
What can we learn
from singularities?
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Structure of the talk

We will illustrate the ideas through examples:
I Dynamical systems as models
I The Hopf bifurcation
I The Lorenz system
I Normal form of an ODE at a singular point
I The center manifold of a 2-dimensional

saddle-node
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Dynamical systems as models

A dynamical system is a system depending on time.

Typical examples:

I A difference equation

xn+1 = f (xn)

An equilibrium is a fixed point f (x0) = x0.
I An autonomous ordinary differential equation

Ẋ = v(X)

A singular point is a point X0 such that v(X0) = 0.
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Dynamical systems as models

More typical examples:

I A linear differential system

Ẏ = A(t)Y

A singularity is a point t0 where A(t0) has a pole.

I One fruitful approach in the study of PDEs is to look
at them as dynamical systems over spaces of infinite
dimensions.
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Dynamical systems naturally depend on parameters

A singular value of the parameters, called bifurcation
value, is a value where a qualitative change occurs in the
system.

Example: the loss of stability of an equilibrium through
the Hopf bifurcation

ẋ = εx−y−x(x2 +y2)

ẏ = x+εy−y(x2 +y2)

ṙ = εr− r3

θ̇= 1

(a) ε < 0 (b) ε= 0 (c) ε > 0
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ẋ = εx−y−x(x2 +y2)
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What do we learn from that?

ẋ = εx−y+x(x2 +y2)

ẏ = x+εy+y(x2 +y2)

ṙ = εr+ r3

θ̇= 1

(a) ε < 0 (b) ε= 0 (c) ε > 0

I The danger on relying on linear analysis

I Looking at what happens at the singular point for
ε= 0 gives us a hand on the periodic orbit and on the
global behavior. The value ε= 0 is an organizing center.
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ṙ = εr+ r3

θ̇= 1

(a) ε < 0 (b) ε= 0 (c) ε > 0

I The danger on relying on linear analysis
I Looking at what happens at the singular point for
ε= 0 gives us a hand on the periodic orbit and on the
global behavior. The value ε= 0 is an organizing center.

11 The Hopf bifurcation SMS, July 2017



The Hopf bifurcation of order 2

ẋ = ε1x−y−ε2x(x2 +y2)−x(x2 +y2)2

ẏ = x+ε1y−ε2y(x2 +y2)−y(x2 +y2)2

ṙ = ε1r−ε2r3 − r5

θ̇= 1
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The bifurcation diagram

2

1

0

D

(d) 0 (e) 1 (f) 2 (g) D
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The Hopf bifurcation of order 2 is an organizing center
of the bifurcation diagram

2

1

0

D

(h) 0 (i) 1 (j) 2 (k) D

This is a very general principle: The bifurcations of
highest order organize the bifurcation diagram.
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The Lorenz system

Edward Lorenz was a meteorologist. In his 1963
paper, he introduced the Lorenz system, a
chaotic system, and the “butterfly effect” in
meteorology.

Lorenz system:

ẋ = 10(y−x)
ẏ = ρx−y−xz

ż =−
8
3

z+xy
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The Lorenz system: regular behaviour

(a) ρ= 4

(b) ρ= 8
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The Lorenz system: homoclinic bifurcation

(a) ρ= 13.9

(b) ρ= 14.5
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The Lorenz system: approaching the Hopf bifurcation

(a) ρ= 18

(b) ρ= 22
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The Lorenz attractor

(a) ρ= 28

(b) The stable manifold of the origin
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The Lorenz attractor

(a) ρ= 28 (b) The stable manifold of the origin
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The stable manifold of the origin

(a) Crocheted stable manifold
by B. Krauskopf and H. Osinga

(b) Steel stable manifold by Ben-
jamin Storch
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From now on we limit ourselves to analytic
dynamical systems.
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Can we linearize an ODE in the neighborhood of a
singularity?

Ẋ = AX+ fr(X)+O(|X|r+1)

We look for a change of coordinate X = Y+hr(Y) allowing
to get rid of terms of degree r. On the one hand we have

Ẋ = A(Y+hr(Y))+ fr(Y+hr(Y))+O((Y+hr(Y))r+1)

= AY+Ahr(Y)+ fr(Y)+O(|Y|r+1).

On the other hand we have

Ẋ = (id+Dhr)Ẏ = (id+Dhr)(AY+O(Yr+1))

= AY+DhrAY+O(Yr+1).
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This yields to the homological equation

LA(hr) := Dhr A−Ahr = fr
The operator LA is linear where LA : Hr→Hr is

defined on the finite dimensional vector space
Hr of homogeneous vectors of degree r.

Hence it is surjective iff it is injective.

Otherwise, we can only get rid of the terms that
belong to Im(LA)⊂Hr.
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The particular case where A is diagonalizable

The monomials Xmej = xm1
1 . . .xmn

n ej are
eigenvectors of LA corresponding to the
eigenvalue

(m,λ)−λj = m1λ1 + · · ·+mnλn −λj

Hence we can get rid of all monomials except
the resonant monomials Xmej for which

(m,λ) = λj
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Example: the planar saddle node with eigenvalues 0
and 1

The formal normal form is

ẋ =
∑

j≥k+1

ajxj

ẏ = y+y
∑
j≥1

bjxj
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We can do better

If we consider the orbital formal normal form, we can
divide by a nonzero function and scale x so as to get

ẋ = xk+1 +
∑

j>k+1

bjxj

ẏ =±y

We can do even better. We can bring to the form

ẋ = xk+1(1+Bxk)

ẏ =±y
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Proof
In the system

ẋ = xk+1 +
∑

j>k+1

bjxj, ẏ =±y

we consider a change x = X+ cX`, `≥ 2 so as to get rid of the term
bk+`xk+`.

On the one hand

ẋ = (X+ cX`)k+1 +
∑

j>k+1

bj(X+ cX`)j

which we compare to

ẋ = (1+ c`X`−1)

Xk+1 +
∑

j 6=k+`

b ′j (X+ cX`)j


Comparison of terms of order k+ ` yield

(k+1)c+ bk+`+ · · ·= c`+ . . .

which we can solve if ` 6= k+1.
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Another choice of formal normal form

We can also transform to

ẋ = xk+1(1+
∑
j>0

Bxjk)

ẏ =±y

which is orbitally equivalent for A =−B to

ẋ = xk+1

ẏ =±y(1+Axk)
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Formal normal form at a saddle-node

ẋ = xk+1

ẏ = y+Axky

I We cannot do better: what is the meaning of A?
I Generically the change to normal form diverges:

Why?
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Answers to the divergence

1. We need to extend x,y to be in C.
2. The saddle-node is a multiple singular point. Hence it

is natural to unfold. In the unfolding there are rigid
models near each of the two singular points.

Generically these models mismatch till the
merging of the singular points, yielding
divergence at the limit.
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One example of mismatch

Consider a saddle-node with normal form ẋ = x2, ẏ = y(1+Ax)

(c) ε= 0

ee-

(d) ε 6= 0

Generically a saddle-node has no analytic center manifold
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The parametric resurgence phenomenon

Conclusion 1: When we unfold a system with no analytic center
manifold, then the analytic separatrices of the two singular
points do not match.

(e) ε= 0

ee-

(f) ε 6= 0

Conclusion 2: When we unfold a system with no analytic center
manifold then the node is non linearizable as soon as
resonant.
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The node is a very simple point!

We have convergence to
the orbital normal form{

ẋ = λx
ẏ = y

as soon as λ /∈ 1/N.

The leaves are given by y = Cx1/λ .

Only y = 0 is non ramified.
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The generic situation

The leaves are given by
y = Cx1/λ. Only y = 0 is
non ramified.

Hence the generic situation is that the stable
manifold of the saddle does not coincide with
the non ramified leaf.
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Explanation of Conclusion 2

If the node is resonant then the local model at the node is the normal

form
ẋ = x

n
ẏ = y+Axn.

If A = 0, then all solution curves at the node (except x = 0 ) are
analytic of the form y = Cxn.

This case is obviously impossible when unfolding a system with

ramification for ε= 0 and we are forced to have A 6= 0, yielding that

all solutions (except x = 0) are of the form

y = nAxn lnx+Cxn
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The center-Manifold of a saddle-node

We have understood why
divergence is the norm and
convergence is the exception.

This is just one example of the
many mismatches that occur
within analytic dynamical
systems.
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Abel: letter to Holmboe, January 15 1826.

Divergent series are, in general, something terrible and it
is a shame to base any proof on them.

We can prove
anything by using them and they have caused so much
misery and created so many paradoxes. . . . . Finally my
eyes were suddenly opened since, with the exception of
the simplest cases, for instance the geometric series, we
hardly find, in mathematics, any infinite series whose
sum may be determined in a rigorous fashion,which
means the most essential part of mathematics has
no foundation. For the most part, it is true that the
results are correct, which is very strange. I am working to
find out why, a very interesting problem.
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