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Structure of the mini-course

I Statement of the problem (first lecture)
I The preparation of the family (first lecture)
I Construction of a modulus of analytic

classification in the codimension 1 case
(second lecture)

I The realization problem in the codimension 1 case
(third lecture)
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The parabolic germ
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The strategy

Because of the preparation, we can work for
fixed ε.

For each ε ∈ Dρ with ρ chosen sufficiently small
we compare fε with the “model” given by the
formal normal form, namely the time-1 map of

vε =
z2 −ε

1+ a(ε)z
∂

∂z

Comparing is constructing a change of
coordinates to normal form.
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A global analytic comparison on Dr does not exist

So we cover Dr with two sectors U±. Over each
sector the comparison is almost unique (up to a
symmetry of the model, which is a time t map
of vε.)

The modulus is given by the comparison of the
two normalizations over U∩ = U+∩U−. It is a
symmetry of the model. (Because U∩ is small,
there are many more symmetries .)
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The choice of the sectors U±
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The underlying idea
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The dynamics is transver-
sal to the inner part of the
boundary of the sectors (ex-
cept at the fixed point).

I It goes from U+ to U−

on the part not joining
the fixed points.

I It goes from U− to U+

on the part joining the
fixed points.
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The choice of the sector in ε

We work with a ramified covering of a
neighborhood Dρ of the origin in ε-space.

Vδ = {ε̂ : |ε̂|< ρ,arg ε̂ ∈ (−π+δ,3π−δ)}

for δ ∈ (0,π).

δ can be taken arbitrarily small.
The smaller δ, the smaller ρ.
In particular, the opening is al-
ways smaller than 4π.
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The lift to the time coordinate

In practice we prefer to work with the time
coordinate Z of the vector field

wε = (z2 −ε)
∂

∂z
,

namely we make the multivalued change of
coordinate

Z = p−1
ε (z) =

{
1

2
√
ε

ln z−
√
ε

z+
√
ε
ε 6= 0

−1
z ε= 0

with period α= πi√
ε̂

when ε 6= 0.
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The underlying idea

If we allow complex time, then all points z ∈ Dr
are in the trajectory of a unique point z0. Hence,
z = φZ

w0
(z0) for some Z.

The boundaries of the spiral sectors come from
lines in Z-space.
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The sectors in Z-space
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The Fatou coordinates

LetΩ±ε̂ be the sectors in Z-space. We construct
Fatou coordinatesΦ±ε̂ :Ω±ε̂ → C which
conjugate Fε (the lifting of fε in Z-coordinate) to
T1 the translation by 1:

Φ±ε̂ ◦Fε = T1 ◦Φε̂
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The construction of Fatou coordinates

We take a slanted line `

in Ω±ε̂ so that ` ∩ Fε(`) =
/0, and so that the strip S
between ` and F(`) is in-
cluded inΩ±ε̂ .

We construct φ : S→ C conjugating Fε with T1
by linear interpolation. We extend φ. The map
φ is quasi-conformal. We correct φ to a
conformal map by Ahlfors-Bers theorem.
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The strips are fundamental domains in z-space
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Dependence of the Fatou coordinates on ε̂

We can construct the Fatou coordinatesΦ±ε̂ so that they
depend analytically on ε̂with continuous limit at ε̂= 0.

Indeed, the Fatou coordinates which satisfy

Φ±ε̂ ◦Fε = T1 ◦Φε̂

are unique modulo left composition with a translation.

In particular, they are uniquely defined by a base point
such that

Φ±ε̂ (Z(ε̂)) = 0

It suffices to take Z(ε̂) depending analytically on ε̂with
continuous limit at ε̂= 0.
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The modulus of analytic classification

The sectors Ω±ε̂ inter-
sect along two strips
Ω0
ε̂ and Ω∞̂

ε where we
can compare the Fatou
coordinates Ω+ Ω−
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The modulus of analytic classification

We define{
Ψ∞̂
ε =Φ−

ε̂ ◦ (Φ
+
ε̂ )

−1 on Ω∞̂
ε

Ψ0
ε̂ =Φ

−
ε̂ ◦ (Φ

+
ε̂ )

−1 on Ω0
ε̂

The modulus is defined as

the equivalence class of(
Ψ0
ε̂,Ψ

∞̂
ε

)
ε̂∈Vδ
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The equivalence relation

(
Ψ0
ε̂,Ψ

∞̂
ε

)
ε̂∈Vδ

∼
(
Ψ̌0
ε̂, Ψ̌

∞̂
ε

)
ε̂∈Vδ

if and only if there exists Cε̂ and C ′ε̂ depending
analytically on ε̂with continuous limit at ε̂= 0
such that {

Ψ0
ε̂ = TCε̂ ◦ Ψ̌0

ε̂ ◦TC ′ε̂
Ψ∞̂ε = TCε̂ ◦ Ψ̌∞̂ε ◦TC ′ε̂
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Theorem. [MRR] Two germs of generic families
unfolding a codimension 1 parabolic point are
analytically conjugate if and only if they have
the same formal invariant a(ε) and the same
modulus [(

Ψ0
ε̂,Ψ

∞̂
ε

)
ε̂∈Vδ

]
/ ∼
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The proof

Let us suppose that two germs of prepared
diffeomorphisms fε and f̃ε have the same modulus. We
can of course adjust the Fatou coordinatesΦ±ε̂ and Φ̃±ε̂ so
that the representatives of the modulus be the same:

Ψ0,∞
ε̂ = Ψ̃0,∞

ε̂

Then a conjugacy gε̂ between the two systems is given by

gε̂ =

{
pε ◦ (Φ̃+

ε̂ )
−1 ◦Φ+

ε̂ ◦p−1
ε on U+

pε ◦ (Φ̃−
ε̂ )

−1 ◦Φ−
ε̂ ◦p−1

ε on U−
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Correction to a uniform conjugacy

We consider values {
ε= ε̂

ε̌= ε̂e2πi

Then
hε = ǧ−1

ε ◦gε
is a symmetry of fε.

Hence we must study the symmetries of fε, i.e. functions
hε such that

hε ◦ fε = fε ◦hε

If fε has few symmetries then we can deduce that hε ≡ id.
Otherwise, we need to correct the family of conjugacies gε̂
to a uniform family.
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The symmetries of fε

We read them in the W =Φ(Z) variable. In this variable
the dynamics is given by T1. Hence the symmetries on the
image of a Fatou coordinate are given by translations.

To be global these symmetries need to commute with the
modulus components Ψ0

ε̂ and Ψ∞̂
ε .

{
Ψ0
ε̂(W) = W+

∑
n<0 bn(ε̂)exp(2πinW)

Ψ∞̂
ε (W) = W−2πia(ε)+

∑
n>0 cn(ε̂)exp(2πinW)
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Two cases

{
Ψ0
ε̂(W) = W+

∑
n<0 bn(ε̂)exp(2πinW)

Ψ∞̂
ε (W) = W−2πia(ε)+

∑
n>0 cn(ε̂)exp(2πinW)

1. If one of bn or cn is not identically zero, then the
symmetries are discrete (either the identity, or of the form

f
◦ p

q
ε for some fixed q independent of ε). Since h0 = id, then

hε = id.
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2. If bn ≡ 0 and cn ≡ 0 for all n, then all symmetries are of
the form f ◦t(ε)ε for t(ε) ∈ C. Hence

hε = f ◦t(ε)ε

We correct gε̂ to
gε̂ ◦ f ◦τ(ε)ε

such that
τ(ε̌)−τ(ε) = t(ε)
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The parametric resurgence phenomenon

We prefer to present the modulus under the form

(ψ0
ε̂,ψ

∞̂
ε )

where
ψ0,∞
ε̂ = E◦Ψ0,∞

ε̂ ◦E−1

and
E = exp(−2πiW).

Then {
ψ0
ε̂ : (C,0)→ (C,0)

ψ∞̂
ε : (C,∞)→ (C,∞)
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We consider values of ε such that f ′ε(±
√
ε) ∈ S1.

The renormalized return maps become{
h0
ε =ψ

0
ε ◦Lε

h∞ε =ψ∞
ε ◦Lε

We consider sequences {εn} of values of ε such that εn→ 0
and

Lεn(w) = exp
(

2πip
q

)
w
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Parametric resurgence phenomenon

Then for sufficiently large n
I h0

εn is non linearizable as soon as ψ0
0 ◦Lεn is not

linearizable.
I As a consequence fεn is non linearizable at −

√
ε as

soon as ψ0
0 ◦Lεn is not linearizable.
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At the other singular point

For sequences {εn} such that εn→ 0 and

Lεn(w)exp(−4π2a(ε)) = exp
(

2πip
q

)
w

Then for sufficiently large n
I h∞εn is non linearizable as soon as ψ∞

0 ◦Lεn is not
linearizable.

I As a consequence fεn is non linearizable at
√
ε as soon

as ψ∞∞ ◦Lεn is not linearizable.

44 Applications Minicourse 2, Toulouse, November 2010



Interpretation of (ψ0
ε,ψ

∞
ε )

For values of the multiplier on the unit circle, ψ0
ε

controls the dynamics at −
√
ε and ψ∞ε at +

√
ε.

Understanding the dependence of (ψ0
ε,ψ

∞
ε )

would allow to understand the dynamics of
points whose multiplier corresponds to an
irrational rotation.
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The codimension k case

The strategy
I Define a modulus for generic values of the parameters

for which all fixed points are distinct.

I The generic values of the parameters in a
neighborhood of the origin belong to a finite union of
open sets Vj, all adherent to the origin in parameter
space.

I Give a description of the modulus for values of the
parameters in each Vj which depends analytically on
the parameters with continuous limit when ε→ 0.
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This yields a complete modulus of analytic
classification

We consider two germs of prepared families of
diffeomorphisms with same modulus.

I They are analytically conjugate over each Vj.

I Using the symmetries of the families, we correct to a
uniform conjugacy over the generic values of the
parameters in a neighborhood of the origin.

I The conjugacies are bounded when approaching
codimension 1 parameter values (one double fixed
point), so they can be extended to this case.

I We fill the holes by Hartogs’ theorem.

50 The codimension k case Minicourse 2, Toulouse, November 2010



This yields a complete modulus of analytic
classification

We consider two germs of prepared families of
diffeomorphisms with same modulus.

I They are analytically conjugate over each Vj.
I Using the symmetries of the families, we correct to a

uniform conjugacy over the generic values of the
parameters in a neighborhood of the origin.

I The conjugacies are bounded when approaching
codimension 1 parameter values (one double fixed
point), so they can be extended to this case.

I We fill the holes by Hartogs’ theorem.

51 The codimension k case Minicourse 2, Toulouse, November 2010



This yields a complete modulus of analytic
classification

We consider two germs of prepared families of
diffeomorphisms with same modulus.

I They are analytically conjugate over each Vj.
I Using the symmetries of the families, we correct to a

uniform conjugacy over the generic values of the
parameters in a neighborhood of the origin.

I The conjugacies are bounded when approaching
codimension 1 parameter values (one double fixed
point), so they can be extended to this case.

I We fill the holes by Hartogs’ theorem.

52 The codimension k case Minicourse 2, Toulouse, November 2010



This yields a complete modulus of analytic
classification

We consider two germs of prepared families of
diffeomorphisms with same modulus.

I They are analytically conjugate over each Vj.
I Using the symmetries of the families, we correct to a

uniform conjugacy over the generic values of the
parameters in a neighborhood of the origin.

I The conjugacies are bounded when approaching
codimension 1 parameter values (one double fixed
point), so they can be extended to this case.

I We fill the holes by Hartogs’ theorem.

53 The codimension k case Minicourse 2, Toulouse, November 2010


	The strategy
	The choice of the sectors
	The construction of Fatou coordinates
	The modulus of analytic classification
	Applications
	The codimension k case

