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Structure of the mini-course

I Statement of the problem (first lecture)
I The preparation of the family (first lecture)
I Construction of a modulus of analytic classification in

the codimension 1 case (second lecture)

I The realization problem in the codimension 1 case
(third lecture)
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Statement of the problem

We consider germs of generic k-parameter
families fε of diffeomorphisms unfolding a
parabolic point of codimension k

f0(z) = z+ zk+1 + o(zk+1)

When are two such germs conjugate?
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Conjugacy of two germs of families

Two germs of families of diffeomorphisms fε
and f̃ε̃ are conjugate it there exists r,ρ > 0 and
analytic functions

h : Dρ→ C, H : Dr×Dρ→ C

such that
I h is a diffeomorphism and for each fixed ε,

Hε = H(·,ε) is a diffeomorphism;
I for all ε ∈ Dρ and for all z ∈ Dr, then

f̃h(ε) = Hε ◦ fε ◦ (Hε)−1
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The choice of Dr

Dr is chosen so that the behaviour of f0 on the
boundary is as in

Dρ is chosen sufficiently small so that fε has the
same behaviour near the boundary. In
particular, all fixed points of fε remain inside the
disk.
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A natural strategy: the use of normal forms

A germ of generic k-parameter family fε
unfolding a parabolic point of codimension k is
formally conjugate to the time-1 map of a vector
field

vε =
Pε(z)

1+ a(ε)zk
∂

∂z
where

Pε(z) = zk+1 +εk−1zk−1 + · · ·+ε1z+ε0

Problem: the change to normal form diverges.
What does it mean?

7 Statement of the problem Minicourse 1, Toulouse, November 2010



A natural strategy: the use of normal forms

A germ of generic k-parameter family fε
unfolding a parabolic point of codimension k is
formally conjugate to the time-1 map of a vector
field

vε =
Pε(z)

1+ a(ε)zk
∂

∂z
where

Pε(z) = zk+1 +εk−1zk−1 + · · ·+ε1z+ε0

Problem: the change to normal form diverges.
What does it mean?

8 Statement of the problem Minicourse 1, Toulouse, November 2010



Can we exploit the formal normal form despite its
divergence?

Let us look at the case k = 1:

vε =
z2 −ε

1+ a(ε)z
∂

∂z

Two singular points ±
√
εwith eigenvalues

µ± =
±2
√
ε

1± a(ε)
√
ε

9 Statement of the problem Minicourse 1, Toulouse, November 2010



Can we exploit the formal normal form despite its
divergence?

Let us look at the case k = 1:

vε =
z2 −ε

1+ a(ε)z
∂

∂z

Two singular points ±
√
εwith eigenvalues

µ± =
±2
√
ε

1± a(ε)
√
ε

10 Statement of the problem Minicourse 1, Toulouse, November 2010



The parameter is an analytic invariant of the vector
field!

Indeed, we have

1
µ+

+
1
µ−

= a(ε)

1
µ+

−
1
µ−

=
1√
ε
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Hence, can we hope to bring the system to a
“prenormal” form in which the parameter is
invariant?

Yes!
This is the preparation part.

Advantage: a conjugacy between
prepared families must preserve
the canonical parameters.
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Theorem
We consider a diffeomorphism with a parabolic point of
codimension k:

f0(z) = z+ zk+1 + o(zk+1)

For any generic k-parameter unfolding fη, there exists an
analytic change of coordinate and parameter (z,η) 7→ (Z,ε) in
a neighborhood of the origin transforming the family into the
prepared form

Fε(Z) = Z+Pε(Z)(1+Qε(Z)+Pε(Z)K(Z,ε))

such that, if Z1, . . .Zk+1 are the fixed points, then

F ′ε(Zj) = exp

(
P ′ε(Zj)

1+ a(ε)Zk
j

)

15 The preparation of the family Minicourse 1, Toulouse, November 2010



Theorem
We consider a diffeomorphism with a parabolic point of
codimension k:

f0(z) = z+ zk+1 + o(zk+1)

For any generic k-parameter unfolding fη, there exists an
analytic change of coordinate and parameter (z,η) 7→ (Z,ε) in
a neighborhood of the origin transforming the family into the
prepared form

Fε(Z) = Z+Pε(Z)(1+Qε(Z)+Pε(Z)K(Z,ε))

such that, if Z1, . . .Zk+1 are the fixed points, then

F ′ε(Zj) = exp

(
P ′ε(Zj)

1+ a(ε)Zk
j

)

16 The preparation of the family Minicourse 1, Toulouse, November 2010



This determines almost uniquely the parameters!

The only freedom will be inherited from a rotation of order k in Z

Z 7→ τZ; τk = 1

which yields the corresponding change on ε:

(εk−1,εk−2 . . . ,ε0) 7→ (τ2−kεk−1,τ
1−kεk−2, . . . ,τε0)
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Proof of the theorem

We consider a diffeomorphism with a parabolic
point of codimension k:

f0(z) = z+ zk+1 + o(zk+1)

A k-parameter unfolding can be written in the
form

fη(z) = z+pη(z)gη(z),

with gη(z) = 1+O(η,z).
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Using the Weierstrass division theorem on the
rest allows to write fη in the form

fη(z) = z+pη(z)(1+ qη(z)+pη(z)hη(z))

with

pη(z) = zk+1 +νk−1(η)z
k−1 +ν1(η)z+ν0(η)

and

qη(z) = c0(η)+ c1(η)z+ · · ·+ ck(η)z
k.

Genericity condition: the Jacobian
∂ν

∂η

is invertible.
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Since

fη(z) = z+pη(z)(1+ qη(z)+pη(z)hη(z))

the fixed points zj of fη are the zeroes of pη.
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The strategy

The formal normal form is the time one map of
a vector field

Vε =
Pε(Z)

1+ a(ε)Zk
∂

∂Z

Hence the the fixed points of fη must be sent to
the singular points Zj of Vε.
Moreover we need have

f ′η(zj) = exp(V ′ε(Zj))
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How do we find the formal invariant a(ε)?

Let
λj = f ′η(zj)

We have that ∑
1/ ln(λj) = a(ε).

There exists a polynomial rη(z) of degree ≤ k
such that at the points zj we have

ln
(
f ′η(zj)

)
= p ′η(zj)(1+ rη(zj)).

(Such a polynomial is found by the Lagrange interpolation formula
for distinct zj. The limit exists when two fixed points coallesce
(codimension 1 case). We can fill in for the other values of η by
Hartogs’s Theorem.)
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The reparameterization

By Kostov theorem, there exists a change of
coordinate and parameter transforming the
vector field:

pη(z)(1+ rη(z))
∂

∂z
= vη(z)

into:

Pε(Z)/(1+ a(ε)Zk)
∂

∂Z
= Vε(Z),

where

Pε(Z) = Zk+1 +εk1Z
k−1 +ε1Z+ε0.

We apply this change of coordinate and
parameter to fη.
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Claim: this brings fη to a prepared form Fε

I It sends the zeros zj of pη(z) to the zeroes of
Pε(Z). Since the zj are the fixed points of fη,
their images are the fixed points Zj of Fε.

I Hence
Fε(Z) = Z+Pε(Z)Kε(Z)

= Z+Pε(Z)(1+Qε(Z)+Pε(Z)Hε(Z))

I Let be a fixed point. Then

F ′ε(Zj)= λj = f ′η(zj)= exp(v ′η(zj))= exp(V ′ε(Zj))

which is what we need for a prepared
family.
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The parameters are (almost) canonical

We have

Fε(Z) = Z+Pε(Z)Kε(Z)
= Z+Pε(Z)(1+Qε(Z)+Pε(Z)Hε(Z))

Claim: Pε, Qε and ε are unique up to the change

Z 7→ τZ; τk = 1

and the corresponding change on ε:

(Z,εk−1,εk−2 . . . ,ε0) 7→ (τZ,τ2−kεk−1,τ
1−kεk−2, . . . ,τε0)

34 The preparation of the family Minicourse 1, Toulouse, November 2010



The proof

Let us suppose that two prepared families fε(z)
and f̃ε̃(z̃) are conjugate under a map
(ε̃, z̃) = (h(ε),Hε(z)):

f̃h(ε) = Hε ◦ fε ◦H−1
ε

fε
Fixed points zj are
those of
vε(z) = Pε(z)/(1+ azk) ∂∂z

f̃ε̃
Fixed points z̃j are
those of
ṽε̃(z̃) = P̃ε̃(z̃)/(1+ az̃k) ∂∂z̃

Note that the formal invariants are the same.
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Then Hε sends the fixed points zj to the fixed
points z̃j. Hence

H∗ε(ṽh(ε))(z) = Pε(z)Uε(z)
∂

∂z
= wε(z)

where U 6= 0.

vε and wε have the same singular points with
same eigenvalues! Hence

wε = Pε(z)
(

1
1+ azk +Pε(z)Mε(z)

)
∂

∂z

= vε(1+Pε(z)Nε(z))
∂

∂z
.
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There exists Kε such that K∗ε(vε) = wε.

Kε =ΦTε
vε

is given by the flow of vε under the time Tε
which is solution of

vε(Tε) = −
Pε(z)Nε(z)

1+Pε(z)Nε(z)

which obviously has an analytic solution.

Then (K−1
ε ◦Hε)∗(ṽh(ε)) = vε. The result follows

from the following theorem proved with L.
Teyssier.
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Theorem (RT)
We consider a germ of an analytic change of coordinates
Ψ : (z,ε) = (z,ε0, . . . ,εk−1) 7→ (ϕε (z) ,h0 (ε) , . . . ,hk−1 (ε)) =

(z,h) at (0,0, · · · ,0) ∈ C1+k. The following assertions are
equivalent :

1. the families
(

Pε(z)
1+a(ε)zk

∂
∂z

)
ε

and
(

Ph(z)
1+ã(h)zk

∂
∂z

)
h

are conjugate
under Ψ,

2. there exist τ with τk = 1 and T(ε) an analytic germ such
that, if Rτ(z) = τz

I ϕε (z) =Φ
T(ε)
vε ◦Rτ (z)

I εj = τ
j−1hj (ε),

I a(ε) = ã(h(ε)).
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Reduction to the case τ= 1

If ϕ ′0(0) = τwe need have τk = 1 in order to
preserve the form of v0.

So we can compose Ψ(z,ε) with Rτ and the
corresponding change of parameters
εj = τ

j−1hj (ε) and only discuss the composed
family.

Hence we can suppose that Ψ(z,ε) is such that
ϕ ′0(0) = 1.
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The case ε= 0

It is easy to check that the only changes of
coordinates tangent to the identity which
preserve v0 are the mapsΦt

v0
.

Indeed, such changes of coordinates have the
form z(1+mt(zk)) with mt(z) = tzk + o(zk). The
function mt(z) is completely determined by
m ′t(0) = t. This is exactly the form of the family
Φt

v0
.
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Reduction to the case ∂k+1ϕε
∂zk+1 (0) = 0

We correct ϕ to
G(z, t,ε) :=Φt

vε ◦ϕε (z)

with t(ε) well chosen.

Let

H(z, t,ε) :=
∂k+1G
∂zk+1 (z, t,ε)

K(t,ε) := H(0, t,ε)

K is analytic and
∂K
∂t

(0,0) = (k+1)! 6= 0.

Let t0 be such that K(t0,0) = 0. By the implicit function theorem, there
exists t(ε) unique such that t(0) = t0 and K(t(ε),ε)≡ 0.

Composing ϕε with Φt(ε)
Xε we can suppose that the original family Ψ

is such that ∂
k+1ϕε
∂zk+1 (0) = 0.
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The rest of the argument is an infinite descent

We introduce the ideal

I = 〈ε0, . . . ,εk−1〉.

We have
ϕε (z) := z+

∑
n≥0

fn (ε)zn

where fn ∈ I and fk+1 ≡ 0.
We must solve(

1+ a(ε)zk)(ϕk+1
ε (z)+hk−1ϕ

k−1
ε (z)+ · · ·+h0

)
−
(
1+ ã(h)ϕk

ε (z)
)(

zk+1 +εk−1zk−1 + · · ·+ε0
)
ϕ ′ε (z) = 0.

It is then clear that hj(ε) ∈ I and fj(ε) ∈ I.

Let gjzj be the term of degree j. We will play with the infinite set of
equations gj = 0, j≥ 0.
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We have
ϕε (z) := z+
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n≥0
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k−1
ε (z)+ · · ·+h0
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−
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1+ ã(h)ϕk

ε (z)
)(

zk+1 +εk−1zk−1 + · · ·+ε0
)
ϕ ′ε (z) = 0.

It is then clear that hj(ε) ∈ I and fj(ε) ∈ I.

Let gjzj be the term of degree j. We will play with the infinite set of
equations gj = 0, j≥ 0.
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The equations gj = 0 with 0≤ j≤ k−1 yield

hj −εj ∈ I2,

since all other terms in the expression of gj belong to I2.

The equation gk+j = 0 with 0≤ j≤ k yields fj ∈ I2.

Looking at the linear terms in the equations g` = 0 with ` > 2k+1
yields f`−k ∈ I2.
So we have that fj ∈ I2 for all j.
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since all other terms in the expression of gj belong to I2.

The equation gk+j = 0 with 0≤ j≤ k yields fj ∈ I2.
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The equations gj = 0 with 0≤ j≤ k−1 yield

hj −εj ∈ I2,

since all other terms in the expression of gj belong to I2.

The equation gk+j = 0 with 0≤ j≤ k yields fj ∈ I2.

Looking at the linear terms in the equations g` = 0 with ` > 2k+1
yields f`−k ∈ I2.
So we have that fj ∈ I2 for all j.
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The general step by induction

We suppose that hj −εj ∈ In when 0≤ j≤ k−1 and fj ∈ In whenever
j≥ 0.

To show that hj −εj ∈ In+1 for 0≤ j≤ k−1 we consider again the
corresponding equations gj = 0, where the only linear terms are
hj −εj. Hence all other terms of the equation belong to In+1 yielding
hj −εj ∈ In+1.

For the same reason the equation gk+j = 0 with 0≤ j≤ k yields
fj ∈ In+1 and the equations g` = 0 with ` > 2k+1 yields f`−k ∈ In+1.
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The general step by induction
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j≥ 0.

To show that hj −εj ∈ In+1 for 0≤ j≤ k−1 we consider again the
corresponding equations gj = 0, where the only linear terms are
hj −εj. Hence all other terms of the equation belong to In+1 yielding
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For the same reason the equation gk+j = 0 with 0≤ j≤ k yields
fj ∈ In+1 and the equations g` = 0 with ` > 2k+1 yields f`−k ∈ In+1.
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