
Divergent series
past, present, future. . .

Christiane Rousseau
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How many students and mathematicians have
never heard of divergent series?
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Preamble: My presentation of the subject and of
some of its history is not exhaustive. Moreover,
it is biased by my interest in dynamical systems.
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Divergent series have been used a lot in the past
by people including Fourier, Stieltjes, Euler, . . .

Euler:

“If we get the sum

1−1+1−1+1−1+ · · ·

its only reasonable value is
1
2 .”
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A hundred years before Riemann, Euler had found the
functional equation of the function ζ in the form

1s−1 −2s−1 +3s−1 − · · ·
1
1s −

1
2s +

1
3s − · · ·

=−
(s−1)!(2s −1)
(2s−1 −1)πs cos

1
2

sπ

by “calculating”, for s ∈ N∪ {1/2,3/2}, the sums

1s −2s +3s −4s +5s −6s + · · ·
and

1
1s −

1
2s +

1
3s −

1
4s +

1
5s −

1
6s + · · ·
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Where is the turn?
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Cauchy, Abel
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Cauchy, Preface of “Analyse mathématique”, 1821

“I have been forced to admit some propositions which
will seem, perhaps, hard to accept. For instance, that
a divergent series has no sum.”

Cauchy made one exception: he justified
rigorously the use of Stirling’s divergent series in
numerical computations.
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Niels Henrik Abel, letter to Holmboe (1826)

“Divergent series are, in general, something terrible,
and it is a shame to base any proof on them.

We can
prove anything by using them and they have caused
so much misery and created so many paradoxes. . . ”
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Poincaré, second volume of the New Methods of
Celestial Mechanics (1893)

“There is a kind of misunderstanding between the geometers
and the astronomers, concerning the meaning of the word
convergence.

The geometers, concerned with absolute rigor
and not bothered by the length of the inextricable computations
that they conceive to be possible without trying to undertake
them explicitly, would say that a series is convergent when the
sum of the terms tends to a definite limit, even if the first terms
decrease very slowly. On the contrary, the astronomers use to
say that a series converges when, for instance, the first 20 terms
decrease very rapidly, even if the remaining terms would grow
forever.
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Thus, let us take a simple example and consider the two series
which have as general term

1000n

n!
and

n!
1000n .

The geometers will say that the first series converges, and even
that it converges fast . . . ; and they will say that the second
series diverges. . .
On the contrary, the astronomers will consider the first series as
divergent, . . . , and the second series as convergent.

The two rules are legitimate: the first one in the
theoretical researches; the second one in the
numerical applications . . . ”
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Divergent series for solving real problems

Émile Borel: a technique for assigning a sum to
a series should be adapted to solve a
mathematical problem.

For instance if a power series is a solution of a
differential equation, then its sum should be a
function which is a solution of this differential
equation.
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Euler’s differential equation

x2y ′+y−x = 0
This equation has the formal solution

f̂ (x) =
∞∑

n=0

anxn+1

where {
a0 = 1
an =−nan−1

Hence,

f̂ (x) =
∞∑

n=0

(−1)nn! xn+1
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Borel’s vision

A convergent series
∞∑

n=0

anxn+1

has a disk of convergence B(0,r). There exists at least one
singularity on the boundary of the disk of convergence
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We can extend the function by turning around the singularities.
Generically this extension is ramified.

log(1−x)+ log(i−x)+ log
(

e
5πi

4 −x
)
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In Borel’s mind, a divergent series is a convergent series
on a disk of radius r = 0. If there are only a finite number
of singularities on the boundary of the “disk”, i.e. in a
finite number of directions, then we can extend the
function around these, and we get a function defined on
sectors.
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Where are hidden these singularities?

To find them we “blow-up”
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Basic rules for a summation method

I If
∑∞

n=0 an is convergent, then the method
should provide the usual sum.

I If S =
∑∞

n=0 an, then

S− a0 =

∞∑
n=1

an

I If S =
∑∞

n=0 an and S ′ =
∑∞

n=0 bn, then

S+ cS ′ =
∞∑

n=0

(an + cbn)
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I If S =
∑∞

n=0 an and S ′ =
∑∞

n=0 bn are
absolutely summable, then the product
series is absolutely summable

S ·S ′ =
∞∑

n=0

∑
j+k=n

ajbk
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Borel summation method of divergent power series

Let us take a convergent series
∑∞

n=0 anxn+1

∞∑
n=0

anxn+1 =

∞∑
n=0

n!
anxn+1

n!

=

∞∑
n=0

(∫∞
0

yne−ydy
)

︸ ︷︷ ︸
n!

anxn+1

n!

=

∫∞
0

e−y
∞∑

n=0

an(xy)n

n!
xdy︸︷︷︸
dζ

ζ= xy

=

∫∞
0

e−
ζ
x

∞∑
n=0

anζ
n

n!
dζ
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The Borel sum of a series

This suggests defining∫∞
0

e−
ζ
x

∞∑
n=0

anζ
n

n!
dζ

as the sum of the series
∑∞

n=0 anxn+1, whenever
this expression makes sense.
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Summability on the direction d

The power series
∑∞

n=0 anxn+1 is Borel-summable in the
direction d if

I ∞∑
n=0

anζ
n

n!
dζ

is convergent in a disk B(0,r),
I the sum of this series can be extended along the

half-line d and its growth is at most exponential at
infinity.

Then the sum of the series is given by∞∑
0

anxn+1 =

∫
d

e−
ζ
x

∞∑
n=0

anζ
n

n!
dζ
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Borel summability

The power series
∑∞

n=0 anxn+1 is Borel-summable
if it is Borel-summable in the direction d for all
directions d, but a finite number.
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The modern presentation of this process

Three steps:
I We “blow-up”to send the hidden

singularities at the singular point to a finite
distance: this is done by the Borel transform.

I We extend along half-lines avoiding the
singularities.

I We compute the sum in applying the Laplace
transform.
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Borel transform

f̂ (x) =
∞∑

n=0

anxn+1 7→ B(f̂ )(ζ) =
∞∑

n=0

an

n!
ζn
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Extending along half-lines avoiding the singularities
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Laplace transform

B(f̂ )(ζ) 7→ L
(
B(f̂ )

)
(x) =

∫
d

e−
ζ
x B(f̂ )(ζ)dζ
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Coming back to Euler’s equation x2y ′+y−x = 0

The formal solution is f̂ (x) =
∑∞

n=0(−1)nn! xn+1. Hence

B(f̂ )(ζ) =
∞∑

n=0

(−1)nζn =
1

1+ζ

and

L
(
B(f̂ )

)
(x) =

∫
d

e−
ζ
x

1+ζ
dζ

which is a solution of
the differential equation
on the domain
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Comparison with the solution obtained by variation of
the constant

The solutions of the linear system are given by

f (x) = e
1
x

(∫x

0

1
ξ

e−
1
ξ dξ+C

)
For x> 0, the solution which is asymptotic to 0

corresponds to C = 0.

The change of variable 1
x −

1
ξ =−ζ

x provides the solution
given by Borel’s summation method

f (x) =
∫∞

0

e−
ζ
x

1+ζ
dζ
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A summation method is useful if we have a theorem

An example of such a theorem

Theorem (Borel) If
I P is a multivariate polynomial and,
I y = f̂ (x) is a formal solution of the differential

equation

P(x,y,y ′, . . . ,y(n)) = 0 (∗)

I and if f̂ (x) is absolutely Borel-summable with sum
f (x),

then the function y = f (x) is solution of the differential
equation (*).
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Approximation of the function by a partial sum

Let us show that, if we approximate the solution

f (x) =
∫∞

0

e−
ζ
x

1+ζ
dζ

by a partial sum

Sn(x) =
n∑

k=0

(−1)kk! xk+1

then, for x> 0, the error is smaller than the first neglected
term

|f (x)−Sn(x)|≤ (n+1)! xn+2
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Details

Sn(x) =
n∑

k=0

(−1)kk! xk+1

=

n∑
k=0

(−1)kxk+1
∫∞

0
e−yyk dy

=

∫∞
0

n∑
k=0

(−1)kxk+1e−yyk dy y =
ζ

x

=

∫∞
0

n∑
k=0

(−1)ke−
ζ
x ζk dζ

50 Divergent series, JMM 2015



Details

Then

|f (x)−Sn(x)|≤
∫∞

0
e−

ζ
x

∣∣∣∣∣ 1
1+ζ

−

n∑
k=0

(−1)kζk

∣∣∣∣∣︸ ︷︷ ︸∣∣∣∣ (−1)n+1ζn+1
1+ζ

∣∣∣∣
dζ
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Details (end)

|f (x)−Sn(x)|≤
∫∞

0
e−

ζ
x

∣∣∣∣(−1)n+1ζn+1

1+ζ

∣∣∣∣dζ
≤
∫∞

0
e−

ζ
x ζn+1dζ ζ= xy

=

∫∞
0

e−yxn+2yn+1 dy

= (n+1)! xn+2

52 Divergent series, JMM 2015



Quality of the approximation

We must choose n so that (n+1)! xn+2 be the smallest
possible, namely n+1 ∼ 1

x

What is the size of the rest?

Of the order of

(n+1)! xn+2 ∼ (n+1)
(√

2π e−(n+1)(n+1)n+ 1
2

) 1
(n+1)n+2

∼
√

2π
√

x e−
1
x

The approximation is exponentially precise!
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Quality of the approximation

This example is far from an exception. Poincaré would
have said that this series is “convergent for the
astronomers”:

“On the contrary, the astronomers use to say that a
series converges when, for instance, the first 20
terms decrease very rapidly, even if the remaining
terms would grow forever.”
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Coming back to Abel’s citation

“Divergent series are, in general, something terrible and it is a shame to base
any proof on them. We can prove anything by using them and they have
caused so much misery and created so many paradoxes

. . .

For the most part, it is true that the results are correct, which is
very strange. I am working to find out why, a very interesting
problem.”

The present
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Abel’s citation

“Divergent series are, in general, something terrible and it is a shame to base
any proof on them. We can prove anything by using them and they have
caused so much misery and created so many paradoxes. . .

Finally my eyes were suddenly opened since, with the
exception of the simplest cases, for instance the geometric
series, we hardly find, in mathematics, any infinite series
whose sum may be determined in a rigorous fashion,

which means the most essential part
of mathematics has no foundation.

For the most part, it is true that the results are correct, which is very
strange. I am working to find out why, a very interesting problem.”
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The future

What does Abel mean when he says that
divergent series appear in the most essential part
of mathematics?
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There are indeed in mathematics many
situations where divergence is the rule and
convergence the exception.

Why?
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The center manifold of a saddle node

The center manifold of a saddle-node of a 2-dimensional
analytic vector field is almost never analytic.

ẋ = x2

ẏ =−y+x

The center manifold is given by Euler’s equation

x2y ′+y−x = 0
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To understand we complexify x,y ∈ C

ẋ = x2

ẏ =−y+x
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Why is the center manifold generically ramified at a
saddle-node?

Because there is a hidden singularity in one
direction. . .

To understand we unfold

ẋ = x2 −ε

ẏ =−y+x
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Indeed, the saddle has an analytic invariant manifold. At
the limit the node becomes the hidden singularity.
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But why should we have ramification at the node
generically?

Normal form at a node if 2
√
ε /∈−1/N

ẋ =−2
√
εx

ẏ =−y

All solutions are of the form

y = Cx−
1

2
√
ε . They are all ram-

ified except the one for C = 0
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Non resonant case

The generic situation is that
the analytic invariant mani-
folds of the saddle and the
node do not match.
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This is necessarily the case for small εwhen unfolding
a saddle-node with non analytic center manifold.
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Case of a resonant node

Normal form at a node if 2
√
ε ∈−1/N

ẋ =−
1
n

x

ẏ =−y+ axn

The solutions are the
form

y = Cxn − axn logx.

They are all ramified if
a 6= 0, and none is ram-
ified if a = 0.

79 Divergent series, JMM 2015



Parametric resurgence phenomenon in the resonant
case

When unfolding a saddle-
node with non analytic cen-
ter manifold then, for small
ε, the node is necessarily
non linearizable when reso-
nant.
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Conclusion

We have understood why
divergence is the rule, and
convergence, the exception.

The phenomenon described above is quite
generic and geometric explanations in this spirit
are valid in many examples.
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In dynamical systems

I Borel-summability (also called 1-summability) occurs
when 2 special objects (singular points, limit cycles,
etc.) coallesce.

I k-summability or multisummability occurs when k+1
special objects coallesce.

I Divergence could occur through small divisors: an
explanation was proposed by Yoccoz and further
studied by Perez-Marco.
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An example studied with Colin Christopher
The saddle point in

ẋ = x(1−x+y)
ẏ = y(−λ+x+dy)

is linearizable for all values of d, except when λ= 1+ 1
n , in which case

it is integrable only for the values of d given by the dots.
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The end
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