Germs of analytic families of diffeomorphisms unfolding a parabolic point (I)

Christiane Rousseau

Work done with C. Christopher, P. Mardešić, R. Roussarie and L. Teyssier

Structure of the mini-course

- Statement of the problem (first lecture)
- The preparation of the family (first lecture)
- Construction of a modulus of analytic classification in the codimension 1 case (second lecture)
- The realization problem in the codimension 1 case (third lecture)

Statement of the problem

We consider germs of generic k-parameter families f_{ε} of diffeomorphisms unfolding a parabolic point of codimension k

$$
f_{0}(z)=z+z^{k+1}+o\left(z^{k+1}\right)
$$

When are two such germs conjugate?

Conjugacy of two germs of families

Two germs of families of diffeomorphisms f_{ϵ} and $\tilde{f}_{\tilde{\varepsilon}}$ are conjugate it there exists $r, \rho>0$ and analytic functions

$$
h: \mathbb{D}_{\rho} \rightarrow \mathbb{C}, \quad H: \mathbb{D}_{r} \times \mathbb{D}_{\rho} \rightarrow \mathbb{C}
$$

such that

- h is a diffeomorphism and for each fixed ϵ, $H_{\epsilon}=H(\cdot, \epsilon)$ is a diffeomorphism;
- for all $\epsilon \in \mathbb{D}_{\rho}$ and for all $z \in \mathbb{D}_{r}$, then

$$
\tilde{f}_{h(\epsilon)}=H_{\epsilon} \circ f_{\epsilon} \circ\left(H_{\epsilon}\right)^{-1}
$$

The choice of \mathbb{D}_{r}

\mathbb{D}_{r} is chosen so that the behaviour of f_{0} on the boundary is as in

The choice of \mathbb{D}_{r}

\mathbb{D}_{r} is chosen so that the behaviour of f_{0} on the boundary is as in

\mathbb{D}_{ρ} is chosen sufficiently small so that f_{ϵ} has the same behaviour near the boundary. In particular, all fixed points of f_{ε} remain inside the disk.

A natural strategy: the use of normal forms

A germ of generic k-parameter family f_{ϵ} unfolding a parabolic point of codimension k is formally conjugate to the time- 1 map of a vector field

$$
v_{\epsilon}=\frac{P_{\epsilon}(z)}{1+a(\epsilon) z^{k}} \frac{\partial}{\partial z}
$$

where

$$
P_{\epsilon}(z)=z^{k+1}+\epsilon_{k-1} z^{k-1}+\cdots+\epsilon_{1} z+\epsilon_{0}
$$

A natural strategy: the use of normal forms
A germ of generic k-parameter family f_{ϵ} unfolding a parabolic point of codimension k is formally conjugate to the time-1 map of a vector field

$$
v_{\epsilon}=\frac{P_{\epsilon}(z)}{1+a(\epsilon) z^{k}} \frac{\partial}{\partial z}
$$

where

$$
P_{\epsilon}(z)=z^{k+1}+\epsilon_{k-1} z^{k-1}+\cdots+\epsilon_{1} z+\epsilon_{0}
$$

Problem: the change to normal form diverges. What does it mean?

Can we exploit the formal normal form despite its divergence?

Let us look at the case $k=1$:

$$
v_{\epsilon}=\frac{z^{2}-\epsilon}{1+a(\epsilon) z} \frac{\partial}{\partial z}
$$

Can we exploit the formal normal form despite its divergence?

Let us look at the case $k=1$:

$$
v_{\epsilon}=\frac{z^{2}-\epsilon}{1+a(\epsilon) z} \frac{\partial}{\partial z}
$$

Two singular points $\pm \sqrt{\epsilon}$ with eigenvalues

$$
\mu_{ \pm}=\frac{ \pm 2 \sqrt{\epsilon}}{1 \pm a(\epsilon) \sqrt{\epsilon}}
$$

The parameter is an analytic invariant of the vector field!

Indeed, we have

$$
\begin{aligned}
& \frac{1}{\mu_{+}}+\frac{1}{\mu_{-}}=a(\epsilon) \\
& \frac{1}{\mu_{+}}-\frac{1}{\mu_{-}}=\frac{1}{\sqrt{\epsilon}}
\end{aligned}
$$

Hence, can we hope to bring the system to a "prenormal" form in which the parameter is invariant?

Hence, can we hope to bring the system to a "prenormal" form in which the parameter is invariant?
Yes!
This is the preparation part.

Hence, can we hope to bring the system to a "prenormal" form in which the parameter is invariant?
Yes!
This is the preparation part.
Advantage: a conjugacy between prepared families must preserve
the canonical parameters.

Theorem

We consider a diffeomorphism with a parabolic point of codimension k :

$$
f_{0}(z)=z+z^{k+1}+o\left(z^{k+1}\right)
$$

For any generic k-parameter unfolding f_{n}, there exists an analytic change of coordinate and parameter $(z, \eta) \mapsto(Z, \epsilon)$ in a neighborhood of the origin transforming the family into the prepared form

$$
F_{\epsilon}(Z)=Z+P_{\epsilon}(Z)\left(1+Q_{\epsilon}(Z)+P_{\epsilon}(Z) K(Z, \epsilon)\right)
$$

Theorem

We consider a diffeomorphism with a parabolic point of codimension k :

$$
f_{0}(z)=z+z^{k+1}+o\left(z^{k+1}\right)
$$

For any generic k-parameter unfolding f_{n}, there exists an analytic change of coordinate and parameter $(z, \eta) \mapsto(Z, \epsilon)$ in a neighborhood of the origin transforming the family into the prepared form

$$
F_{\epsilon}(Z)=Z+P_{\epsilon}(Z)\left(1+Q_{\epsilon}(Z)+P_{\epsilon}(Z) K(Z, \epsilon)\right)
$$

such that, if $Z_{1}, \ldots Z_{k+1}$ are the fixed points, then

$$
F_{\epsilon}^{\prime}\left(Z_{j}\right)=\exp \left(\frac{P_{\epsilon}^{\prime}\left(Z_{j}\right)}{1+a(\epsilon) Z_{j}^{k}}\right)
$$

This determines almost uniquely the parameters!

The only freedom will be inherited from a rotation of order k in Z

$$
Z \mapsto \tau Z ; \quad \tau^{k}=1
$$

which yields the corresponding change on $€$:

$$
\left(\epsilon_{k-1}, \epsilon_{k-2} \ldots, \epsilon_{0}\right) \mapsto\left(\tau^{2-k} \epsilon_{k-1}, \tau^{1-k} \epsilon_{k-2}, \ldots, \tau \epsilon_{0}\right)
$$

Proof of the theorem

We consider a diffeomorphism with a parabolic point of codimension k :

$$
f_{0}(z)=z+z^{k+1}+o\left(z^{k+1}\right)
$$

A k-parameter unfolding can be written in the form

$$
f_{\eta}(z)=z+p_{\eta}(z) g_{\eta}(z)
$$

with $g_{\eta}(z)=1+O(\eta, z)$.

Using the Weierstrass division theorem on the rest allows to write f_{η} in the form

$$
f_{\eta}(z)=z+p_{\eta}(z)\left(1+q_{\eta}(z)+p_{\eta}(z) h_{\eta}(z)\right)
$$

Using the Weierstrass division theorem on the rest allows to write f_{η} in the form

$$
f_{\eta}(z)=z+p_{\eta}(z)\left(1+q_{\eta}(z)+p_{\eta}(z) h_{\eta}(z)\right)
$$

with

$$
p_{\eta}(z)=z^{k+1}+v_{k-1}(\eta) z^{k-1}+v_{1}(\eta) z+v_{0}(\eta)
$$

Using the Weierstrass division theorem on the rest allows to write f_{η} in the form

$$
f_{\eta}(z)=z+p_{\eta}(z)\left(1+q_{\eta}(z)+p_{\eta}(z) h_{\eta}(z)\right)
$$

with

$$
p_{\eta}(z)=z^{k+1}+v_{k-1}(\eta) z^{k-1}+v_{1}(\eta) z+v_{0}(\eta)
$$

and

$$
q_{\eta}(z)=c_{0}(\eta)+c_{1}(\eta) z+\cdots+c_{k}(\eta) z^{k}
$$

Using the Weierstrass division theorem on the rest allows to write f_{η} in the form

$$
f_{\eta}(z)=z+p_{\eta}(z)\left(1+q_{\eta}(z)+p_{\eta}(z) h_{\eta}(z)\right)
$$

with

$$
p_{\eta}(z)=z^{k+1}+v_{k-1}(\eta) z^{k-1}+v_{1}(\eta) z+v_{0}(\eta)
$$

and

$$
q_{\eta}(z)=c_{0}(\eta)+c_{1}(\eta) z+\cdots+c_{k}(\eta) z^{k} .
$$

Genericity condition: the Jacobian

$$
\frac{\partial v}{\partial \eta}
$$

is invertible.

Since

$$
f_{\eta}(z)=z+p_{\eta}(z)\left(1+q_{\eta}(z)+p_{\eta}(z) h_{\eta}(z)\right)
$$

the fixed points z_{j} of f_{η} are the zeroes of p_{η}.

The strategy

The formal normal form is the time one map of a vector field

$$
V_{\epsilon}=\frac{P_{\epsilon}(Z)}{1+a(\epsilon) Z^{k}} \frac{\partial}{\partial Z}
$$

The strategy

The formal normal form is the time one map of a vector field

$$
V_{\epsilon}=\frac{P_{\epsilon}(Z)}{1+a(\epsilon) Z^{k}} \frac{\partial}{\partial Z}
$$

Hence the the fixed points of f_{η} must be sent to the singular points Z_{j} of V_{ϵ}.

The strategy

The formal normal form is the time one map of a vector field

$$
V_{\epsilon}=\frac{P_{\epsilon}(Z)}{1+a(\epsilon) Z^{k}} \frac{\partial}{\partial Z}
$$

Hence the the fixed points of f_{η} must be sent to the singular points Z_{j} of V_{ϵ}.
Moreover we need have

$$
f_{\eta}^{\prime}\left(z_{j}\right)=\exp \left(V_{\epsilon}^{\prime}\left(Z_{j}\right)\right)
$$

How do we find the formal invariant $a(\epsilon)$?

Let

$$
\lambda_{j}=f_{\eta}^{\prime}\left(z_{j}\right)
$$

We have that

$$
\sum 1 / \ln \left(\lambda_{j}\right)=a(\epsilon) .
$$

How do we find the formal invariant $a(\epsilon)$?
Let

$$
\lambda_{j}=f_{\eta}^{\prime}\left(z_{j}\right)
$$

We have that

$$
\sum 1 / \ln \left(\lambda_{j}\right)=a(\epsilon) .
$$

There exists a polynomial $r_{\eta}(z)$ of degree $\leq k$ such that at the points z_{j} we have

$$
\ln \left(f_{\eta}^{\prime}\left(z_{j}\right)\right)=p_{\eta}^{\prime}\left(z_{j}\right)\left(1+r_{\eta}\left(z_{j}\right)\right)
$$

How do we find the formal invariant $a(\epsilon)$?
Let

$$
\lambda_{j}=f_{\eta}^{\prime}\left(z_{j}\right)
$$

We have that

$$
\sum 1 / \ln \left(\lambda_{j}\right)=a(\epsilon) .
$$

There exists a polynomial $r_{\eta}(z)$ of degree $\leq k$ such that at the points z_{j} we have

$$
\ln \left(f_{\eta}^{\prime}\left(z_{j}\right)\right)=p_{\eta}^{\prime}\left(z_{j}\right)\left(1+r_{\eta}\left(z_{j}\right)\right)
$$

(Such a polynomial is found by the Lagrange interpolation formula for distinct z_{j}. The limit exists when two fixed points coallesce (codimension 1 case). We can fill in for the other values of η by Hartogs's Theorem.)

The reparameterization

By Kostov theorem, there exists a change of coordinate and parameter transforming the vector field:

$$
p_{\eta}(z)\left(1+r_{\eta}(z)\right) \frac{\partial}{\partial z}=v_{\eta}(z)
$$

into:

$$
P_{\epsilon}(Z) /\left(1+a(\epsilon) Z^{k}\right) \frac{\partial}{\partial Z}=V_{\epsilon}(Z)
$$

where

$$
P_{\epsilon}(Z)=Z^{k+1}+\epsilon_{k_{1}} Z^{k-1}+\epsilon_{1} Z+\epsilon_{0} .
$$

We apply this change of coordinate and parameter to f_{η}.

Claim: this brings f_{η} to a prepared form F_{ε}

- It sends the zeros z_{j} of $p_{\eta}(z)$ to the zeroes of $P_{\epsilon}(Z)$. Since the z_{j} are the fixed points of f_{η}, their images are the fixed points Z_{j} of F_{ϵ}.

Claim: this brings f_{η} to a prepared form F_{ϵ}

- It sends the zeros z_{j} of $p_{\eta}(z)$ to the zeroes of $P_{\epsilon}(Z)$. Since the z_{j} are the fixed points of f_{η}, their images are the fixed points Z_{j} of F_{ϵ}.
- Hence

$$
\begin{aligned}
F_{\epsilon}(Z) & =Z+P_{\epsilon}(Z) K_{\epsilon}(Z) \\
& =Z+P_{\epsilon}(Z)\left(1+Q_{\epsilon}(Z)+P_{\epsilon}(Z) H_{\epsilon}(Z)\right)
\end{aligned}
$$

Claim: this brings f_{η} to a prepared form F_{ε}

- It sends the zeros z_{j} of $p_{\eta}(z)$ to the zeroes of $P_{\epsilon}(Z)$. Since the z_{j} are the fixed points of f_{η}, their images are the fixed points Z_{j} of F_{ϵ}.
- Hence

$$
\begin{aligned}
F_{\epsilon}(Z) & =\mathrm{Z}+P_{\epsilon}(Z) K_{\epsilon}(Z) \\
& =\mathrm{Z}+P_{\epsilon}(Z)\left(1+Q_{\epsilon}(Z)+P_{\epsilon}(Z) H_{\epsilon}(Z)\right)
\end{aligned}
$$

- Let be a fixed point. Then
$F_{\epsilon}^{\prime}\left(Z_{j}\right)=\lambda_{j}=f_{\eta}^{\prime}\left(z_{j}\right)=\exp \left(v_{\eta}^{\prime}\left(z_{j}\right)\right)=\exp \left(V_{\epsilon}^{\prime}\left(Z_{j}\right)\right)$
which is what we need for a prepared family.

The parameters are (almost) canonical

We have

$$
\begin{aligned}
F_{\epsilon}(Z) & =Z+P_{\epsilon}(Z) K_{\epsilon}(Z) \\
& =Z+P_{\epsilon}(Z)\left(1+Q_{\epsilon}(Z)+P_{\epsilon}(Z) H_{\epsilon}(Z)\right)
\end{aligned}
$$

Claim: $P_{\epsilon}, Q_{\epsilon}$ and \in are unique up to the change

$$
Z \mapsto \tau Z ; \quad \tau^{k}=1
$$

and the corresponding change on ϵ :

$$
\left(Z, \epsilon_{k-1}, \epsilon_{k-2} \ldots, \epsilon_{0}\right) \mapsto\left(\tau Z, \tau^{2-k} \epsilon_{k-1}, \tau^{1-k} \epsilon_{k-2}, \ldots, \tau \epsilon_{0}\right)
$$

The proof

Let us suppose that two prepared families $f_{\epsilon}(z)$ and $\tilde{f}_{\tilde{\varepsilon}}(\tilde{z})$ are conjugate under a map $(\tilde{\epsilon}, \tilde{z})=\left(h(\epsilon), H_{\epsilon}(z)\right):$

$$
\tilde{f}_{h(\epsilon)}=H_{\epsilon} \circ f_{\epsilon} \circ H_{\epsilon}^{-1}
$$

The proof

Let us suppose that two prepared families $f_{\epsilon}(z)$ and $\tilde{f}_{\tilde{E}}^{(\tilde{z})}$ are conjugate under a map $(\tilde{\epsilon}, \tilde{z})=\left(h(\epsilon), H_{\epsilon}(z)\right)$:

$$
\tilde{f}_{h(\epsilon)}=H_{\epsilon} \circ f_{\epsilon} \circ H_{\epsilon}^{-1}
$$

f_{ε}
Fixed points z_{j} are those of

$$
v_{\epsilon}(z)=P_{\epsilon}(z) /\left(1+a z^{k}\right) \frac{\partial}{\partial z}
$$

$\tilde{f}_{\tilde{\epsilon}}$
Fixed points \tilde{z}_{j} are those of

$$
\tilde{v}_{\tilde{\varepsilon}}(\tilde{z})=\tilde{P}_{\tilde{\varepsilon}}(\tilde{z}) /\left(1+a \tilde{z}^{k}\right) \frac{\partial}{\partial \tilde{z}}
$$

The proof

Let us suppose that two prepared families $f_{\epsilon}(z)$ and $\tilde{f}_{\tilde{E}}^{(\tilde{z})}$ are conjugate under a map $(\tilde{\epsilon}, \tilde{z})=\left(h(\epsilon), H_{\epsilon}(z)\right)$:

$$
\tilde{f}_{h(\epsilon)}=H_{\epsilon} \circ f_{\epsilon} \circ H_{\epsilon}^{-1}
$$

f_{ε}
Fixed points z_{j} are those of
$v_{\epsilon}(z)=P_{\epsilon}(z) /\left(1+a z^{k}\right) \frac{\partial}{\partial z}$
$\tilde{f}_{\tilde{\epsilon}}$
Fixed points \tilde{z}_{j} are those of

$$
\tilde{v}_{\tilde{\varepsilon}}(\tilde{z})=\tilde{P}_{\tilde{\varepsilon}}(\tilde{z}) /\left(1+a \tilde{z}^{k}\right) \frac{\partial}{\partial \bar{z}}
$$

Note that the formal invariants are the same.

Then H_{ϵ} sends the fixed points z_{j} to the fixed points \tilde{z}_{j}. Hence

$$
H_{\epsilon}^{*}\left(\tilde{v}_{h(\epsilon)}\right)(z)=P_{\epsilon}(z) U_{\epsilon}(z) \frac{\partial}{\partial z}=w_{\epsilon}(z)
$$

where $U \neq 0$.

Then H_{ϵ} sends the fixed points z_{j} to the fixed points \tilde{z}_{j}. Hence

$$
H_{\epsilon}^{*}\left(\tilde{v}_{h(\epsilon)}\right)(z)=P_{\epsilon}(z) U_{\epsilon}(z) \frac{\partial}{\partial z}=w_{\epsilon}(z)
$$

where $U \neq 0$.
v_{ϵ} and w_{ϵ} have the same singular points with same eigenvalues! Hence

$$
\begin{aligned}
w_{\epsilon} & =P_{\epsilon}(z)\left(\frac{1}{1+a z^{k}}+P_{\epsilon}(z) M_{\epsilon}(z)\right) \frac{\partial}{\partial z} \\
& =v_{\epsilon}\left(1+P_{\epsilon}(z) N_{\epsilon}(z)\right) \frac{\partial}{\partial z}
\end{aligned}
$$

There exists K_{ϵ} such that $K_{\epsilon}^{*}\left(v_{\epsilon}\right)=w_{\epsilon}$.

There exists K_{ϵ} such that $K_{\epsilon}^{*}\left(v_{\epsilon}\right)=w_{\epsilon} . K_{\epsilon}=\Phi_{v_{\epsilon}}^{T_{\epsilon}}$ is given by the flow of v_{ϵ} under the time T_{ϵ} which is solution of

$$
v_{\epsilon}\left(T_{\epsilon}\right)=-\frac{P_{\epsilon}(z) N_{\epsilon}(z)}{1+P_{\epsilon}(z) N_{\epsilon}(z)}
$$

which obviously has an analytic solution.

There exists K_{ϵ} such that $K_{\epsilon}^{*}\left(v_{\epsilon}\right)=w_{\epsilon} . K_{\epsilon}=\Phi_{v_{\epsilon}}^{T_{\epsilon}}$ is given by the flow of v_{ϵ} under the time T_{ϵ} which is solution of

$$
v_{\epsilon}\left(T_{\epsilon}\right)=-\frac{P_{\epsilon}(z) N_{\epsilon}(z)}{1+P_{\epsilon}(z) N_{\epsilon}(z)}
$$

which obviously has an analytic solution.
Then $\left(K_{\epsilon}^{-1} \circ H_{\epsilon}\right)^{*}\left(\tilde{v}_{h(\epsilon)}\right)=v_{\epsilon}$. The result follows from the following theorem proved with L. Teyssier.

Theorem (RT)

We consider a germ of an analytic change of coordinates
$\Psi:(z, \epsilon)=\left(z, \epsilon_{0}, \ldots, \epsilon_{k-1}\right) \mapsto\left(\varphi_{\epsilon}(z), h_{0}(\epsilon), \ldots, h_{k-1}(\epsilon)\right)=$ (z, h) at $(0,0, \cdots, 0) \in \mathbb{C}^{1+k}$. The following assertions are equivalent:

1. the families $\left(\frac{P_{\epsilon}(z)}{1+a(\epsilon) z^{k}} \frac{\partial}{\partial z}\right)_{\epsilon}$ and $\left(\frac{P_{h}(z)}{1+\tilde{a}(h) z^{k}} \frac{\partial}{\partial z}\right)_{h}$ are conjugate under Ψ,
2. there exist τ with $\tau^{k}=1$ and $T(\epsilon)$ an analytic germ such that, if $R_{\tau}(z)=\tau z$

- $\varphi_{\epsilon}(z)=\Phi_{v_{\epsilon}}^{T(\epsilon)} \circ R_{\tau}(z)$
- $\epsilon_{j}=\tau^{j-1} h_{j}(\epsilon)$,
- $a(\epsilon)=\tilde{a}(h(\epsilon))$.

Reduction to the case $\tau=1$

If $\varphi_{0}^{\prime}(0)=\tau$ we need have $\tau^{k}=1$ in order to preserve the form of v_{0}.

Reduction to the case $\tau=1$

If $\varphi_{0}^{\prime}(0)=\tau$ we need have $\tau^{k}=1$ in order to preserve the form of v_{0}.

So we can compose $\Psi(z, \epsilon)$ with R_{τ} and the corresponding change of parameters $\epsilon_{j}=\tau^{j-1} h_{j}(\epsilon)$ and only discuss the composed family.

Hence we can suppose that $\Psi(z, \epsilon)$ is such that $\varphi_{0}^{\prime}(0)=1$.

The case $\epsilon=0$

It is easy to check that the only changes of coordinates tangent to the identity which preserve v_{0} are the maps $\Phi_{v_{0}}^{t}$.

The case $\epsilon=0$

It is easy to check that the only changes of coordinates tangent to the identity which preserve v_{0} are the maps $\Phi_{v_{0}}^{t}$.

Indeed, such changes of coordinates have the form $z\left(1+m_{t}\left(z^{k}\right)\right)$ with $m_{t}(z)=t z^{k}+o\left(z^{k}\right)$. The function $m_{t}(z)$ is completely determined by $m_{t}^{\prime}(0)=t$. This is exactly the form of the family $\Phi_{v_{0}}^{t}$.

Reduction to the case $\frac{\partial^{k+1} \varphi_{\varepsilon}}{\partial z^{k+1}}(0)=0$

We correct φ to

$$
G(z, t, \epsilon):=\Phi_{v_{\epsilon}}^{t} \circ \varphi_{\epsilon}(z)
$$

with $t(\epsilon)$ well chosen.

Reduction to the case $\frac{\partial^{k+1} \varphi_{\epsilon}}{\partial z^{k+1}}(0)=0$

We correct φ to

$$
G(z, t, \epsilon):=\Phi_{v_{\epsilon}}^{t} \circ \varphi_{\epsilon}(z)
$$

with $t(\epsilon)$ well chosen.
Let

$$
\begin{gathered}
H(z, t, \epsilon):=\frac{\partial^{k+1} G}{\partial z^{k+1}}(z, t, \epsilon) \\
K(t, \epsilon):=H(0, t, \epsilon)
\end{gathered}
$$

K is analytic and

$$
\frac{\partial K}{\partial t}(0,0)=(k+1)!\neq 0 .
$$

Reduction to the case $\frac{\partial^{k+1} \varphi_{\varepsilon}}{\partial z^{k+1}}(0)=0$

We correct φ to

$$
G(z, t, \epsilon):=\Phi_{v_{\epsilon}}^{t} \circ \varphi_{\epsilon}(z)
$$

with $t(\epsilon)$ well chosen.
Let

$$
\begin{gathered}
H(z, t, \epsilon):=\frac{\partial^{k+1} G}{\partial z^{k+1}}(z, t, \epsilon) \\
K(t, \epsilon):=H(0, t, \epsilon)
\end{gathered}
$$

K is analytic and

$$
\frac{\partial K}{\partial t}(0,0)=(k+1)!\neq 0
$$

Let t_{0} be such that $K\left(t_{0}, 0\right)=0$. By the implicit function theorem, there exists $t(\epsilon)$ unique such that $t(0)=t_{0}$ and $K(t(\epsilon), \epsilon) \equiv 0$.

Reduction to the case $\frac{\partial^{k+1} \varphi_{\varepsilon}}{\partial z^{k+1}}(0)=0$

We correct φ to

$$
G(z, t, \epsilon):=\Phi_{v_{\epsilon}}^{t} \circ \varphi_{\epsilon}(z)
$$

with $t(\epsilon)$ well chosen.
Let

$$
\begin{gathered}
H(z, t, \epsilon):=\frac{\partial^{k+1} G}{\partial z^{k+1}}(z, t, \epsilon) \\
K(t, \epsilon):=H(0, t, \epsilon)
\end{gathered}
$$

K is analytic and

$$
\frac{\partial K}{\partial t}(0,0)=(k+1)!\neq 0
$$

Let t_{0} be such that $K\left(t_{0}, 0\right)=0$. By the implicit function theorem, there exists $t(\epsilon)$ unique such that $t(0)=t_{0}$ and $K(t(\epsilon), \epsilon) \equiv 0$.

Composing φ_{ϵ} with $\Phi_{X_{\epsilon}}^{t(\epsilon)}$ we can suppose that the original family Ψ is such that $\frac{\partial^{k+1} \varphi_{\epsilon}}{\partial z^{k+1}}(0)=0$.

The rest of the argument is an infinite descent

We introduce the ideal

$$
I=\left\langle\epsilon_{0}, \ldots, \epsilon_{k-1}\right\rangle
$$

We have

$$
\varphi_{\epsilon}(z):=z+\sum_{n \geq 0} f_{n}(\epsilon) z^{n}
$$

where $f_{n} \in I$ and $f_{k+1} \equiv 0$.
We must solve

$$
\begin{aligned}
& \left(1+a(\epsilon) z^{k}\right)\left(\varphi_{\epsilon}^{k+1}(z)+h_{k-1} \varphi_{\epsilon}^{k-1}(z)+\cdots+h_{0}\right) \\
& \quad-\left(1+\tilde{a}(h) \varphi_{\epsilon}^{k}(z)\right)\left(z^{k+1}+\epsilon_{k-1} z^{k-1}+\cdots+\epsilon_{0}\right) \varphi_{\epsilon}^{\prime}(z)=0 .
\end{aligned}
$$

It is then clear that $h_{j}(\epsilon) \in I$ and $f_{j}(\epsilon) \in I$.

The rest of the argument is an infinite descent

We introduce the ideal

$$
I=\left\langle\epsilon_{0}, \ldots, \epsilon_{k-1}\right\rangle
$$

We have

$$
\varphi_{\epsilon}(z):=z+\sum_{n \geq 0} f_{n}(\epsilon) z^{n}
$$

where $f_{n} \in I$ and $f_{k+1} \equiv 0$.
We must solve

$$
\begin{aligned}
& \left(1+a(\epsilon) z^{k}\right)\left(\varphi_{\epsilon}^{k+1}(z)+h_{k-1} \varphi_{\epsilon}^{k-1}(z)+\cdots+h_{0}\right) \\
& \quad-\left(1+\tilde{a}(h) \varphi_{\epsilon}^{k}(z)\right)\left(z^{k+1}+\epsilon_{k-1} z^{k-1}+\cdots+\epsilon_{0}\right) \varphi_{\epsilon}^{\prime}(z)=0 .
\end{aligned}
$$

It is then clear that $h_{j}(\epsilon) \in I$ and $f_{j}(\epsilon) \in I$.
Let $g_{j} z^{j}$ be the term of degree j. We will play with the infinite set of equations $g_{j}=0, j \geq 0$.

The equations $g_{j}=0$ with $0 \leq j \leq k-1$ yield

$$
h_{j}-\epsilon_{j} \in I^{2},
$$

since all other terms in the expression of g_{j} belong to I^{2}.

The equations $g_{j}=0$ with $0 \leq j \leq k-1$ yield

$$
h_{j}-\epsilon_{j} \in I^{2},
$$

since all other terms in the expression of g_{j} belong to I^{2}.
The equation $g_{k+j}=0$ with $0 \leq j \leq k$ yields $f_{j} \in I^{2}$.

The equations $g_{j}=0$ with $0 \leq j \leq k-1$ yield

$$
h_{j}-\epsilon_{j} \in I^{2},
$$

since all other terms in the expression of g_{j} belong to I^{2}.
The equation $g_{k+j}=0$ with $0 \leq j \leq k$ yields $f_{j} \in I^{2}$.
Looking at the linear terms in the equations $g_{\ell}=0$ with $\ell>2 k+1$ yields $f_{\ell-k} \in I^{2}$.
So we have that $f_{j} \in I^{2}$ for all j.

The general step by induction

We suppose that $h_{j}-\epsilon_{j} \in I^{n}$ when $0 \leq j \leq k-1$ and $f_{j} \in I^{n}$ whenever $j \geq 0$.

The general step by induction

We suppose that $h_{j}-\epsilon_{j} \in I^{n}$ when $0 \leq j \leq k-1$ and $f_{j} \in I^{n}$ whenever $j \geq 0$.

To show that $h_{j}-\epsilon_{j} \in I^{n+1}$ for $0 \leq j \leq k-1$ we consider again the corresponding equations $g_{j}=0$, where the only linear terms are $h_{j}-\epsilon_{j}$. Hence all other terms of the equation belong to I^{n+1} yielding $h_{j}-\epsilon_{j} \in I^{n+1}$.

The general step by induction

We suppose that $h_{j}-\epsilon_{j} \in I^{n}$ when $0 \leq j \leq k-1$ and $f_{j} \in I^{n}$ whenever $j \geq 0$.

To show that $h_{j}-\epsilon_{j} \in I^{n+1}$ for $0 \leq j \leq k-1$ we consider again the corresponding equations $g_{j}=0$, where the only linear terms are $h_{j}-\epsilon_{j}$. Hence all other terms of the equation belong to I^{n+1} yielding $h_{j}-\epsilon_{j} \in I^{n+1}$.

For the same reason the equation $g_{k+j}=0$ with $0 \leq j \leq k$ yields $f_{j} \in I^{n+1}$ and the equations $g_{\ell}=0$ with $\ell>2 k+1$ yields $f_{\ell-k} \in I^{n+1}$.

