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March 2012 (revised June 2012 and September 2012)

Abstract

In this paper we provide a complete modulus of analytic classification for germs of
generic analytic families of diffeomorphisms which unfold a parabolic fixed point of codi-
mension k. We start by showing that a generic family can be “prepared”, i.e. brought to a
prenormal form fε(z) in which the multi-parameter ε is almost canonical (up to an action
of Z/kZ). As in the codimension 1 case treated in [7], we show that the Ecalle-Voronin
modulus can be unfolded to give a complete modulus for such germs. For this purpose,
we define unfolded sectors in z-space that constitute natural domains on which the map
fε can be brought to normal form in an almost unique way. The comparison of these
normalizing changes of coordinates on the different sectors forms the analytic part of the
modulus. This construction is performed on sectors in the multi-parameter space ε such
that the closure of their union provides a neighborhood of the origin in parameter space.

1 Introduction

This paper is part of a large program to classify and understand the finite codimension
singularities of analytic dynamical systems and their unfoldings. The first tool for this purpose
is to look at normal forms. A certain number of singularities have normal forms depending
on a finite number of parameters which are formal invariants of the system. In a series of
papers ([7], [1], [11], [13], [12], [17], [6]) we have developed the program for singularities with
common features: their normal form have a finite number of formal parameters, called formal
invariants, and there exist formal changes of coordinates to normal form which are divergent
and k-summable in some sense. The singularities studied come from the merging of k + 1
simple singularities ([7], [1], [12], [6] when k = 1, and [17] for a codimension k saddle-node of a
planar vector field), or from the merging of a singularity with a periodic orbit ([11] and [13]).
Examples of such singularities are the fixed points of a 1-dimensional diffeomorphism with
resonant multiplier (the multiplier is a root of unity), the saddle-nodes, the resonant saddles
(the quotient of eigenvalues is a negative rational number) or the weak foci of a 2-dimensional
vector field, and the irregular non resonant singularities of a linear differential system.

The meaning of the formal invariants is best understood when one unfolds the system.
Indeed, in all cases except [6], there are natural canonical parameters which are analytic
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invariants for the family. The formal invariants unfold analytically in the parameters. In all
generic cases (simple singularities), the sum of the number of parameters and of the number
of formal invariants is exactly equal to the sum of the number of (linear) invariants at each
simple singular point in the unfolding (multipliers or eigenvalues).

The analytic classification of germs of generic analytic families unfolding these singularities
is done by giving a complete modulus of analytic classification for each family. The modulus
comprises a formal part described above, and an analytic part which is given by the unfolding
of the analytic part of the modulus of the singularity itself. To describe the modulus, we cover
a fixed neighborhood of the singularity with 2k sectors depending on the parameters. On
each sector, we construct normalizing changes of coordinates to the normal form. The sectors
are such that the normalizing changes of coordinates are almost unique (up to symmetries of
the normal form on the full neighborhood). The comparison of the normalizing changes of
coordinates on the intersections of the sectors provides the modulus. The construction can
be performed depending analytically on the parameters on some sectors in parameter space,
the closure of which cover a full neighborhood of the origin in parameter space. The analytic
part of the modulus of the singularity is the limit of the analytic part of the modulus of
the unfolding: this allows to interpret the modulus of the codimension k singularity and to
understand why it is so complex. Indeed, there are rigid models at each unfolded singularity
which are glued in a non trivial way. The modulus at the limit is the limit of these non trivial
gluings. Also the unfolded singularities can be resonant for sequences of parameter values
converging to the origin, in which case they have themselves formal invariants. The limit
of these formal invariants are also encoded in the analytic part of the modulus of the limit
singularity: this is the parametric resurgence phenomenon discussed in Section 6.

In this paper we build a complete modulus of analytic classification for germs of generic
analytic diffeomorphisms with a codimension k parabolic point. As a first step, in Section 2,
we show that the family can be prepared, i.e. brought through a change of variable and
parameter to a form in which the parameters are analytic invariants up to an action of Z/kZ.
In Section 4, we then describe the sectors in the variable and in the parameter space, and we
construct the Fatou coordinates which normalize the diffeomorphism on the different sectors.
The comparison of the Fatou coordinates yields the analytic part of the modulus. This
analytic part depends analytically on the parameters on each sector in parameter space. In
Section 5, we then show that the modulus we have defined is a complete modulus of analytic
classification, namely that two families with the same modulus are analytically conjugate,
with the conjugacy depending analytically on the parameters. In Section 6, we briefly discuss
the interpretation of the modulus in the parametric resurgence phenomenon.

The next step in this program is to identify precisely the set of realizable moduli. For
this purpose, it is needed to identify the sufficient conditions for a modulus to be realized as
the modulus of a germ of analytic family unfolding a diffeomorphism with a parabolic point
of codimension k. We hope to address this question in a forthcoming paper.

2 Preparation of the family

Definition 2.1 A germ of an analytic k-parameter family fη unfolding a diffeomorphism of
the form

f0(z) = z + zk+1 + o(zk+1), (2.1)
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can be written (modulo a translation) in the form

fη(z) = z + pη(z)(1 +O(|(z, η)|),

where
pη(z) = zk+1 + ck−1(η)zk−1 + . . . c1(η)z + c0(η).

It is called a germ of generic analytic k-parameter family if the mapping η 7→ (c0(η), . . . ck−1(η))
is a germ of analytic diffeomorphism from (Ck, 0) to (Ck, 0).

Theorem 2.2 For any germ of generic analytic k-parameter family fη unfolding a diffeo-
morphism of the form (2.1) there exists a germ of change of coordinate and parameter to a
prepared form

f ε(Z) = Z + Pε(Z)(1 +Qε(Z) + Pε(Z)Rε(Z)) (2.2)

with
Pε(z) = Zk+1 + εk−1Z

k−1 + · · ·+ ε1Z + ε0, (2.3)

such that:

• Qε(Z) = ck(ε)Z
k + · · ·+ c1(ε)Z + c0(ε), with c0(0) = · · · = ck−1(0) = 0;

• If Z1, . . . , Zk+1 are the fixed points of f ε, if λj(ε) is defined by λj(ε) = f
′
ε(Zj), if the

germ of analytic function a(ε) is defined through∑
1/ ln(λj(ε)) = a(ε) (2.4)

when the Zj are distinct, and the vector field vε is defined by

vε(Z) =
Pε(Z)

1 + a(ε)Zk
∂

∂Z
, (2.5)

then
lnλj(ε) = ln(f

′
ε(Zj)) = v′ε(Zj). (2.6)

Moreover, the parameters ε are almost unique in the following sense. If f̃ε̃(Z̃) is another
prepared form for the same unfolding fη, then there exists τ such that τk = 1 and

(Z̃, ε̃k−1, . . . , ε̃0) = (τZ + o(Z), τ2εk−1, τ
3εk−2, . . . , ε1, τε0).

Proof. Using a translation in z and a change of parameters, we can suppose that the fixed
points of fη are given by the zeros of

pη(z) = zk+1 + ηk−1z
k−1 + · · ·+ η1z + η0.

Hence, we can write the unfolding in the form

fη(z) = z + pη(z)(1 +mη(z)),

with mη(z) = O(η, z). Using the Weierstrass division theorem on mη allows to write fη in
the form

fη(z) = z + pη(z)(1 + qη(z) + pη(z)nη(z)) (2.7)
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with qη(z) a polynomial of degree k.

Let z1, . . . , zk+1 be the fixed points of fη. There exists a polynomial Sη(z) of degree ≤ k
such that at the points zj we have

ln f ′η(zj) = p′η(zj)(1 + Sη(zj)). (2.8)

Such a polynomial is found by the Lagrange interpolation formula using

Sη(zj) =
ln(1 + p′η(zj)(1 + qη(zj)))

p′η(zj)
− 1.

Indeed, the formula works for distinct zj . The limit exists when two fixed points coallesce
(codimension 1 case). We can fill in for the other values of η by Hartogs’s Theorem.

By Kostov’s theorem [5], there exists a local analytic change of coordinate and parameters
transforming the vector field

v1,η(z) = pη(z)(1 + Sη(z))
∂

∂z

into

vε(Z) = Pε(Z)/(1 + a(ε)Zk)
∂

∂Z
,

where Pε is defined in (2.3). We apply this change of coordinate and parameter to fη.

Claim: this brings fη to a prepared form f ε. Indeed: it sends the zeros zj of pη(z) to the
zeroes Zj of Pε(Z). Since the zj are the fixed points of fη, their images are the fixed points
Zj of f ε. So

f ε(Z) = Z + Pε(Z)Gε(Z) = Z + Pε(Z)(1 +Qε(Z) + Pε(Z)Lε(Z)).

Let Zj be a fixed point of f ε. Then, from (2.8),

f ′η(zj) = exp(p′(zj)(1 + Sη(zj)) = exp(v′1,η(zj)).

Since multipliers at fixed points of diffeomorphisms (resp. eigenvalues at singular points of
vector fields) are invariant under change of coordinates, then we have

f
′
ε(Zj) = λj(ε) = f ′η(zj) = exp(v′1,η(zj)) = exp(v′ε(Zj))

which is what we need for a prepared family. Moreover, we see that

f
′
ε(Zj) = 1 + P ′ε(Zj)(1 +Qε(Zj))

can be calculated from Pε and Qε alone.

We now need to show that Q0(Z) = O(Zk). So we consider the particular case where
εj = 0 for j 6= 1. The fixed points are then Z0 = 0, and Z1, . . . , Zk, with Zkj + ε1 = 0.

This yields P ′ε(0) = ε1 and Pε(Zj) = −kε1 for j > 1. We need have on one side f
′
ε(Zj) =

exp
(
−kε1

1−a(ε)ε1

)
, which yields f

′
ε(Zj) = 1−kε1+O(ε21). On the other side, we also have f

′
ε(Zj) =

1 − kε1(1 + Qε(Zj)). Hence, if the coefficient c`(ε) of Z` in Qε was such that c`(0) 6= 0 for
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` < k and ` was minimum with this property, then this would yield f
′
ε(Zj) = 1−kε1 +Cε

1+ `
k

1

with C 6= 0, hence a contradiction.

We now show that the parameters are almost canonical. For that purpose, let us consider
a prepared family, which we denote fε(z) (forgetting the bar). We will prove that the only
freedom we have in the choice of a prepared family is a change

(z, εk−1, εk−2 . . . , ε0) 7→ (τz + o(z), τ−2εk−1, τ
−3εk−2, . . . , τε0), (2.9)

where τ = exp(2πi`/k), ` = 0, . . . , k − 1. Indeed, let us suppose that two prepared families
fε(z) and f̃ε̃(z̃) are conjugate under a map (ε̃, z̃) = (g(ε), hε(z)): f̃g(ε) = hε ◦ fε ◦ h−1ε . The

fixed points zj (resp. z̃j) of the family fε (resp. f̃ε̃) are the same as the singular points of
a vector field Pε(z)/(1 + a(ε)zk) ∂∂z = vε(z) (resp. P̃ε̃(z̃)/(1 + ã(ε̃)z̃k) ∂∂z̃ = ṽε̃(z̃)). Note
that a(ε) = ã(g(ε)). Then hε sends the fixed points zj to the fixed points z̃j . Hence,
h∗ε (ṽg(ε))(z) = Pε(z)Uε(z)

∂
∂z = vε(z), where Uε 6= 0. Moreover, the vector fields vε and

vε have the same singular points with same eigenvalues. Hence, we can write

vε = Pε(z)

(
1

1 + a(ε)zk
+ Pε(z)Mε(z)

)
∂

∂z
= vε(1 + Pε(z)Nε(z))

∂

∂z
.

There exists a change of coordinate Kε such that K∗ε (vε) = vε. Such a change of coordinate is
is given by the flow of vε under some time Tε (see for instance Corollary 8.2 of [17]): Kε = ΦTε

vε ,
where Tε is solution of

vε(Tε) = − Pε(z)Nε(z)

1 + Pε(z)Nε(z)

which obviously has an analytic solution. Then K−1ε ◦h∗ε (ṽg(ε)) = vε. The result follows from
the following theorem proved in [17]. 2

Theorem 2.3 [17] We consider two vector fields, vε = Pε(z)/(1 + a(ε)zk) ∂∂z and ṽε̃ =

P̃ε̃(z̃)/(1 + ã(ε̃)z̃k) ∂∂z̃ , which are conjugate in a neighborhood of the origin containing all
the singular points. Then, necessarily the conjugacy between vε and ṽε̃ is of the form (2.9)
with τ some k-th root of unity.

Remark 2.4 1. The meaning of the formal invariant a now becomes clear. The polyno-
mial Pε has k+ 1 roots and depends on k parameters only. An additional parameter is
needed so that the eigenvalues at the singular points of vε are independent.

2. In a prepared family the parameters are almost canonical. This simplifies greatly the
problem of classifying germs of families under analytic equivalence. Indeed, in general,
two prepared families fε(z) and f̃ε̃(z̃) are analytically conjugate under an analytic dif-
feomorphism (ε̃, z̃) = (g(ε), hε(z)) such that f̃g(ε) = hε ◦ fε ◦ h−1ε . Here, we can limit
ourselves to maps g(ε) = (τ−2εk−1, τ

−3εk−2, . . . , τε0) for τ some k-th root of unity. Note
also that the parameters of the family of diffeomorphisms fε are the same as those of
the vector field vε.
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3 Some preliminaries and notations

The vector field wε = Pε(z)
∂
∂z is invariant under

(z, t, εk−1, . . . , ε0) 7→ (cz, c−kt, c2εk−1, . . . , c
k+1ε0).

This suggest the following norm in ε-space:

‖ε‖ := max
(
|εk−1|1/2, . . . , |ε0|1/(k+1)

)
, (3.1)

and the following equivalence relation in ε-space

ε ' ε′ ⇐⇒ ∃c ∈ R+, (ε′k−1, . . . , ε
′
0) = (c2εk−1, . . . , c

k+1ε0). (3.2)

We call
Dρ = {ε; ‖ ε ‖≤ ρ}.

Remark 3.1 We should normally describe the modulus on an open polydisk. We prefer to
work with the closed polydisk Dρ, which allows to use its conic structure under the equivalence
relation (3.2). Whenever we consider Dρ it is implicitly meant that the family is defined for
ε in a larger open polydisk.

We consider the open component Σ0 of Dρ which is the set of ε for which the discrim-
inant ∆(ε) of Pε is nonzero, i.e. the vector field is nondegenerate. It is a union of curves
{(c2εk−1, . . . , ck+1ε0) | c ∈ (0, 1)} for some ε with ‖ε‖ = ρ, which are invariant under the
equivalence relation '.

Notation 3.2 We denote by TC the translation by C:

TC(Z) = Z + C.

4 The construction of Fatou coordinates

From now on we will limit ourselves to a prepared family

fε(z) = z + Pε(z)(1 +Qε(z) + Pε(z)Rε(z)). (4.1)

Let us first discuss the general strategy. In general, there are obstructions to conjugate a
germ of analytic family of the type (4.1) with its normal form. So the idea is to construct the
conjugacies with the normal form on sectorial domains in z-space. These sectorial domains,
there will be 2k of them, should be sufficiently large so that the conjugacies be almost unique.
Then, because of the (almost) uniqueness, their comparison measures the obstruction to an
analytic conjugacy with the normal form on a full neighborhood Dr of the origin in z-space,
and it is an analytic invariant for the system. But we also want the conjugacies to depend
analytically of ε. So we want our sectors in z-space and the conjugacies defined on them to
depend analytically of ε. There are obstructions to do that because the sectors are attached
both to some fixed part of the boundary of Dr and to some fixed points which may rotate
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around each other when the parameters vary. Hence the construction can only be done
analytically in ε for ε in some sectors in parameter space.

The analytic classification of analytic diffeomorphisms (or their unfoldings) is closely
related to the embedding problem which consists in determining when an analytic diffeomor-
phism is embeddable in a flow, i.e. conjugate to the time one map of a vector field. Since
the normal form of fε is the time one map of the 1-dimensional vector field vε, this is the
case when the diffeomorphism or family of diffeomorphisms is conjugate to its normal form.
A standard practice in the field is to change coordinate to a coordinate in which the normal
form is just the translation by 1, which we call T1 (this coordinate is nothing else than the
time of the vector field). Hence a Fatou coordinate is just a diffeomorphism conjugating the
system to T1. But, in practice we will change coordinate for fε also.

4.1 Construction of the sectors in z-space

We want to describe the dynamics of the family fε over a fixed neighborhood Dr of the
origin for all values of the parameters in a polydisk Dρ. The construction of the 2k sectors
for the different values of the parameters in a sectorial domain in parameter space is very
similar to the construction of the squid sectors in [17]: in particular, quantitative versions
of the qualitative constructions described below appear there. We recall the construction for
purpose of completeness. It was only done for values of ε inside Σ0, (i.e. the fixed points
are distinct (regular)) with continuous limit at ε = 0, but it can easily be extended to all
values of the parameters. For ε ∈ Σ0 (resp. ε /∈ Σ0), each sector in z-space is adherent to two
regular fixed points (resp. two regular or singular fixed points non necessarily distinct), i.e.
the closure of the sector contains the fixed points .

The formal normal form of fε is the time one map of the vector field vε. For small z and
ε, this vector field is close to the simpler vector field

wε = Pε(z)
∂

∂z
. (4.2)

The phase portrait of wε has been extensively studied in the literature (see for instance [2]),
and we will be brief with the details. It is organized by its pole at infinity (see Figure 1(a)),
which has order k−1 (hence for k = 1, infinity is a regular point.) The pole has 2k separatrices
which generically land on a singular point. In z-space we choose r sufficiently small so that the
dynamics of f0 be as in Figure 1(b): this comes from the fact that germs of diffeomorphisms
of the form f0(z) = z + zk+1 + o(zk+1) are topologically equivalent to the time one map of
the flow of the vector field zk+1 ∂

∂z (see for instance Theorem 2 of [4]). We then choose ρ
sufficiently small so that all fixed points of fε remain inside Dr, and the dynamics of fε be as
in Figure 1(c)) along the boundary. For that purpose, we will in particular require that

ρ <
rk

2
, (4.3)

a condition that will be assumed throughout the paper. We will allow to further restrict ρ.

To construct normalizing changes of coordinates, it is standard to change coordinate and
to work in the time coordinate of the vector field wε. This change of coordinate is given by

Z = p−1ε (z) =

∫ z

∞

dz

Pε(z)
(4.4)
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(a) Neighborhood of infinity (b) w0 on Dr (c) Near ∂dDr

Figure 1: The phase portrait of wε at infinity and near the boundary of Dr when k = 3.

In particular,

Z = p−1ε (z) =

{∑k+1
j=1

1
P ′ε(zj)

ln(z − zj), zj distinct,

− 1
kzk

, ε = 0.

In the Z-coordinate, the map fε is transformed into a map Fε which is close to T1, the
translation by 1:

Proposition 4.1 The function Fε is a small perturbation of the translation T1 in the C1-
topology. More precisely, there exists K > 0 such that, for r > 0 and ρ > 0 sufficiently small
with ρ satisfying condition (4.3),

|Fε(Z)− Z − 1| < Kr. (4.5)

|F ′ε(Z)− 1| < Krk+1. (4.6)

Proof. This kind of estimate is standard (see for instance [18]). For the sake of completeness
we include the proof. On ∂Dr for small ε, p−1ε is a small perturbation of − 1

kzk
. Hence (4.5)

is satisfied for |z| = r and ε sufficiently small. Since the function (Fε(Z) − Z − 1) ◦ p−1ε is
uniform in Dr and bounded at the fixed points, by the maximum principle (4.5) is satisfied
everywhere for the same values of ε.

Moreover, if we let z = pε(Z), then

F ′ε(Z) = (p−1ε )′(fε(z)) · f ′ε(z) · p′ε(Z) =
Pε(z)

Pε(fε(z))
f ′ε(z).

Note that this function is analytic in (z, ε) since Pε vanishes at the fixed points of fε. Let us

now consider the case ε = 0. Since F ′0(Z) − 1 =
P0(z)f ′0(z)−P0(f0(z))

P0(f0(z))
, P0(f0(z)) = zk+1 + (k +

1)z2k+1+O(z2k+2) and P0(z)f
′
0(z) = zk+1+(k+1)z2k+1+O(z2k+2), then F ′0(Z)−1 = O(zk+1),

yielding |F ′0(Z) − 1| < K
2 r

k+1 for r sufficiently small. The estimate (4.6) will then be valid
for ‖ ε ‖< ρ with ρ sufficiently small. 2

The map pε is a k-sheeted covering of C \ {z1, . . . , zk+1}. The inverse image of CP1 \ Dr
is given by sequences of equidistant holes in the different sheets. Making a turn around one
hole corresponds to making 1/k-th of a turn around ∂Dr. Each outgoing separatrix of infinity
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undergoes a homoclinic connection with an incoming separatrix of infinity when the vector
field wε is transformed into a vector field wε(θ) = eiθwε for some θ to be discussed later. The
distance between the centers of two consecutive holes corresponds to e−iθT , where T ∈ R+

is the travel time along the homoclinic loop of wε(θ) (a pole is reached in finite time). This
distance is also equal to ±

∑
j∈I

2πi
P ′ε(xj)

, where I ⊂ {1, . . . , k + 1} is the set of indices of the

singular points on one side of the homoclinic loop of wε(θ). We will describe these distances
in Section 4.2 after we have described the sectors in ε-space covering Σ0.

To simplify the presentation, it will suffice to construct the modulus for parameter values
inside Σ0, (i.e. the fixed points are distinct). Note that Σ0 = {ε | ∆(ε) 6= 0}, where ∆(ε) is
the discriminant of Pε. Since the construction will be bounded near the points of ∆ = 0, it
will be possible to fill the holes later. The sectors will be bounded by four curves:

(i) a portion S of ∂Dr of opening β ∈
(
π
k ,

3π
2k

)
,

(ii) two “complex time trajectories” of wε starting at the end points of S and ending in two
distinct singular points,

(iii) a “complex time trajectory” of wε joining the two singular points inside Dr.

The curves can be chosen so that any three sectors have a void intersection.

The idea is that the sectors should contain representatives of a large set of orbits of fε
parameterized by C∗. Since the linear maps are the only holomorphic diffeomorphisms of C∗,
this endows the set of orbits of fε over the sector of a conformal structure with a very rigid
coordinate. To ensure that, it is best if the boundary of the sectors are transversal to curves
invariant under fε. The simplest idea is to take for (ii) and (iii) trajectories of the orthogonal
vector field iwε starting on ∂Dr and corresponding to vertical lines in the Z-coordinate. This
was done by Oudkerk in [9]. However, for some values of ε for which iwε is not far from having
a homoclinic loop, there may exist no such trajectories inside Dr. In that case, we replace
each trajectory of iwε by a union of two to three trajectories of eiθwε for some θ ∈ [π4 ,

3π
4 ]

(it could be different θ’s on the different pieces of trajectories.) Figure 2 (resp. Figure 3)
represents such sectors in Z-space (resp. z-space).

When considering limits for ε→ 0, it will suffice to consider such limits along the curves
in parameter space that are invariant under the equivalence relation ' defined in (3.2). In
the limit for ε = 0, the sectors will be given by half planes in Z-space limited by vertical
lines.

In practice, we want that when we consider ε in an invariant curve in parameter space,
then for any compact set in the limit sector at ε = 0, it is included in the corresponding
sector for ε sufficiently small. For this purpose, each complex time trajectory of (ii) will be
given by a finite piece of iwε starting on ∂Dr followed by a trajectory of eiθwε ending in
the singular point, for some θ ∈ [π4 ,

3π
4 ] (it could be different θ’s at the two singular points).

The trajectory in (iii) is a union of trajectories of iwε and of the two eiθwε used in the
neighborhood of the singular points. It is the same θ that is used for all curves approaching
a given singular point. Such sectors are best visualized in Z-space where they are bounded
by vertical segments and segments, lines or half-lines making some angle θ ∈ [π4 ,

3π
4 ] with the

horizontal direction (Figure 2).
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Figure 2: Different pairs of sets in Z-space corresponding to four sectors in z-space for the
same value of ε.

Ψ1

8

Ψ2

8

Ψ1
0

Ψ2
0

z0

z1

z2

1V

2V
+

+

1V −

2V −

(a) A first set of sectors

Ψ1

8

Ψ2

8

Ψ1
0

Ψ2
0

z0

z1

z2

1V2V ++

1V −
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(b) A second set of sectors

Ψ1

8

Ψ2

8

Ψ1
0

Ψ2
0

z0

z1

z2

2V −

1V −

1V +
2V +

(c) Another set of sectors for
the same ε as in (b)

Figure 3: Different types of sets of sectors in z-space. In (b) and (c) their overlapping has
not been drawn.
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Remark 4.2 The construction can be carried also for values of ε /∈ Σ0, for which ∆(ε) = 0.
In that case, for some sectors the singular points of (ii) are identical and there is no trajectory
of type (iii). In practice these sectors correspond to domains conformally equivalent to a half-
plane in Z-space in a leaf where there is no sequence of holes (the distance between holes has
become infinite).

Notation 4.3 The 2k sectors in z-space are called V ±j (or V ±j,ε). The sectors V +
j (resp. V −j )

are centered on regions of ∂Dr where fε exits (resp. enters) Dr.

It remains to discuss how to choose the angles θ. For this, we need to make a digression
in parameter space.

4.2 The sectors in parameter space

We first consider the case where r = ∞. Then, the construction described above can be
done with θ = π/2, except when iwε has a homoclinic trajectory: this occurs when there
exists a nontrivial subset I ⊂ {1, . . . , k + 1} such that

∑
j∈I

i
P ′ε(xj)

∈ iR. The closure of this

set in parameter space contains ∆ = 0. This can also be seen geometrically, since there is
always an attracting and a repelling separatrix of infinity ending at a multiple point. The
complement of the closure of this set in parameter space is a union of C(k) = 1

k+1

(
2k
k

)
connected components W̃`. This comes from the following theorem which should be applied
to iwε after a scaling in z.

Theorem 4.4 In the parameter space of polynomial vector fields of the form Pε(z)
∂
∂z there

exist exactly C(k) = 1
k+1

(
2k
k

)
different connected components of generic vector fields with

simple singular points and no homoclinic loops. These components are simply connected.

Proof. This is easily derived from [2]. There, it is shown that there are exactly C(k) com-
binatorial invariants describing how the separatrices of generic vector fields are attached to
the singular points (see Figure 4). It suffices to show that each such combinatorial invariant
corresponds to a simply connected open set in ε-space. Indeed, each vector field is charac-
terized by its combinatorial invariant plus k analytic invariants bj ∈ C, such that Im bj > 0,
corresponding to the transit time from ∞ to ∞ along the dotted lines in Figure 4(b). These
times are periods that can be calculated using the residue theorem. Each such vector field is
realized on an abstract manifold Mε constructed by sewing adequately k+1 horizontal strips,
the width of which is given by the invariants bj . Hence, the family Mε, for ε in a connected
component, is parameterized by B = {b = (b1, . . . bk) ∈ Hk}. This set is obviously simply
connected. On a given connected component, we have a holomorphic bijection ε 7→ b, yield-
ing that the construction of Mε depends holomorphically on b ∈ B. Hence, any connected
component of generic vector fields in parameter space has the same topology as Hk. 2

Sectors providing a covering of Σ0. The sectors {W` | ` = 1, . . . , C(k)} in parameter
space provide a covering of Σ0. Each sector W` has a vertex at ε = 0, and is an enlargement
of the corresponding W̃`. Let us call Σ1 the subset of Σ0 for which iwε is generic, i.e. has
no homoclinic trajectory. In practice, we will not be able to use the trajectories of iwε
for all values of ε ∈ W̃`. Indeed, it may happen that a separatrix of infinity makes large
spirals disconnecting Dr before landing at a singular point. If that is the case, then we
replace part of corresponding trajectory of iwε by a trajectory of eiθ(ε)wε for some θ(ε) with
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(a) (b)

Figure 4: The graph (tree) formed by the separatrices of infinity ending at the singular points,
together with trajectories joining the singular points. The distances between holes on the
different sheets in Z-space are given by the complex travel times from ∞ to ∞ along the
dotted lines in (b).

θ(ε) ∈ (π4 ,
3π
4 ) depending continuously on ε. This can be done not only for ε ∈ W̃`, but we

can also extend the W̃`’s so that their union covers Σ0. Indeed, the boundaries of W̃` consist
of hypersurfaces where homoclinic connections occur. For each homoclinic connection, we
choose an appropriate angle θ to destroy it. In particular, the sign of θ − π

2 is such that

the respective positions of the separatrices are the same as for W̃` (this is ensured by the

continuity of θ(ε).) Each W̃` contains a codimension k subset for which k homoclinic loops
of wε (not iwε!) appear simultaneously. On this subset, which is the organizing center of W`,
we use trajectories of iwε.

Remark 4.5 The distances of the holes are well defined for ε in some W̃`: these distances
are vectors. They are precisely −i times the complex travel time along the trajectories in
dotted lines of Figure 4(b) for the vector field iwε. There are k such times, one for each sheet
in Z-space. For ε ∈ W`, we extend continuously these distances by considering e−iθ(ε) times
the complex travel time along corresponding trajectories in dotted lines for the vector field
eiθ(ε)wε, where θ(ε) depends continuously on ε.

Note that for ε ∈ W` ∩W`′ and k > 2 we may have distinct sets of distances depending
whether we consider the W` or W`′ point of view.

4.3 Construction of the Fatou coordinates

The construction is performed for ε ∈W`.

Definition 4.6 We call a translation domain the saturation by Fε of any preimage by pε of
a sector in z as described in Section 4.1, provided that the Z-domain is sufficiently wide to
contain a strip, Ĉ(`), bounded by a curve ` going from Im(Z) = −∞ to Im(Z) = +∞ with
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l
F (l)ε

Figure 5: A translation domain.

slope greater than 1 at all points, and its image by Fε (see Figure 5). The curve ` is called
an admissible curve for the translation domain which we will denote by Tε.

The Fatou coordinates are changes of coordinates on the translation domains conjugating
the diffeomorphism Fε to the translation by 1, noted T1.

Theorem 4.7 There exists r > 0 and ρ > 0 sufficiently small with ρ < rk

2 so that for ε ∈ Dρ,
for Tε any translation domain, and Z0(ε) ∈ Tε, then

1. there exists a holomorphic diffeomorphism Φε : Tε → C, such that

Φε ◦ Fε = T1 ◦ Φε, (4.7)

for Z ∈ Tε ∩ F−1ε (Tε). Moreover, limIm(Z)→±∞ Im(Φε(Z)) = ±∞.

2. If Φ1,ε and Φ2,ε are two solutions of (4.7), then there exists A ∈ C such that Φ2,ε(Z) =
TA ◦Φ1,ε(Z). In particular, if Z0(ε) ∈ Tε, there exists a unique holomorphic diffeomor-
phism Φε satisfying (4.7) together with Φε(Z0(ε)) = 0.

3. If Z0(ε) depends analytically on ε with limit Z0(0) at ε = 0, then the unique Fatou
coordinate Φε satisfying Φε(Z0(ε)) = 0 depends analytically on ε ∈ W`. For ε → 0, it
converges to Φ0, uniformly on compact sets in T0.

Proof. The proof is exactly the same as in [7] since it relies only on Proposition 4.1. We put
it here for the sake of completeness. The technique we use is identical to that of Shishikura
[18], as adapted in [7]. It consists in constructing a quasi-conformal conjugacy of Fε to T1,
and then using Ahlfors-Bers theorem to transform it into a conformal conjugacy.

All along the proof we do not mention the ε-dependence. Let ` be an admissible curve
for the translation domain T , and Ĉ(`) the corresponding strip. Let β(t), t ∈ R, be a
parametrization of ` such that Im(β(t)) = t. We define h1 : C0 = {(X,Y ) ∈ R2 | 0 ≤ X ≤
1} → Ĉ(`) by:

h1(X,Y ) = (1−X)(β(Y )) +XFε(β(Y )). (4.8)
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Then
∂h1
∂X = Fε(β(Y ))− β(Y )
∂h1
∂Y = β′(Y ) [1 +X(F ′ε(β(Y ))− 1)] .

(4.9)

Using the estimates (4.5) and (4.6), these formulas imply that

∂h1
∂X
− 1 = u(X,Y ),

∂h1
∂Y
− β′(Y ) = v(X,Y ), with |u| < Kr, |v| ≤ 2Krk+1. (4.10)

Let µh1 = ∂h1
∂Z
/∂h1∂Z be the dilatation coefficient field of h1. One has

∂h1

∂Z
=

1

2
[1 + u+ i(β′(Y ) + v)] and

∂h1
∂Z

=
1

2
[1 + u− i(β′(Y ) + v)]. (4.11)

Note that β(Y ) = γ(Y ) + iY , where γ′(Y ) ∈ [−1, 1]. We have

µh1 =
u+ iv + iγ′(Y )

(2− iγ′(Y )) + u− iv
<

1 +Kr +Krk+1

1−Kr −Krk+1
< 1. (4.12)

when r is sufficiently small, independently of ε such that ‖ ε ‖≤ ρ < rk

2 .

Hence, h1 is a quasi-conformal mapping on the strip C0 and satisfies h−11 (Fε(Z)) =
h−11 (Z) + 1 for Z ∈ `. Moreover, µ = µh1 is a Beltrami field on C0. (One can also write
that µ = h∗1µ0, where µ0 is the standard Beltrami field on C (defined by the function 0).)

We extend µ to a Beltrami field on all of C by means of the translation T1. Indeed, the
extended µ is periodic of period 1, is in L∞(C) and has a L∞-norm: ||µ||∞ = ||µh1 ||∞ < 1.

The universal covering

w = E(W ) = exp(−2πiW ) (4.13)

from C to C∗ induces a holomorphic diffeomorphism from C/T1 to C∗. Since µ is invariant
by T1, the map E induces a Beltrami field µ̃ on C∗ with the same norm: µ = E∗(µ̃).
We can extend µ̃ to a Beltrami field on the Riemann sphere CP1 by letting, for instance,
µ̃(0) = µ̃(∞) = 0.

By Ahlfors-Bers measurable mapping theorem there exists a unique quasi-conformal map-
ping h̃2 : CP1 → CP1 such that h̃∗2µ0 = µ̃, and h̃2(0) = 0, h̃2(∞) = ∞, h̃2(1) = 1. Since
0, 1 ∈ E−1(1), this map lifts to a quasi-conformal map h2 : C → C sending 0 to 0, and 1 to
1. Indeed, one can lift h̃2 into a map h2 such that h2(0) = 0. The circle in CP1 which turns
one time around 0 or ∞ lifts into the line segment [0, 1] in C. This means that h2(1) = 1. We
have also that Im(h2(X + iY ))→ ±∞ when Y → ±∞.

Moreover, h2 commutes with T1. Indeed, the homeomorphism H2 = h2 ◦ T1 ◦ h−12 induces
the identity on CP1 and must then be a power of the deck transformation T1 of the universal
covering map E : i.e. H2 = Tn1 for some n ∈ Z. Now H2(0) = h2 ◦ T1(0) = h2(1) = 1. This
forces n = 1, and then H2 = T1, i.e h2 ◦ T1 = T1 ◦ h2.

We define φ : Ĉ(`)→ C by φ = h2◦h−11 , and extend it by T1 to a mapping φ : C→ C which
is quasi-conformal and preserves the standard conformal structure. Hence, it is conformal.
For Z ∈ `, one has T1 ◦ φ(Z) = φ ◦ Fε(Z). Then φ extends to a map Φ of T into C by
Φ(Z) = φ ◦Fnε (Z)− n where n ∈ Z is such that Fnε (Z) ∈ Ĉ(`). This map Φ is a holomorphic
diffeomorphism which verifies: Φ ◦ Fε = T1 ◦ Φ.
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If Φi,ε, i = 1, 2, satisfy (4.7), let χ1,ε = Φ2,ε ◦ (Φ1,ε)
−1 and χ2,ε = Φ1,ε ◦ (Φ2,ε)

−1. Both
χj,ε satisfy χj,ε(W + 1) = χj,ε(W ) + 1 and this relation allows to extend them to global
diffeomorphisms of C commuting with T1. It follows that Φ2,ε ◦ Φ−11,ε is a translation.

By construction, it is standard that the Fatou coordinate Φε depends analytically on ε,
with uniform convergence to Φ0 on compact sets on T0 when ε→ 0. 2

4.4 Components of the analytic part of the modulus and normalization

Notation 4.8 We denote by T ±j,ε the translation domain containing p−1ε (V ±j,ε). We call Φ±j,ε
the Fatou coordinate on T ±j,ε containing p−1ε (V ±j,ε).

We have 2k strips given by p−1ε (V ±j,ε) inside the translation domains. These strips inter-
sect. For ε ∈ Σ0, each strip intersects one or two of its neighbors along two semi-infinite
strips. All together, this yields 2k semi-infinite strips. Let us call Φ+

j,ε (resp. Φ−j,ε) the Fatou
coordinates corresponding to translation domains on the left (resp. right) of the principal hole
as in Figure 2 (the Fatou coordinate Φ±j,ε is defined on a translation domain T ±j,ε containing

p−1ε (V ±j,ε).)

Comparison of the Fatou coordinates. For this purpose we introduce the maps:{
Ψ0
j,ε = Φ−j,ε ◦ (Φ+

j+1,ε)
−1,

Ψ∞j,ε = Φ−j,ε ◦ (Φ+
j,ε)
−1.

(4.14)

Note that there exists Y0 > 0 such that Ψ0
j,ε (resp. Ψ∞j,ε) is defined in a region Im(Z) < Y0

(resp. Im(Z) > Y0). These maps are almost the analytic part of the modulus, which will
indeed almost be given by a collection of 2k families of analytic maps. But, the maps Ψ0

j,ε

and Ψ∞j,ε are only defined up to composition with left and right translations. So the modulus
will be given by the corresponding quotient. It is useful to work with representatives that
depend nicely of the parameters, and in particular that have a limit when ε → 0 inside a
sector W`. For that purpose, we introduce a normalization.

Lemma 4.9 The transition maps Ψ0,∞
j,ε , j = 1, . . . , k can be expanded as Fourier series with

constant terms A0,∞
j,ε . It is possible to choose the base points of the Fatou coordinates in

Theorem 4.7 so that, for all j, A0
j,ε = −A∞j,ε = πia(ε)

k .

Proof. The proof of this fact is the same as in [11]. 2

This leaves one degree of freedom in the choice of one base point which can be chosen
depending analytically on ε. We use it in the following way: we choose one base point
z0 ∈ V +

1 ⊂ Dr which is a regular point: for instance, z0 = 3r
4 . Let Z0(ε) = p−1ε (z0) ∈ T +

1,ε.

We normalize the first Fatou coordinate so that Φ+
1,ε(Z0(ε)) = 0. Then the only freedom of

choice is the base point z0 ∈ V +
1 : it is now independent on ε.

Definition 4.10 A set of Fatou coordinate is called a normalized set of Fatou coordinates
if for all j, the constant terms A0,∞

j,ε of Ψ0,∞
j,ε satisfy A0

j,ε = −A∞j,ε = πia(ε)
k . If, furthermore,

there exists z0 ∈ Dr which, for all ε ∈ Dρ, is a regular point of fε inside V +
1,ε, and such that

Φ+
1,ε(p

−1
ε (z0)) = 0, then the set of Fatou coordinates is said to be strongly normalized.
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5 The theorem of analytic classification

Notation 5.1 For each sectorial domain W` in Σ0, we denote by Ψ0,∞
j,ε,` the elements of the

corresponding analytic part of the modulus.

Theorem 5.2 Two germs of generic prepared families fε and f̃ε̃ unfolding a germ of diffeo-
morphism with a parabolic point of codimension k are analytically conjugate if and only if
they have the same normalized modulus, i.e. there exists m ∈ Zk such that

• for all j = 0, . . . k − 1, ε̃j = exp(−2πim(j − 1)/k)εj, and a(ε) = ã(ε̃);

• for each each sectorial domain W` in Σ0, there exists C`(ε) depending analytically on
ε ∈W`, with C`(0) independent of `, such that for j = 1, . . . , k

Ψ0,∞
j,ε,` = T−C`(ε) ◦ Ψ̃0,∞

j+m,ε,` ◦ TC`(ε).

In particular, a germ of generic prepared family fε unfolding a germ of diffeomorphism with
a parabolic point of codimension k is analytically equivalent to its normal form if and only if,
for all j = 1, . . . , k and all ε ∈ Σ0, Ψ0

j,ε = Tπia(ε)
k

, Ψ∞j,ε = T−πia(ε)
k

.

Proof. Suppose that the two prepared families fε and f̃ε̃ are analytically conjugate. The
first condition (formal part) follows from Theorem 2.2. The canonical parameters are either
the same, or such that ε̃j = exp(−2πim(j − 1)/k)εj for some fixed m, and we can of course
take ρ sufficiently small so the moduli of fε and f̃ε̃ be defined for ε ∈ Dρ. Let hε be a
conjugacy between fε and f̃ε̃, such that hε ◦ fε = f̃ε̃ ◦ hε. Then Hε = pε̃ ◦ hε ◦ p−1ε is a
conjugacy between Fε and F̃ε̃, yielding that Φ0,∞

j,ε ◦ H−1ε is a Fatou coordinate for f̃ε̃ such

that Φ0,∞
j,ε ◦H−1ε (p−1ε (z0)) = 0. The result follows by (almost) uniqueness properties of Fatou

coordinates.

Conversely, consider two families with same normalized moduli. We can always conjugate
the second family with a rotation and suppose that the two families have the same canonical
parameter ε. Then, for ε ∈W`, a conjugacy between the two families is given by

hε,` = pε ◦ [(Φ̃±j,ε,`)
−1 ◦ TC`(ε) ◦ Φ±j,ε,`] ◦ p

−1
ε , z ∈ V ±j,ε,`.

It is well defined because the two families have the same modulus, and it depends analytically
on ε ∈ W`. We first show that in the generic case where the modulus is non trivial (i.e. at
least one component Ψ0,∞

j,ε is not affine) the hε,` are independent of `, and hence glue in a
uniform hε on Σ0. Since, by construction, hε is bounded near {∆(ε) = 0}, it can be extended
to Dρ. We then show how to treat the non generic case.

So, let us try to show that hε,` and hε,`′ coincide for ε ∈W` ∩W`′ and see what condition
is necessary for this. We have that gε = (hε,`′)

−1 ◦ hε,` is a symmetry of the first family:
it commutes with fε. The families of diffeomorphisms commuting with fε are determined

exactly as in the case ε = 0, and the result is the same: they are given by powers f
α(ε)
ε of fε,

where

• α(ε) ∈ C, if all Ψ0,∞
j,ε are translations;
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• α(ε) ∈ Z, when the only translations Tb which commute with all Ψ0,∞
j,ε are the transla-

tions with b ∈ Z;

• α(ε) ∈ 1
nZ, when the only translations Tb which commute with all Ψ0,∞

j,ε are the trans-

lations with b ∈ 1
nZ for some n ∈ N∗.

(Full details for the argument in the case k = 1 can be found in [14].) In the two last cases
the symmetries are discrete, yielding that α(ε) is constant. Since C`(0) is independent of `
and all Ψ0,∞

j,ε,` have the same limit Ψ0,∞
j,0 independent of `, then g0 = id, yielding that α(ε) ≡ 0.

In the non generic case of a trivial modulus, i.e. when all Ψ0,∞
j,ε,` are translations, then the

modulus is invariant under conjugacy with a translation. So we can of course suppose that the
modulus of fε and f̃ε̃ are strongly normalized. Also, because the components of the modulus
are translations we can obviously take C`(ε) ≡ 0, which implies that hε,`(z0) = hε,`′(z0) = z̃0
for all `, i.e. gε(z0) = z0. Then, necessarily α(ε) ≡ 0. 2

6 Geometric interpretation and parametric resurgence phe-
nomenon

The codimension 1 case is very different from the codimension k case, where k > 1. Indeed, in
the codimension 1 case, the analytic part of the modulus contains two functions, Ψ0

ε and Ψ∞ε ,
and there are two fixed points. The generic case is the case where the two fixed points have
multipliers with norm different from 1 and hence are linearizable, yielding that the system
can be brought to the normal form in the neighborhood of each fixed point. In that case, the
nontriviality of the modulus (i.e. at least one of Ψ0

ε or Ψ∞ε is not a translation) expresses the
fact that the two normalizing changes of coordinates do not match. Note that the domains
of Ψ0

ε or Ψ∞ε correspond to sectors in z-space attached to exactly one fixed point (see for
instance [8] and [3]). So Ψ0

ε is attached to one fixed point, and Ψ∞ε to the other. When
the norm of the multiplier at one fixed point is equal to 1, then the linearizability or non
linearizability of the fixed point can be determined from the Ψ0

ε or Ψ∞ε which is attached to
it. The parametric resurgence phenomenon is the phenomenon where the nonlinearizability
of a fixed point for sequences of resonant values of ε (i.e. values of ε such that the multiplier
at one fixed point is a root of unity) converging to the origin can be decided directly from
Ψ0

0 or Ψ∞0 . We will explain it in more generality below.

When k > 1, then k + 1 6= 2k, and we lose the fact that exactly one component Ψ0
j,ε or

Ψ∞j,ε of the modulus is attached to each fixed point. So the 2k components of the modulus
should rather be considered as attached to the 2k sectors on the boundary, when we normalize
the diffeomorphism from the boundary of ∂Dr. What remains is that the Ψ0

j,ε and Ψ∞j,ε are
attached to the fixed points in a surjective way. Moreover, all components attached to a fixed
point are of the same type, either all Ψ0

j,ε, or all Ψ∞j,ε.

In Section 4.4 we have discussed the fact that the strips given by p−1ε (V ±j,ε) intersect along
half strip(s). But in Figure 3 we also see some intersection parts that go from one fixed point
to another. These are given by the projections of infinite strips in Z-space. These infinite
strips are only obtained when one considers the periodicity in Z-space. The k different periods
are given by the k different distances between holes. Then, an infinite strip is obtained by
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intersection of one strip with the translation by a period of a second strip. On an infinite
strip, the comparison of two Fatou coordinates is just a translation TL(ε)(W ) = W + L(ε),
called a Lavaurs translation, with L(ε)→∞ when ε→ 0. This comes from the fact that the
comparison is a diffeomorphism commuting with T1 on an infinite strip from Im(W ) = −∞
to Im(W ) =∞.

Now, to describe the dynamics near a fixed point, we use the renormalized return map:
this map is defined on the orbit space, or its covering space, namely the Z-variable. It is
the composition of the transition maps encountered when making one turn in the positive
direction around the fixed point. These transition maps are the Ψ0

j,ε or the Ψ∞j,ε attached to
the fixed point, alternating with as many Lavaurs translations.

It is easier to visualize the renormalized return maps when changing to the coordinate

w = exp(−2πiZ).

The maps Ψ0,∞
j,ε expressed in this coordinate will be denoted ψ0,∞

j,ε . The Lavaurs translations
become Lavaurs linear maps Lc(ε)(w) = c(ε)w. Then the renormalized return map has a fixed
point at 0 (resp. ∞) when built with ψ0

j,ε (resp. ψ∞j,ε) and Lavaurs linear maps.
Typically a renormalized return in w-coordinate is of one of the forms

Lcs(ε) ◦ ψ0
js,ε
◦ · · · ◦ Lc1(ε) ◦ ψ0

j1,ε
,

Lcs(ε) ◦ ψ∞js,ε ◦ · · · ◦ Lc1(ε) ◦ ψ
∞
j1,ε
,

ψ0
js,ε
◦ Lcs(ε) ◦ . . . , ◦ψ0

j1,ε
◦ Lc1(ε),

ψ∞js,ε ◦ Lcs(ε) ◦ . . . , ◦ψ
∞
j1,ε
◦ Lc1(ε).

If λ = exp(µ) is the multiplier of fε at one fixed point, then the multiplier at the fixed

point of the renormalized return map in w coordinate is simply λ′ = exp
(
4π2

µ

)
.

The parametric resurgence phenomenon occurs when λ′ is resonant: λ′ = exp
(

2πipq

)
.

Note that this can occur along sequences {εn} of parameter values converging to 0, corre-
sponding for instance to µn = −2πi q

p+nq , which are located inside an open sector W`, and for
which the constant c(εn) in the Lavaurs linear maps have a limit c(0) when n → ∞. Then,
on such a sequence {εn} of parameter values, the coefficients of the normal form converge to
the coefficients of the normal form of

Lcs(0) ◦ ψ0
js,0
◦ · · · ◦ Lc1(0) ◦ ψ0

j1,0
,

Lcs(0) ◦ ψ∞js,0 ◦ · · · ◦ Lc1(0) ◦ ψ
∞
j1,0

,

ψ0
js,0
◦ Lcs(0) ◦ . . . , ◦ψ0

j1,0
◦ Lc1(0),

ψ∞js,0 ◦ Lcs(0) ◦ . . . , ◦ψ
∞
j1,0
◦ Lc1(0).

This implies that if one of these maps is nonlinearizable of order m (because of the non
vanishing of the m-th nonlinear term in the normal form) then, for n sufficiently large, the
corresponding renormalized map is nonlinearizable of order m′(εn) ≤ m. As a general rule,
the parametric resurgence phenomenon concerns cases where the only way that there be some
incompatibility between the different sectorial normal forms on the different V ±j,ε is that the
fixed points themselves be non linearizable.

Applications in conformal geometry in the case k = 1 appear in [15] and [16].
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