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Structure of the lecture

I Statement of the problem
I The preparation of the family in the

codimension k case
I Construction of a modulus of analytic

classification in the codimension k case

2 SMS 4, July 2017



Statement of the problem

We consider germs of generic analytic
k-parameter families fε of diffeomorphisms
unfolding a parabolic point of codimension k

f0(z) = z+ zk+1 + o(zk+1)

When are two such germs conjugate?
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Conjugacy of two germs of families

Two germs of families of diffeomorphisms fε and f̃ε̃ are conjugate it
there exists r,ρ > 0 and analytic functions

h : Dρ→ C, H : Dr×Dρ→ C

such that
I h is a diffeomorphism and for each fixed ε, Hε = H(·,ε) is a

diffeomorphism;
I for all ε ∈ Dρ and for all z ∈ Dr, then

f̃h(ε) = Hε ◦ fε ◦ (Hε)
−1

The difficulty is the change of parameters. . .
Hence, we prepare the families to a canonical
parameter so that a conjugacy between them
preserves the parameter (i.e. h is the identity.)
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Preparation of the family

Let f̃ε̃ be a k-parameter analytic unfolding of a germ of
diffeormorphism

f0(z̃) = z̃+ z̃k+1 +O(z̃k+2)

By the Weierstrass preparation theorem

fε̃(z̃)− z̃ = P̃ε̃(z̃)h̃(z̃, ε̃)

with h̃(z̃, ε̃) = 1+O(|z̃, ε̃|) and

Pε̃(z̃) = z̃k+1 +ηk(ε̃)z̃k + · · ·+η1(ε̃)z̃+η0(ε̃)

A translation z̃ 7→ ž = z̃+ 1
k+1ηk(ε̃) allows putting

ηk(ε̃) = 0
The family is generic if

∣∣∣∂(ηk−1,...,η0)
∂(ε̃k−1,...,ε̃0)

∣∣∣ 6= 0, and hence we can
make the change of parameter ε̌j = ηj(ε̃).
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Preparation of the family

In these new (ž, ε̌) the family becomes

fε̌(ž) = ž+Pε̌(ž)(1+Qε̌(ž)h(ž, ε̌)

We find a vector field
˙̌z = Pε̌(1+Sε̌(ž)

with S polynomial of degree k such µj = logλj.

A theorem of Kostov provides a change
(ž, ε̌) 7→ (z,ε) transforming the vector field to
ż = Pε

1+a(ε)zk .

To obtain the prepared form we change
(ž, ε̌) 7→ (z,ε) in the expression of the
diffeomorphism.
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The parameter is almost canonical

Theorem [RT] Let (z,ε) 7→ (ž, ε̌) map a vector
field ż = vε(z) = Pε

1+a(ε)zk to ˙̌z = v̌ = P̌ε̌
1+ǎ(ε̌)žk . Then

there exists τ= exp(2πim/k) and t(ε) such that
the change has the form{

ž = τΦt(ε)
vε (z),

ε̌j = τ
1−jεj,

where Φt(ε)
vε is the flow of vε for the time t(ε).
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The modulus space for ε= 0
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The diffeomorphism now has 2k petals near the parabolic
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We need to unfold that

The behavior stays the same near the boundary.

How do we take the fundamental domains inside?
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Coming back to the case k = 1

Taking fundamental domains as crescent shapes is the
same as covering a disk with generalized sectors on
which we can almost uniquely conjugate the
diffeomorphim to the normal form.
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The boundaries of the sectors are trajectories of
ż = eiα(z2 −ε).
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This gives the strategy for k > 1

The boundaries of the sectors will be taken as trajectories
of ż = eiαPε(z). Such vector fields have been studied by
Douady and Sentenac.

We can no more cover the parameter space with a unique
domain, even in a ramified way.
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The geometry of the vector field ż = Pε(z).

They have been studied by Douady and Sentenac on CP1

when all singular points are simple (the discriminant is
nonzero). The organizing center is the pole of order k−1
at infinity and its 2k separatrices.
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Generically the separatrices land at singular points.

Taking trajectories between the singular points divides a
disk into 2k generalized sectors each attached to two
singular points.
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The modulus of analytic classification

On each sector we have an
almost unique change of co-
ordinate to the normal form,
because the sector contains
a fundamental domain con-
formally equivalent to CP1 \
{0,∞}.

(The sectors are drawn non spiraling but they can be spiraling when
approaching the singular points.)
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The modulus of analytic classification on a DS-domain
in parameter space
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It is given by an unfolding
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Other examples of unfolding
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How many sectors in parameter space do we need to
cover all parameter values?
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