh| < ls < min

{
πα

24K1
,

π

K1

}
, s = D, U, ν ≥ 1,

with K1 given by (227).
Starting from

(269) Y 1 =

{
P (ǫ, x) − I, ǫ ∈ VL,

0, ǫ ∈ VR,

and using (227), we construct, for ν = 2, 3, ..., a sequence of matrices Y ν , Y ν
U and

Y ν
D satisfying the conditions:

(i) Y ν−1 = Y ν
U − Y ν

D, (ǫ, x) ∈ V∩(ν − 1) × Dr;
(ii) for s = D, U ,

• Y ν
s is analytic for (ǫ, x) ∈ Vs(ν − 1) × Dr,

• |Y ν
s | ≤ 2−(ν+1) for (ǫ, x) ∈ Vs(ν) × Dr;

(iii) For some 0 < δ < 1,
• I + Y ν = (I + Y ν

D)(I + Y ν−1)(I + Y ν
U )−1 for (ǫ, x) ∈ VL(ν − δ) × Dr,

• Y ν = 0 on VR(ν − δ) × Dr;
(iv) • Y ν is analytic for (ǫ, x) ∈ VL(ν − δ) × Dr,

• Y ν(0, x) = 0,

• Y ν satisfies, with K1 given by (227),
|Y ν | ≤ 2−2(ν−1)K1|ǫ| for (ǫ̂, x) ∈ VL(ν) × Dr.

We can prove that the properties (i) to (iv) are satisfied in a similar (and simpler)
way as in Section 5.4, by defining the matrices Y ν

D(ǫ, x) and Y ν
U (ǫ, x), for ν = 2, 3, ...,

by

(270) Y ν
s (ǫ, x) =

1

2πi

∫

tν−1,s

Y ν−1(h, x)

h − ǫ
dh, (ǫ, x) ∈ Vs(ν − 1) × Dr, s = D, U.
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As in Section 5.5, the desired J(ǫ̂, x) is given by

(271) J(ǫ̂, x) =

{
JD(ǫ̂, x), ǫ̂ ∈ VD,

JU (ǫ, x), ǫ̂ ∈ VU ,

with

(272) Js(ǫ, x) = lim
ν→∞

(I + Y ν
s )...(I + Y 3

s )(I + Y 2
s ), s = D, U.

By (ii), J(ǫ̂, x)−1 has a bounded limit at ǫ = 0. Since the family{J ′(ǫ̂, x)}ǫ̂∈(S∪{0})
is bounded, J ′(ǫ̂, x) has a bounded limit at ǫ = 0. This concludes the proof of
Theorem 5.2. 2

6. Discussion and directions for further research

The work presented in this paper brings a new light on the divergence of formal
solutions near an irregular singular point of Poincaré rank 1. It gives new per-
spectives, including a unified point of view in the understanding of the dynamics
of the singularities by deformation. We have identified, interpreted and studied
the realization of the complete system of analytic invariants of unfolded differential
linear systems with an irregular singularity of Poincaré rank 1 (nonresonant case).
The meaning of the auto-intersection condition (which is the necessary and suffi-
cient condition for the realization) is still obscure (in dimension n ≥ 3). We will
investigate it in more details in [7].

One of the next steps in the large program of understanding singularities by
unfolding is the study of analytic invariants of nonresonant linear differential equa-
tions with singularities of Poincaré rank k higher than 1. One difference is that
there is no more a bijection between the 2k Stokes matrices and the k + 1 singular
points in the unfolded systems.

Another direction of research is the existence of universal families. Can we
identify canonical representatives of the analytic equivalence classes of unfolded
systems?
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