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The equivalence problem in analytic dynamics

When are two germs of analytic
dynamical systems equivalent
equivalent in the neighborhood
of a singularity under an analytic
change of coordinates?
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One way of solving the equivalence problem

The use of normal forms
For instance, if there exists an analytic change of
coordinates to a linear system.
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Two steps

I look for a formal change of coordinates to
normal form

I study convergence of normalizing change of
coordinates.

Very often, the change of coordinates to normal
form diverges.

Why?
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Examples where the change to normal form diverges

In all these examples the change of coordinate to normal
form is 1-summable

I Example 1. A germ of analytic diffeomorphism
f : (C,0)→ (C,0) such that

f (z) = z+ z2 +(1− a)z3 + o(z3)

z
f(z)

Normal form: the time-
one map of the vector
field

ż =
z2

1+ az
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Resonant diffeomorphism

I Example 2. A germ of analytic diffeomorphism
f : (C,0)→ (C,0) such that

f (z) = exp
(

2πip
q

)
z+ zq+1 +Az2q+1 + o(z2q+1)

zF(z)

F  (z)2

F  (z)3
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Saddle-node

I Example 3. A germ of saddle-node of a planar vector
field

x

y

Normal form {
ẋ = x2

ẏ = y(1+ ax)
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Weak focus

I Example 4. A Hopf bifurcation

(a) ε < 0 (b) ε= 0 (c) ε > 0

Orbital normal form

ż = z(i+ε)− z2z+ az3z2

which can be rewritten{
ṙ = εr− r3 + ar5

θ̇= 1
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Resonant saddle

I Example 5. A germ of resonant saddle of a planar
vector field of order 1 with quotient of eigenvalues −p

q

Orbital normal form{
ẋ = x
ẏ = y(−p

q +xpyq + ax2py2q)
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Curvilinear angle

I Example 6. A germ of curvilinear angle

When are two germs of curvilinear angles
conformally equivalent?

We will consider the case where the angle is of the form
2πp

q , which we call a rational angle.
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Linear differential system

I Example 7. A nonresonant irregular singular
point of Poincaré rank 1 of a linear
differential system

x2 dy
dx

= A(x)y, y ∈ Cn

Normal form

x2 dy
dx

= (D0 +D1x)y

with D0,D1 diagonal
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The common features

I The coallescence of two “objects”, which come with
their local model.

I To understand why we have divergence, we unfold
Two objects: codimension 1 will lead to
1-summability in the limit.

I In the unfolding, generically the divergence can be
seen as the limit of the gluing of the two local models
which are rigid. Hence, divergence is the rule and
convergence is exceptional.

13 The common features SMS 2, July 2017



The common features

I The coallescence of two “objects”, which come with
their local model.

I To understand why we have divergence, we unfold

Two objects: codimension 1 will lead to
1-summability in the limit.

I In the unfolding, generically the divergence can be
seen as the limit of the gluing of the two local models
which are rigid. Hence, divergence is the rule and
convergence is exceptional.

14 The common features SMS 2, July 2017



The common features

I The coallescence of two “objects”, which come with
their local model.

I To understand why we have divergence, we unfold
Two objects: codimension 1

will lead to
1-summability in the limit.

I In the unfolding, generically the divergence can be
seen as the limit of the gluing of the two local models
which are rigid. Hence, divergence is the rule and
convergence is exceptional.

15 The common features SMS 2, July 2017



The common features

I The coallescence of two “objects”, which come with
their local model.

I To understand why we have divergence, we unfold
Two objects: codimension 1 will lead to
1-summability in the limit.

I In the unfolding, generically the divergence can be
seen as the limit of the gluing of the two local models
which are rigid. Hence, divergence is the rule and
convergence is exceptional.

16 The common features SMS 2, July 2017



The common features

I The coallescence of two “objects”, which come with
their local model.

I To understand why we have divergence, we unfold
Two objects: codimension 1 will lead to
1-summability in the limit.

I In the unfolding, generically the divergence can be
seen as the limit of the gluing of the two local models
which are rigid.

Hence, divergence is the rule and
convergence is exceptional.

17 The common features SMS 2, July 2017



The common features

I The coallescence of two “objects”, which come with
their local model.

I To understand why we have divergence, we unfold
Two objects: codimension 1 will lead to
1-summability in the limit.

I In the unfolding, generically the divergence can be
seen as the limit of the gluing of the two local models
which are rigid. Hence, divergence is the rule and
convergence is exceptional.

18 The common features SMS 2, July 2017



I Except in Example 7, the parameter is canonical (it is
an analytic invariant).

I In all cases we have a finite parameter family
representing a formal normal form: “the model
family”.

I The extra formal parameter(s) are present to match
the need of independent multipliers or eigenvalues in
the unfolding.

I Except in Example 7, the “dynamics”can be reduced
to that of a 1-dimensional map.
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I In all cases we observe a “parametric resurgence
phenomenon”,

i.e. the unfolded singular points have
pathologies on discrete sequences of parameter values
{εn} converging to ε= 0.
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The parabolic point: coallescence of two fixed points

I Example 1. Unfolding

fε(z) = z+(z2 −ε)(1+O(z,ε))

The model family is the time-one map of

ż =
z2 −ε

1+ a(ε)z

z
f(z)

z
f(z)

z
f(z)
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Coallescence of a fixed point and a periodic orbit of
period q

I Example 2. An unfolding of

f (z) = exp
(

2πip
q

)
z+

1
q

zq+1 + az2q+1 + o(z2q+1)

can be taken so that

f ◦qε (z) = z+ z(zq −ε)(1+O(z,ε))
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Coallescence of a saddle and a node

I Example 3.

x
ee-

Orbital normal form for the unfolding{
ẋ = x2 −ε

ẏ = y(1+ ax)
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Coallescence of a focus and a limit cycle

I Example 4. A Hopf bifurcation with orbital normal
form

ż = z(i+(zz−ε)(1+ azz))

(a) ε < 0 (b) ε= 0 (c) ε > 0
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A complex weak focus is orbitally the same as a
saddle with ratio of eigenvalues equal to −1

I Example 4. Taking w = z, the system can be rewritten

ż = z(i+(zw−ε)(1+ azw))

ẇ = w(−i+(zw−ε)(1+ azw))

which is orbitally the same as a complex saddle. The
complex curve zw = ε is a special leaf, which has non
trivial homology.
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Coallescence of the invariants manifolds of a saddle
point with a distinguished invariant manifold

I Example 5.

x f(x)
Σ

x

y

Orbital normal form{
ẋ = x

ẏ = y
(
−

p
q (1+ε)+xpyq + ax2py2q

)

Two families are orbitally equivalent if and only if the
holonomies of their y-separatrices are conjugate.
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Curvilinear angles

I Example 6. For a curvilinear angle we have a Schwarz symmetry
z 7→ Σj(z) associated to each curve.

Let

f = Σ2 ◦Σ1

f is a germ of analytic diffeomorphism:

f (z) = e4πi p
q z+ o(z), Σ1 ◦ f = f−1 ◦Σ1

31 The common features SMS 2, July 2017



Curvilinear angles

I Example 6. For a curvilinear angle we have a Schwarz symmetry
z 7→ Σj(z) associated to each curve.

Let

f = Σ2 ◦Σ1

f is a germ of analytic diffeomorphism:

f (z) = e4πi p
q z+ o(z), Σ1 ◦ f = f−1 ◦Σ1

32 The common features SMS 2, July 2017



Curvilinear angles

I Example 6. For a curvilinear angle we have a Schwarz symmetry
z 7→ Σj(z) associated to each curve.

Let

f = Σ2 ◦Σ1

f is a germ of analytic diffeomorphism:

f (z) = e4πi p
q z+ o(z), Σ1 ◦ f = f−1 ◦Σ1

33 The common features SMS 2, July 2017



Case of the horn

It is a special case of Example 1 and the
coallescence of two intersection points of the
analytic arcs
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Unfolding the horn

P1,ε
P2,ε

P2,ε

P1,ε P1,0 = P2,0

Formal invariant a: a limit of a measure of a shift between
the two angles

θ± =±
√
ε

1± a(ε)
√
ε

a(ε) =
1
2

(
1
θ+

+
1
θ−

)
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The confluence of two regular singular points

I Example 7.

Normal form

(x2 −ε)
dy
dx

= (D0(ε)+D1(ε)x)y

In the unfolding we have, generically, at each regular singular point a
basis of solutions that are eigenvectors of the monodromy around the
regular singular point.

The divergence in the limit forces that the eigenbases at each singular
point mismatch.

For the special resonant values of the parameter at one singular point,
it forces the existence of solutions with logarithmic terms.
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Going to higher codimension

When we have the confluence of k special objects
we often observe k-summability of the
normalizing changes of coordinates.
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Examples

I Example 1 bis. A germ of analytic
diffeomorphism f : (C,0)→ (C,0) such that

f (z) = z+ kzk+1 + k2(1− a)z2k+1 + o(z2k+1)

Normal form for the unfolding: the time-one
map of

ż =
zk+1 +εk−1zk1 + · · ·+ε1z+ε0

1+ a(ε)zk

k+1 parameters to control k+1 eigenvalues
at the k+1 singular points.
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More examples

I Example 2 bis. A germ of analytic
diffeomorphism f : (C,0)→ (C,0) such that

f (z)= exp
(

2πip
q

)
z+zkq+1+az2kq+1+o(z2kq+1)
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More examples

I Example 3 bis. A germ of saddle-node of
multiplicity k+1 with unfolding{

ẋ = zk+1 +εk−1zk−1 + · · ·+ε1z+ε0

ẏ = y(1+ a(ε)xk)

Again k+1 parameters to control k+1 ratio
of eigenvalues at the k+1 singular points.
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More examples

I Example 4 bis. A Hopf bifurcation of
codimension k with orbital normal form

ż = z
[
(i+ε0)+ε1|z|2 + · · ·+εk−1|z|2(k−1)− |z|2k + a|z|4k

]
which can be rewritten{

ṙ = ε0r+ε1r3 + · · ·+εk−1r2k−1 − r2k+1 + ar4k+1

θ̇= 1

k+1 parameters to control k+1 multipliers of
the Poincaré return map at the k limit cycles and
at the singular point.
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More examples

I Example 5 bis. A germ of resonant saddle of
codimension k{

ẋ = x

ẏ = y
(
−

p
q +xkpykq + ax2kpy2kq

)
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More examples

I Example 6 bis. A germ of curvilinear angle
of codimension k : the associated
diffeomorphims f = Σ2 ◦Σ1 has a resonant
fixed point of codimension k
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More examples

I Example 7 bis. A nonresonant irregular
singular point of Poincaré rank k of a linear
differential system

xk+1 dy
dx

= A(x)y, y ∈ Cn

with normal form of the unfolding

Pε(x)
dy
dx

= (D0 +D1x+ . . .Dkxk)y

(k+1)n parameters to control the eigenvalues at k+1
singular points
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