Germs of analytic families of diffeomorphisms unfolding a parabolic point (I)

Christiane Rousseau

Work done with C. Christopher, P. Mardešić, R. Roussarie and L. Teyssier

Structure of the mini-course

- Statement of the problem (first lecture)
- The preparation of the family (first lecture)
- Construction of a modulus of analytic classification in the codimension 1 case (second lecture)
- The realization problem in the codimension 1 case (third lecture)

Statement of the problem

We consider germs of generic *k*-parameter families f_{ϵ} of diffeomorphisms unfolding a parabolic point of codimension *k*

$$f_0(z) = z + z^{k+1} + o(z^{k+1})$$

When are two such germs conjugate?

Conjugacy of two germs of families

Two germs of families of diffeomorphisms f_{ϵ} and $\tilde{f}_{\tilde{\epsilon}}$ are conjugate it there exists $r, \rho > 0$ and analytic functions

 $h: \mathbb{D}_{\rho} \to \mathbb{C}, \qquad H: \mathbb{D}_{r} \times \mathbb{D}_{\rho} \to \mathbb{C}$

such that

- *h* is a diffeomorphism and for each fixed ε,
 *H*_ε = *H*(·, ε) is a diffeomorphism;
- for all $\epsilon \in \mathbb{D}_{\rho}$ and for all $z \in \mathbb{D}_r$, then

$$\tilde{f}_{h(\epsilon)} = H_{\epsilon} \circ f_{\epsilon} \circ (H_{\epsilon})^{-1}$$

The choice of \mathbb{D}_r

\mathbb{D}_r is chosen so that the behaviour of f_0 on the boundary is as in

The choice of \mathbb{D}_r

\mathbb{D}_r is chosen so that the behaviour of f_0 on the boundary is as in

 \mathbb{D}_{ρ} is chosen sufficiently small so that f_{ϵ} has the same behaviour near the boundary. In particular, all fixed points of f_{ϵ} remain inside the disk.

A natural strategy: the use of normal forms

A germ of generic *k*-parameter family f_{ϵ} unfolding a parabolic point of codimension *k* is formally conjugate to the time-1 map of a vector field

$$v_{\epsilon} = \frac{P_{\epsilon}(z)}{1 + a(\epsilon)z^k} \frac{\partial}{\partial z}$$

where

$$P_{\epsilon}(z) = z^{k+1} + \epsilon_{k-1} z^{k-1} + \dots + \epsilon_1 z + \epsilon_0$$

A natural strategy: the use of normal forms

A germ of generic *k*-parameter family f_{ϵ} unfolding a parabolic point of codimension *k* is formally conjugate to the time-1 map of a vector field

$$v_{\epsilon} = \frac{P_{\epsilon}(z)}{1 + a(\epsilon)z^k} \frac{\partial}{\partial z}$$

where

$$P_{\epsilon}(z) = z^{k+1} + \epsilon_{k-1} z^{k-1} + \dots + \epsilon_1 z + \epsilon_0$$

Problem: the change to normal form diverges. What does it mean?

8 Statement of the problem

Can we exploit the formal normal form despite its divergence?

Let us look at the case k = 1:

$$v_{\epsilon} = \frac{z^2 - \epsilon}{1 + a(\epsilon)z} \frac{\partial}{\partial z}$$

Can we exploit the formal normal form despite its divergence?

Let us look at the case k = 1:

$$v_{\epsilon} = \frac{z^2 - \epsilon}{1 + a(\epsilon)z} \frac{\partial}{\partial z}$$

Two singular points $\pm \sqrt{\epsilon}$ with eigenvalues

$$\mu_{\pm} = \frac{\pm 2\sqrt{\epsilon}}{1 \pm a(\epsilon)\sqrt{\epsilon}}$$

The parameter is an analytic invariant of the vector field!

Indeed, we have

$$\frac{1}{\mu_{+}} + \frac{1}{\mu_{-}} = a(\epsilon)$$
$$\frac{1}{\mu_{+}} - \frac{1}{\mu_{-}} = \frac{1}{\sqrt{\epsilon}}$$

Hence, can we hope to bring the system to a "prenormal" form in which the parameter is invariant?

Hence, can we hope to bring the system to a "prenormal" form in which the parameter is invariant?

Yes!

This is the preparation part.

Hence, can we hope to bring the system to a "prenormal" form in which the parameter is invariant?

Yes!

This is the preparation part.

Advantage: a conjugacy between prepared families must preserve the *canonical* parameters.

Theorem

We consider a diffeomorphism with a parabolic point of codimension k:

$f_0(z) = z + z^{k+1} + o(z^{k+1})$

For any generic k-parameter unfolding f_{η} , there exists an analytic change of coordinate and parameter $(z,\eta) \mapsto (Z, \epsilon)$ in a neighborhood of the origin transforming the family into the prepared form

 $F_{\epsilon}(Z) = Z + P_{\epsilon}(Z)(1 + Q_{\epsilon}(Z) + P_{\epsilon}(Z)K(Z,\epsilon))$

Theorem

We consider a diffeomorphism with a parabolic point of codimension k:

$f_0(z) = z + z^{k+1} + o(z^{k+1})$

For any generic k-parameter unfolding f_{η} , there exists an analytic change of coordinate and parameter $(z,\eta) \mapsto (Z, \epsilon)$ in a neighborhood of the origin transforming the family into the prepared form

 $F_{\epsilon}(Z) = Z + P_{\epsilon}(Z)(1 + Q_{\epsilon}(Z) + P_{\epsilon}(Z)K(Z, \epsilon))$

such that, if Z_1, \ldots, Z_{k+1} are the fixed points, then

$$F'_{\epsilon}(Z_j) = \exp\left(\frac{P'_{\epsilon}(Z_j)}{1+a(\epsilon)Z_j^k}\right)$$

This determines almost uniquely the parameters!

The only freedom will be inherited from a rotation of order k in Z

 $Z \mapsto \tau Z; \qquad \tau^k = 1$

which yields the corresponding change on ϵ :

 $(\epsilon_{k-1},\epsilon_{k-2}...,\epsilon_0)\mapsto (\tau^{2-k}\epsilon_{k-1},\tau^{1-k}\epsilon_{k-2},...,\tau\epsilon_0)$

Proof of the theorem

We consider a diffeomorphism with a parabolic point of codimension *k*:

$$f_0(z) = z + z^{k+1} + o(z^{k+1})$$

A *k*-parameter unfolding can be written in the form

$$f_{\eta}(z) = z + p_{\eta}(z)g_{\eta}(z),$$

with
$$g_{\eta}(z) = 1 + O(\eta, z)$$
.

 $f_{\eta}(z) = z + p_{\eta}(z)(1 + q_{\eta}(z) + p_{\eta}(z)h_{\eta}(z))$

 $f_{\eta}(z) = z + p_{\eta}(z)(1 + q_{\eta}(z) + p_{\eta}(z)h_{\eta}(z))$ with

 $p_{\eta}(z) = z^{k+1} + \nu_{k-1}(\eta) z^{k-1} + \nu_1(\eta) z + \nu_0(\eta)$

 $f_{\eta}(z) = z + p_{\eta}(z)(1 + q_{\eta}(z) + p_{\eta}(z)h_{\eta}(z))$ with

$$p_{\eta}(z) = z^{k+1} + \nu_{k-1}(\eta) z^{k-1} + \nu_1(\eta) z + \nu_0(\eta)$$

and

$$q_{\eta}(z) = c_0(\eta) + c_1(\eta)z + \dots + c_k(\eta)z^k.$$

 $f_{\eta}(z) = z + p_{\eta}(z)(1 + q_{\eta}(z) + p_{\eta}(z)h_{\eta}(z))$ with

 $p_{\eta}(z) = z^{k+1} + v_{k-1}(\eta) z^{k-1} + v_1(\eta) z + v_0(\eta)$ and

$$q_{\eta}(z) = c_0(\eta) + c_1(\eta)z + \dots + c_k(\eta)z^k.$$

 $\frac{\partial v}{\partial n}$

Genericity condition: the Jacobian

Since

 $f_{\eta}(z) = z + p_{\eta}(z)(1 + q_{\eta}(z) + p_{\eta}(z)h_{\eta}(z))$ the fixed points z_i of f_{η} are the zeroes of p_{η} .

The strategy

The formal normal form is the time one map of a vector field

$$V_{\epsilon} = \frac{P_{\epsilon}(Z)}{1 + a(\epsilon)Z^k} \frac{\partial}{\partial Z}$$

The strategy

The formal normal form is the time one map of a vector field

$$V_{\epsilon} = \frac{P_{\epsilon}(Z)}{1 + a(\epsilon)Z^k} \frac{\partial}{\partial Z}$$

Hence the fixed points of f_{η} must be sent to the singular points Z_j of V_{ϵ} .

The formal normal form is the time one map of a vector field

$$V_{\epsilon} = \frac{P_{\epsilon}(Z)}{1 + a(\epsilon)Z^k} \frac{\partial}{\partial Z}$$

Hence the fixed points of f_{η} must be sent to the singular points Z_j of V_{ϵ} . Moreover we need have

$$f'_{\eta}(z_j) = \exp(V'_{\epsilon}(Z_j))$$

How do we find the formal invariant $a(\epsilon)$?

Let

$$\lambda_j = f'_{\eta}(z_j)$$

We have that

$$\sum 1/\ln(\lambda_j) = a(\epsilon).$$

How do we find the formal invariant $a(\epsilon)$?

Let

$$\lambda_j = f'_{\eta}(z_j)$$

We have that

$$\sum 1/\ln(\lambda_j) = a(\epsilon).$$

There exists a polynomial $r_{\eta}(z)$ of degree $\leq k$ such that at the points z_j we have

 $\ln\left(f'_{\eta}(z_j)\right) = p'_{\eta}(z_j)(1+r_{\eta}(z_j)).$

How do we find the formal invariant $a(\epsilon)$?

Let

$$\lambda_j = f'_{\eta}(z_j)$$

We have that

$$\sum 1/\ln(\lambda_j) = a(\epsilon).$$

There exists a polynomial $r_{\eta}(z)$ of degree $\leq k$ such that at the points z_j we have

$$\ln\left(f'_{\eta}(z_j)\right) = p'_{\eta}(z_j)(1+r_{\eta}(z_j)).$$

(Such a polynomial is found by the Lagrange interpolation formula for distinct z_j . The limit exists when two fixed points coallesce (codimension 1 case). We can fill in for the other values of η by Hartogs's Theorem.)

The reparameterization

By Kostov theorem, there exists a change of coordinate and parameter transforming the vector field:

$$p_{\eta}(z)(1+r_{\eta}(z))\frac{\partial}{\partial z}=v_{\eta}(z)$$

into:

$$P_{\epsilon}(Z)/(1+a(\epsilon)Z^k)\frac{\partial}{\partial Z}=V_{\epsilon}(Z),$$

where

$$P_{\epsilon}(Z) = Z^{k+1} + \epsilon_{k_1} Z^{k-1} + \epsilon_1 Z + \epsilon_0.$$

We apply this change of coordinate and parameter to f_{η} .

Claim: this brings f_{η} to a prepared form F_{ϵ}

It sends the zeros z_j of p_η(z) to the zeroes of P_ε(Z). Since the z_j are the fixed points of f_η, their images are the fixed points Z_j of F_ε.

Claim: this brings f_{η} to a prepared form F_{ϵ}

- It sends the zeros z_j of p_η(z) to the zeroes of P_ε(Z). Since the z_j are the fixed points of f_η, their images are the fixed points Z_j of F_ε.
- Hence

 $\begin{aligned} F_{\epsilon}(Z) &= Z + P_{\epsilon}(Z)K_{\epsilon}(Z) \\ &= Z + P_{\epsilon}(Z)(1 + Q_{\epsilon}(Z) + P_{\epsilon}(Z)H_{\epsilon}(Z)) \end{aligned}$

Claim: this brings f_{η} to a prepared form F_{ϵ}

- It sends the zeros z_j of p_η(z) to the zeroes of P_ε(Z). Since the z_j are the fixed points of f_η, their images are the fixed points Z_j of F_ε.
- Hence

 $\begin{aligned} F_{\epsilon}(Z) &= Z + P_{\epsilon}(Z)K_{\epsilon}(Z) \\ &= Z + P_{\epsilon}(Z)(1 + Q_{\epsilon}(Z) + P_{\epsilon}(Z)H_{\epsilon}(Z)) \end{aligned}$

• Let be a fixed point. Then $F'_{\epsilon}(Z_j) = \lambda_j = f'_{\eta}(z_j) = \exp(v'_{\eta}(z_j)) = \exp(V'_{\epsilon}(Z_j))$ which is what we need for a prepared family. The parameters are (almost) canonical

We have $F_{\epsilon}(Z) = Z + P_{\epsilon}(Z)K_{\epsilon}(Z)$ $= Z + P_{\epsilon}(Z)(1 + Q_{\epsilon}(Z) + P_{\epsilon}(Z)H_{\epsilon}(Z))$

Claim: P_{ϵ} , Q_{ϵ} and ϵ are unique up to the change

 $Z \mapsto \tau Z; \qquad \tau^k = 1$

and the corresponding change on ϵ :

 $(Z, \epsilon_{k-1}, \epsilon_{k-2}..., \epsilon_0) \mapsto (\tau Z, \tau^{2-k} \epsilon_{k-1}, \tau^{1-k} \epsilon_{k-2}, ..., \tau \epsilon_0)$

The proof

Let us suppose that two prepared families $f_{\epsilon}(z)$ and $\tilde{f}_{\tilde{\epsilon}}(\tilde{z})$ are conjugate under a map $(\tilde{\epsilon}, \tilde{z}) = (h(\epsilon), H_{\epsilon}(z))$:

$$\tilde{f}_{h(\epsilon)} = H_{\epsilon} \circ f_{\epsilon} \circ H_{\epsilon}^{-1}$$

The proof

Let us suppose that two prepared families $f_{\epsilon}(z)$ and $\tilde{f}_{\tilde{\epsilon}}(\tilde{z})$ are conjugate under a map $(\tilde{\epsilon}, \tilde{z}) = (h(\epsilon), H_{\epsilon}(z))$:

$$\tilde{f}_{h(\epsilon)} = H_{\epsilon} \circ f_{\epsilon} \circ H_{\epsilon}^{-1}$$

 f_{ϵ} Fixed points z_j are those of $v_{\epsilon}(z) = P_{\epsilon}(z)/(1+az^k)\frac{\partial}{\partial z}$ $\tilde{f}_{\tilde{\epsilon}}$ Fixed points \tilde{z}_j are those of $\tilde{v}_{\tilde{\epsilon}}(\tilde{z}) = \tilde{P}_{\tilde{\epsilon}}(\tilde{z})/(1+a\tilde{z}^k)\frac{\partial}{\partial \tilde{z}}$ The proof

Let us suppose that two prepared families $f_{\epsilon}(z)$ and $\tilde{f}_{\tilde{\epsilon}}(\tilde{z})$ are conjugate under a map $(\tilde{\epsilon}, \tilde{z}) = (h(\epsilon), H_{\epsilon}(z))$:

$$\tilde{f}_{h(\epsilon)} = H_{\epsilon} \circ f_{\epsilon} \circ H_{\epsilon}^{-1}$$

Note that the formal invariants are the same.

Then H_{ϵ} sends the fixed points z_j to the fixed points \tilde{z}_j . Hence

$$H_{\epsilon}^{*}(\tilde{v}_{h(\epsilon)})(z) = P_{\epsilon}(z)U_{\epsilon}(z)\frac{\partial}{\partial z} = w_{\epsilon}(z)$$

where $U \neq 0$.

Then H_{ϵ} sends the fixed points z_j to the fixed points \tilde{z}_j . Hence

$$H_{\epsilon}^{*}(\tilde{v}_{h(\epsilon)})(z) = P_{\epsilon}(z)U_{\epsilon}(z)\frac{\partial}{\partial z} = w_{\epsilon}(z)$$

where $U \neq 0$.

 v_{ϵ} and w_{ϵ} have the same singular points with same eigenvalues! Hence

$$w_{\epsilon} = P_{\epsilon}(z) \left(\frac{1}{1 + az^{k}} + P_{\epsilon}(z)M_{\epsilon}(z) \right) \frac{\partial}{\partial z}$$
$$= v_{\epsilon}(1 + P_{\epsilon}(z)N_{\epsilon}(z))\frac{\partial}{\partial z}.$$

There exists K_{ϵ} such that $K_{\epsilon}^*(v_{\epsilon}) = w_{\epsilon}$.

Minicourse 1, Toulouse, November 2010

40 The preparation of the family

There exists K_{ϵ} such that $K_{\epsilon}^{*}(v_{\epsilon}) = w_{\epsilon}$. $K_{\epsilon} = \Phi_{v_{\epsilon}}^{T_{\epsilon}}$ is given by the flow of v_{ϵ} under the time T_{ϵ} which is solution of

$$v_{\epsilon}(T_{\epsilon}) = -\frac{P_{\epsilon}(z)N_{\epsilon}(z)}{1 + P_{\epsilon}(z)N_{\epsilon}(z)}$$

which obviously has an analytic solution.

There exists K_{ϵ} such that $K_{\epsilon}^{*}(v_{\epsilon}) = w_{\epsilon}$. $K_{\epsilon} = \Phi_{v_{\epsilon}}^{T_{\epsilon}}$ is given by the flow of v_{ϵ} under the time T_{ϵ} which is solution of

$$v_{\epsilon}(T_{\epsilon}) = -\frac{P_{\epsilon}(z)N_{\epsilon}(z)}{1 + P_{\epsilon}(z)N_{\epsilon}(z)}$$

which obviously has an analytic solution.

Then $(K_{\epsilon}^{-1} \circ H_{\epsilon})^* (\tilde{v}_{h(\epsilon)}) = v_{\epsilon}$. The result follows from the following theorem proved with L. Teyssier.

Theorem (RT)

We consider a germ of an analytic change of coordinates $\Psi : (z, \epsilon) = (z, \epsilon_0, ..., \epsilon_{k-1}) \mapsto (\varphi_{\epsilon}(z), h_0(\epsilon), ..., h_{k-1}(\epsilon)) = (z, h) at (0, 0, ..., 0) \in \mathbb{C}^{1+k}$. The following assertions are equivalent :

- 1. the families $\left(\frac{P_{\epsilon}(z)}{1+a(\epsilon)z^k}\frac{\partial}{\partial z}\right)_{\epsilon}$ and $\left(\frac{P_h(z)}{1+\tilde{a}(h)z^k}\frac{\partial}{\partial z}\right)_h$ are conjugate under Ψ ,
- 2. there exist τ with $\tau^k = 1$ and $T(\epsilon)$ an analytic germ such that, if $R_{\tau}(z) = \tau z$

•
$$\varphi_{\epsilon}(z) = \Phi_{v_{\epsilon}}^{T(\epsilon)} \circ R_{\tau}(z)$$

• $\epsilon_{j} = \tau^{j-1} h_{j}(\epsilon),$
• $a(\epsilon) = \tilde{a}(h(\epsilon)).$

Reduction to the case $\tau = 1$

If $\varphi'_0(0) = \tau$ we need have $\tau^k = 1$ in order to preserve the form of v_0 .

44 The preparation of the family

Reduction to the case $\tau = 1$

If $\varphi'_0(0) = \tau$ we need have $\tau^k = 1$ in order to preserve the form of v_0 .

So we can compose $\Psi(z, \epsilon)$ with R_{τ} and the corresponding change of parameters $\epsilon_j = \tau^{j-1} h_j(\epsilon)$ and only discuss the composed family.

Hence we can suppose that $\Psi(z, \epsilon)$ is such that $\varphi'_0(0) = 1$.

It is easy to check that the only changes of coordinates tangent to the identity which preserve v_0 are the maps $\Phi_{v_0}^t$.

It is easy to check that the only changes of coordinates tangent to the identity which preserve v_0 are the maps $\Phi_{v_0}^t$.

Indeed, such changes of coordinates have the form $z(1 + m_t(z^k))$ with $m_t(z) = tz^k + o(z^k)$. The function $m_t(z)$ is completely determined by $m'_t(0) = t$. This is exactly the form of the family $\Phi^t_{v_0}$.

We correct φ to

$$G(z,t,\epsilon) := \Phi_{v_{\epsilon}}^{t} \circ \varphi_{\epsilon}(z)$$

with $t(\epsilon)$ well chosen.

We correct φ to

 $G(z,t,\epsilon):=\Phi_{v_{\epsilon}}^{t}\circ\varphi_{\epsilon}\left(z\right)$

with $t(\epsilon)$ well chosen.

Let

$$H(z,t,\epsilon) := \frac{\partial^{k+1}G}{\partial z^{k+1}}(z,t,\epsilon)$$
$$K(t,\epsilon) := H(0,t,\epsilon)$$

K is analytic and

$$\frac{\partial K}{\partial t}(0,0) = (k+1)! \neq 0.$$

We correct φ to

 $G(z,t,\epsilon):=\Phi_{v_{\epsilon}}^{t}\circ\varphi_{\epsilon}\left(z\right)$

with $t(\epsilon)$ well chosen.

Let

$$H(z,t,\epsilon) := \frac{\partial^{k+1}G}{\partial z^{k+1}}(z,t,\epsilon)$$
$$K(t,\epsilon) := H(0,t,\epsilon)$$

K is analytic and

$$\frac{\partial K}{\partial t}(0,0) = (k+1)! \neq 0.$$

Let t_0 be such that $K(t_0, 0) = 0$. By the implicit function theorem, there exists $t(\epsilon)$ unique such that $t(0) = t_0$ and $K(t(\epsilon), \epsilon) \equiv 0$.

We correct φ to

 $G(z,t,\epsilon):=\Phi_{v_{\epsilon}}^{t}\circ\varphi_{\epsilon}\left(z\right)$

with $t(\epsilon)$ well chosen.

Let

$$H(z,t,\epsilon) := \frac{\partial^{k+1}G}{\partial z^{k+1}}(z,t,\epsilon)$$
$$K(t,\epsilon) := H(0,t,\epsilon)$$

K is analytic and

$$\frac{\partial K}{\partial t}(0,0) = (k+1)! \neq 0.$$

Let t_0 be such that $K(t_0, 0) = 0$. By the implicit function theorem, there exists $t(\epsilon)$ unique such that $t(0) = t_0$ and $K(t(\epsilon), \epsilon) \equiv 0$.

Composing φ_{ϵ} with $\Phi_{X_{\epsilon}}^{t(\epsilon)}$ we can suppose that the original family Ψ is such that $\frac{\partial^{k+1}\varphi_{\epsilon}}{\partial z^{k+1}}(0) = 0$.

The rest of the argument is an infinite descent

We introduce the ideal

$$I = \langle \epsilon_0, \ldots, \epsilon_{k-1} \rangle.$$

We have

$$\varphi_{\epsilon}(z) := z + \sum_{n \ge 0} f_n(\epsilon) z^n$$

where $f_n \in I$ and $f_{k+1} \equiv 0$. We must solve

$$\begin{pmatrix} 1+a(\epsilon)z^k \end{pmatrix} \left(\varphi_{\epsilon}^{k+1}(z) + h_{k-1}\varphi_{\epsilon}^{k-1}(z) + \dots + h_0 \right) \\ - \left(1+\tilde{a}(h)\varphi_{\epsilon}^k(z) \right) \left(z^{k+1} + \epsilon_{k-1}z^{k-1} + \dots + \epsilon_0 \right) \varphi_{\epsilon}'(z) = 0.$$

It is then clear that $h_i(\epsilon) \in I$ and $f_i(\epsilon) \in I$.

The rest of the argument is an infinite descent

We introduce the ideal

$$I = \langle \epsilon_0, \ldots, \epsilon_{k-1} \rangle.$$

We have

$$\varphi_{\epsilon}(z) := z + \sum_{n \ge 0} f_n(\epsilon) z^n$$

where $f_n \in I$ and $f_{k+1} \equiv 0$. We must solve

$$\begin{pmatrix} 1+a(\epsilon)z^k \end{pmatrix} \left(\varphi_{\epsilon}^{k+1}(z) + h_{k-1}\varphi_{\epsilon}^{k-1}(z) + \dots + h_0 \right) \\ - \left(1+\tilde{a}(h)\varphi_{\epsilon}^k(z) \right) \left(z^{k+1} + \epsilon_{k-1}z^{k-1} + \dots + \epsilon_0 \right) \varphi_{\epsilon}'(z) = 0.$$

It is then clear that $h_i(\epsilon) \in I$ and $f_i(\epsilon) \in I$.

Let $g_j z^j$ be the term of degree *j*. We will play with the infinite set of equations $g_j = 0, j \ge 0$.

The equations $g_j = 0$ with $0 \le j \le k - 1$ yield

$$h_j - \epsilon_j \in I^2,$$

since all other terms in the expression of g_i belong to I^2 .

Minicourse 1, Toulouse, November 2010

The equations $g_j = 0$ with $0 \le j \le k - 1$ yield

$$h_j - \epsilon_j \in I^2,$$

since all other terms in the expression of g_i belong to I^2 .

The equation $g_{k+j} = 0$ with $0 \le j \le k$ yields $f_j \in I^2$.

The equations $g_j = 0$ with $0 \le j \le k - 1$ yield

$$h_j - \epsilon_j \in I^2,$$

since all other terms in the expression of g_i belong to I^2 .

The equation $g_{k+j} = 0$ with $0 \le j \le k$ yields $f_j \in I^2$.

Looking at the linear terms in the equations $g_{\ell} = 0$ with $\ell > 2k+1$ yields $f_{\ell-k} \in I^2$. So we have that $f_j \in I^2$ for all j.

The general step by induction

We suppose that $h_j - \epsilon_j \in I^n$ when $0 \le j \le k - 1$ and $f_j \in I^n$ whenever $j \ge 0$.

The general step by induction

We suppose that $h_j - \epsilon_j \in I^n$ when $0 \le j \le k - 1$ and $f_j \in I^n$ whenever $j \ge 0$.

To show that $h_j - \epsilon_j \in I^{n+1}$ for $0 \le j \le k-1$ we consider again the corresponding equations $g_j = 0$, where the only linear terms are $h_j - \epsilon_j$. Hence all other terms of the equation belong to I^{n+1} yielding $h_j - \epsilon_j \in I^{n+1}$.

The general step by induction

We suppose that $h_j - \epsilon_j \in I^n$ when $0 \le j \le k - 1$ and $f_j \in I^n$ whenever $j \ge 0$.

To show that $h_j - \epsilon_j \in I^{n+1}$ for $0 \le j \le k-1$ we consider again the corresponding equations $g_j = 0$, where the only linear terms are $h_j - \epsilon_j$. Hence all other terms of the equation belong to I^{n+1} yielding $h_j - \epsilon_j \in I^{n+1}$.

For the same reason the equation $g_{k+j} = 0$ with $0 \le j \le k$ yields $f_j \in I^{n+1}$ and the equations $g_{\ell} = 0$ with $\ell > 2k+1$ yields $f_{\ell-k} \in I^{n+1}$.