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Abstract. The present note is an addendum to the paper [1] which presented
a study of a generalized Gause model with prey harvesting and a generalized

Holling response function of type III: p(x) = mx
2

ax2+bx+1
. Complete bifurcation

diagrams were proposed, but some parts were conjectural. An organizing cen-
ter for the bifurcation diagram was given by a nilpotent point of saddle type
lying on an invariant line and of codimension greater than or equal to 3. This
point was of codimension 3 when b 6= 0, and was conjectured to be of infinite
codimension when b = 0. This conjecture was in line with a second conjecture
that the Hopf bifurcation of order 2 degenerates to a Hopf bifurcation of infi-
nite codimension when b = 0. In this note we prove these two conjectures.
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1. Introduction

The model discussed in [1] is the system:

(1.1)











ẋ = rx(1 − x
k
) − mx2y

ax2+bx+1 − h1,

ẏ = y(−d + cmx2

ax2+bx+1 ),

x ≥ 0, y ≥ 0,

where the eight parameters: r, k, m, a, c, d, h1 are strictly positive and b ≥ 0.
The response function

(1.2) p(x) =
mx2

ax2 + bx + 1

is called Holling (resp. generalized Holling) of type III when b = 0 (resp. b 6= 0).
Through the following linear transformation and time scaling

(X, Y, T ) =

(

1

k
x,

1

ck
y, cmk2t

)

,
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the number of parameters was reduced to five: the simplified system that was
considered is the following

(1.3)











ẋ = ρx(1 − x) − y x2

αx2+βx+1 − λ,

ẏ = y(−δ + x2

αx2+βx+1),

x ≥ 0, y ≥ 0,

with parameters

(1.4) (ρ, α, β, δ, λ) =

(

r

cmk2
, ak2, bk,

d

cmk2
,

h1

cmk3

)

.

For β ≥ 0 and small λ, the system has two singular points C and D on the
positive invariant x-axis. When λ grows to ρ

4 , the two singular points merge in a
saddle-node and disappear. Also, the system has at most singular point, E, in the
first quadrant, which is of anti-saddle type (node, focus or center). When the point
E enters or exists the first quadrant, it does so by merging with either C or D in
a transcritical bifurcation. The three points C, D and E can all merge together in
a nilpotent point of saddle type located at (1

2 , 0). This occurs when
{

λ = ρ
4 ,

δ = 1
α+2β+4 .

In the generic case, namely when

B2 = αβ + 6α − β2 − 8β − 24 6= 0,

the codimension is 2 (instead of 3) because of the presence of an invariant line
through the point. When B = 0, the nilpotent point has codimension greater
than 2. The corresponding bifurcation is the organizing center of the bifurcation
diagram. In [1], the codimension was shown to be 3 when β > 0, and conjectured
to be infinite when β = 0. For β > 0, this bifurcation locus is the termination of
the locus of surface of Hopf bifurcation of order 2 at the point E. When β = 0, it
was conjectured that the Hopf bifurcation was of infinite order as soon as its order
was greater than 1. In order words, it was conjectured that E was a center as soon
as it had two pure imaginary eigenvalues and the first Lyapunov constant (or first
coefficient of the Hopf bifurcation) vanishes.

Here we prove these two conjectures. Our method of proof is quite original. It
consists in finding an analytic transformation of the system bringing it to a time
reversible system. To show that the transformed system is indeed reversible, we
compute its power series. We use an encyclopedia of integer sequences to guess the
general term, and Mathematica to provide the sum of the series. Once, we have
conjectured the exact form of the system, a straightforward computation going in
the inverse direction allows to prove that this conjectured form is the exact form of
the system: indeed, substituting the inverse change of coordinate in the conjectured
form provides the original system.

2. Proof of the conjectures

2.1. Proof of the first conjecture.

Theorem 2.1. We consider the system (1.3) with β = 0 under parameter values

for which there exists a singular point E = (x0, y0) inside the first quadrant. If the

system has a Hopf bifurcation of order greater than 1 at E, then E is a center.
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Proof. If E = (x0, y0) is a singular point of (1.3) with y0 6= 0, then

(2.1)

{

x2
0(1 − αδ) − 1 = 0,

y0 =
(ρx0(1−x0)−λ)(1+αx2

0
)

x2

0

.

and we use (2.1) to eliminate δ and y0. We divide the system by x2

αx2+1 and we

localize it at (x0, y0) by (x1, y1) = (x − x0, y − y0). The system now has the form

ẋ1 = −y1 − f(x1),

ẏ1 = g(x1) + l(x1)y1,
(2.2)

where

f(x1) = −
1

x2
0(x0 + x1)2

x1(−2λx0 + ρx2
0 − αρx4

0 + 2αρx5
0 − λx1 + ρx0x1

− 2αρx3
0x1 + 5αρx4

0x1 − αρx2
0x

2
1 + 4αρx3

0x
2
1 + αρx2

0x
3
1),

g(x1) =
−(λ − ρx0 + ρx2

0)x1(2x0 + x1)

x2
0(x0 + x1)2

,

l(x1) =
x1(2x0 + x1)

(1 + αx2
0)(x0 + x1)2

.

(2.3)

The Jacobian matrix at the origin is given by
(

−f ′(0) −1

g′(0) 0

)

. The determinant is

positive under the conditions x0, y0 > 0 (details in [1]). Hence, we have a Hopf
bifurcation if f ′(0) = 0 which yields

−2λ + ρx0 − αρx3
0 + 2αρx4

0 = 0.(2.4)

This allows to eliminate λ. The order of the Hopf bifurcation is greater than 1 if
the first Lyapunov constant, L(1), vanishes. The formula of L(1) for arbitrary β

was computed in [1]:

L(1) =ρ2x2
0(1 − 2x0)(αx2

0 + βx0 + 1)2[(β3 + 2αβ − αβ2)x4
0

+ (6β2 − 6αβ)x3
0 + (6β − 6α)x2

0 + 4βx0 + 6].
(2.5)

For β = 0, this yields

L(1) = 0 ⇔ (1 − 2x0)(αx2
0 + 1)(1 − αx2

0) = 0.(2.6)

We have α > 0. Also, 1 − 2x0 = 0 is excluded, since otherwise y0 = 0. Hence, we
need have

1 − αx2
0 = 0,(2.7)

and we are left with the two parameters ρ et x0 in the system

ẋ1 = −y1 − f(x1) = −y1 − x2
1h(x1)

ẏ1 = g(x1) + l(x1)y1,
(2.8)

where

g(x1) = −
(−ρx0 + 2ρx2

0)x1(2x0 + x1)

x2
0(x0 + x1)2

,

l(x1) =
x1(2x0 + x1)

2(x0 + x1)2
,

h(x1) =
ρ(−x0 + 4x2

0 − x1 + 4x0x1 + x2
1)

x2
0(x0 + x1)2

.

(2.9)
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This suggests to try a change of coordinates (x1, y1) 7−→ (X, y1) and time scaling
which would bring the first equation to

Ẋ = −y1 − X2.(2.10)

So we let
{

X = x1

√

h(x1) = H(x1),

T = t
k(X) , où k(X) = (H−1)′(X) = 1

H′(H−1(X)) .
(2.11)

The transformed system becomes

dX

dT
= H ′(x1)ẋ1(H

−1)′(X) = ẋ1 = −y1 − X2,

dy1

dT
= (g(x1) + l(x1)y1)(H

−1)′(X) =
(g(H−1(X)) + l(H−1(X))y1)

H ′(H−1(X))
,

(2.12)

which we write under the form

(2.13)

{

dX
dT

= −y1 − X2,
dy1

dT
= m(X) + n(X)y1.

Experimentally, using Mathematica, we see that m(X) and n(X) look like odd
functions of X , and we are going to prove that they are indeed odd functions of X ,
from which the result will follow. Since

m(X) =
2(ρx0 − 2ρx2

0)

x2
0

n(X) =
2ρ(1 − 2x0)

x0
n(X),(2.14)

it suffices to study n(X) sont des fonctions impaires. Pour cela, nous faisons calculer
le développement en série de m(X) et n(X) par Mathematica. The power series
expansion of n(X) has the form

n(X) =
x2

0

ρ(−1 + 4x0)
X −

2x4
0

ρ2(−1 + 4x0)3
X3 +

6x6
0

ρ3(−1 + 4x0)5
X5

−
20x8

0

ρ4(−1 + 4x0)7
X7 +

70x10
0 y1

ρ5(−1 + 4x0)9
X9 + O(X11)

(2.15)

An encyclopedia of integer sequences yields that 1, 2, 6, 20, 70, . . . are the first terms

of the sequence
{

(2n)!
(n!)2

}

n≥0
, yielding the conjecture

n(X) =

(

x2
0X

ρ(−1 + 4x0)

) ∞
∑

n=0

(

(−1)n (2n)!

(n!)2

(

x2
0X

2

ρ(−1 + 4x0)2

)n)

.(2.16)

Mathematica provides a sum for this sequence, namely

n(X) =
Xx2

0

ρ(−1 + 4x0)
√

ρ−8ρx0+16ρx2

0
+4X2x2

0

ρ(−1+4x0)2

,(2.17)

To prove that this is indeed the right formula for n(X), it suffices to substitute

X = x1

√

h(x1) = H(x1),(2.18)

and to check that

n(H(x1))

H ′(x1)
= l(x1),(2.19)

From (2.16) we conclude that n(X) is odd, and hence that E is a center �
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2.2. Proof of the second conjecture. For β = 0, ρ = 4λ and δ = 1
α+4 , the three

singular points C, D and E merge together in the triple point (1
2 , 0). This point

is a nilpotent saddle with an invariant line, y = 0, through it. This suggests to
use a normal form respecting the invariant line. Because of the invariant line, the
corresponding bifurcation has codimension 2 (the two conditions are to have two
zero eigenvalues), and such a normal form can be taken as

(2.20)

{

Ẋ = Y − X2,

Ẏ = Y (
∑

n≥1 BnXn),

with B1 > 0. We have codimension greater than 2 if B2 = 0. This occurs for α = 4
(see [1]).

Theorem 2.2. For β = 0, ρ = 4λ, δ = 1
8 and α = 4, then the normal form (2.20)

of (1.3) at (1
2 , 0) is time-reversible, namely B2j = 0 for all j ≥ 1.

Proof. It is not necessary to make an independent proof of this theorem. The
considered bifurcation is the endpoint for ρ = 4λ of the surface of Hopf bifurcation
of order greater than 1 .

Indeed, under the conditions, we get the limit values x0 = 1
2 and y0 = 0, and we

have f ′(0) = g′(0) = 0 in (2.3). Also the limit condition for the Hopf bifurcation
to have order greater than 1 namely

(2.21) L(1) = 0 ⇔ 1 − αx2
0 = 0,

yields α = 4 when x0 = 1
2 .

The translation (x1, y1) = (x − 1
2 , y) brings the system to the same form (2.2)

with

g(x1) ≡ 0,

l(x1) =
2x1(1 + x1)

(1 + 2x1)2
,

h(x1) =
32λ(1 + 2x1 + 2x2

1)

(1 + 2x1)2
.

(2.22)

We take the same change of coordinate and time scaling (2.11), and we obtain the
system under the form

(2.23)











dX

dT
= −y1 − X2,

dy1

dT
= n(X)y1.

The function n(X) is obtained by substituting x0 = 1
2 in (2.17)

n(X) =
X

4ρ
√

1 + X2

ρ

.(2.24)

Since it is odd, the result follows. �
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