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Structure of the mini-course

I Statement of the problem (first lecture)
I The preparation of the family (first lecture)
I Construction of a modulus of analytic classification in

the codimension 1 case (second lecture)
I The realization problem in the codimension

1 case (third lecture)
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The classification theorem

Theorem. [MRR] Two germs of generic families
unfolding a codimension 1 parabolic point are
analytically conjugate if and only if they have
same formal invariant a(ε) and same modulus[(

Ψ0
ε̂,Ψ

∞̂
ε

)
ε̂∈Vδ

]
/ ∼
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The realization problem

Which a(ε) and modulus[(
Ψ0
ε̂,Ψ

∞̂
ε

)
ε̂∈Vδ

]
/ ∼ are realizable?
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The strategy

1. Any a(ε) and
(
Ψ0
ε̂,Ψ

∞̂
ε

)
can be realized as the

modulus of a diffeomorphism fε̂. This is the
local realization.

2. If a(ε) is analytic and
(
Ψ0
ε̂,Ψ

∞̂
ε

)
depend

analytically on ε̂, then the realization fε̂ can be
made depending analytically on ε̂ ∈ Vδ with
uniform limit for ε̂= 0.
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3. On the auto-intersection of Vδ we let{
ε= ε̂

ε̃= ε̂e2πi

A necessary condition for the realization by a
uniform family is that fε and fε̃ be conjugate.

4. This necessary condition, called the
compatibility condition, is also sufficient and
allows to “correct” fε̂ to a uniform family. This
is the global realization.
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The local realization for a fixed ε̂

The technique is standard: we realize on an abstract
1-dimensional complex manifold, which we recognize to
be holomorphically equivalent to an open set of C.

Indeed, we consider the two
sectors U±ε̂ , each endowed
with the model diffeomorphism
f±ε , i.e. the time-1 map of the
vector field

vε =
z2 −ε

1+ a(ε)z
∂

∂z

0
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U+

U+

U+

U−

U−

U−
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The gluing on U+
ε̂ ∩U−

ε̂

This gluing must be compatible with f±ε on the three parts
of the intersection, U0

ε̂, U∞̂
ε and UC

ε̂ .

In the time coordinate W of
vε this gluing is simply given
by 

Ψ0
ε̂ on U0

ε̂

Ψ∞̂
ε on U∞̂

ε

Tε̂ on UC
ε̂

which commutes with T1.
The map Tε̂ is a translation:
it is the Lavaurs map.

0
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Ξ 8

Ξ 0

08

Ξ 8~

Ξ
~ 0Ξ0

Ξ 8

Ξ 8
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The time W of vε

W = q−1
ε̂ (z) =

{
1

2
√
ε̂

ln z−
√
ε̂

z+
√
ε̂
+ a(ε)

2 ln(z2 −ε), ε̂ 6= 0,

−1
z + a(0) ln(z), ε̂= 0.
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Ψ 8

8

~

Ψ

Ψ0

Ψ 8
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Ψ 8
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Why Tε̂ is a translation?

In the time coordinate W,
it is a diffeomorphism
commuting with T1 on a
strip of width larger then
1 going from ImW = −∞
to ImW =+∞.
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Ω0
+ Ω0

−

~Ψ0

Ψ 8

8

~

Ψ

Ψ0

Ψ 8

ε̂ ε̂
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ε̂
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ε̂

Ψ 8

Ψ0

ε̂

ε̂

∼α0

α0

Ω+
ε̂

~

Ω+
ε̂

_

Ω−
ε̂

~

Ω−
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_
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The gluing in z-coordinate

In the z-coordinate, the gluing is
simply given by
Ξ0
ε̂ = qε̂ ◦Ψ0

ε̂ ◦q−1
ε̂ on U0

ε̂

Ξ∞̂ε = qε̂ ◦Ψ∞̂
ε ◦q−1

ε̂ on U∞̂
ε

id on UC
ε̂
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Behavior of the gluing near the fixed points

Ξ0,∞
ε̂ (z) = id+ξ0,∞

ε̂ (z) with
∣∣ξ0
ε̂(z)

∣∣< C(ε̂)
∣∣∣z+√ε̂∣∣∣ A

|
√
ε̂|∣∣ξ∞̂ε (z)

∣∣< C(ε̂)
∣∣∣z−√ε̂∣∣∣ A

|
√
ε̂|
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The compatibility condition

Ω+ Ω−

Ω0
+ Ω0

−
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Ψ 8

8

~

Ψ

Ψ0

Ψ 8

ε̂ ε̂

ε̂

ε̂

ε̂

Ψ0
ε̂

Ψ 8

Ψ0

ε̂

ε̂

∼α0

α0

Ω+
ε̂

~

Ω+
ε̂

_

Ω−
ε̂

~
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_

For ε̂ in the auto-
intersection of Vδ we
have two descriptions
of the modulus. A
necessary condition
for realizability to a
uniform family in ε

is that they encode
conjugate dynamics.
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Parameter values in the auto-intersection

For these values, the fixed points are linearizable and
there is an orbit from one point to the other.

This allows for a third description of the modulus studied
by Glutsyuk.

Indeed, we can bring the diffeomorphism to the model
(normal form) in the neighborhood of each fixed point by
means of maps ϕ±. The two normalization domains
intersect. The Glutsyuk modulus is given by the
comparison of the two normalizations

ϕ− ◦ (ϕ+)−1

The Glutsyuk modulus is unique up to composition on
the left and on the right by maps of the form vt

ε.
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Construction of the Fatou Glutsyuk coordinates

As before we construct Fatou Glutsyuk coordinates,Φl

and Φr, but we use lines parallel to the line of holes

Ψε̂

Ψ0

Ψ 8

G

+
ε̂



−
ε̂



−


+
0 0

The Glutsyuk modulus is

ΨG =Φr ◦ (Φl)−1

It is unique up to composition on the left and on the right
with translations and satisfies

Tαr ◦ΨG = ΨG ◦Tαl
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How to recover the Fatou Glutsyuk coordinates?

How to recover them from the modulus

(ε̂,a(ε),Ψ0
ε̂,Ψ

∞̂
ε )?

We describe the orbit space of Fε with the help
of ONE Fatou coordinate and a renormalized
return map.
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The renormalized return maps

Lavaurs point of view

They are given by{
Tα̃0 ◦ Ψ̃0

Tα̃0 ◦ Ψ̃∞
or {

Ψ̃0 ◦Tα̃0

Ψ̃∞ ◦Tα̃0

~Ψ0

Ψ 8~

ε̂

ε̂

∼α0

S+
ε̂

~
S−

ε̂

~
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The renormalized return maps

Glutsyuk point of view

The Fatou Glutsyuk co-
ordinates are the coordi-
nates in which the renor-
malized return maps are
given by{

Tα̃0

Tα̃∞

Ψε̂
G
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The change of coordinates

The changes from Fatou (Lavaurs) coordinates
to Fatou Glutsyuk coordinates are the changes
of coordinates transforming{

Tα̃0 ◦ Ψ̃0

Tα̃0 ◦ Ψ̃∞ or

{
Ψ̃0 ◦Tα̃0

Ψ̃∞ ◦Tα̃0

to {
Tα̃0

Tα̃∞
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Working in the upper region

There exists maps
H̃0 ◦Tα̃0 ◦ Ψ̃0 = Tα̃0 ◦ H̃0

H̃∞ ◦Tα̃0 ◦ Ψ̃∞ = Tα̃∞ ◦ H̃∞
H0 ◦Ψ0 ◦Tα0 = Tα0 ◦H0

H∞ ◦Ψ∞ ◦Tα0 = Tα∞ ◦H∞
The maps H̃0,∞ and H0,∞ are
the changes of coordinates to
Fatou Glustyuk coordinates.
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Ω0
+ Ω0

−

~Ψ0

Ψ 8
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~

Ψ

Ψ0

Ψ 8
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~
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_
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~
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The compatibility condition

It is given by:

H̃∞ ◦ (H̃0)−1 = TDε
◦H0 ◦ (H∞)−1 ◦TD ′ε

It is possible to normalize the coordinates so that Dε ≡−2πia.

Corollary: The functionsΨ0,∞
ε̂ are 1-summable in

√
ε̂.

The directions of non-summability are the Glutsyuk
directions (real multipliers).

Theorem: The family

{(ψ0
ε̂,ψ

∞̂
ε )}ε̂∈V

is realizable if and only if the compatibility condition is
satisfied.
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Proof of the Corollary

In upper region
H̃0 ◦Tα̃0 ◦ Ψ̃0 = Tα̃0 ◦ H̃0

H̃∞ ◦Tα̃0 ◦ Ψ̃∞ = Tα̃∞ ◦ H̃∞
H0 ◦Ψ0 ◦Tα0 = Tα0 ◦H0

H∞ ◦Ψ∞ ◦Tα0 = Tα∞ ◦H∞
This implies

H̃0 = id+O(C0
)

H̃∞ = T2πia ◦ Ψ̃∞+O(C0
)

H0
= id+O(C0

)

(H∞
)−1 = Ψ

∞ ◦T2πia +O(C0
)

Ω+ Ω−

Ω0
+ Ω0

−

~Ψ0

Ψ 8

8

~

Ψ

Ψ0

Ψ 8

ε̂ ε̂

ε̂

ε̂

ε̂

Ψ0
ε̂

Ψ 8
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ε̂

ε̂
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α0

Ω+
ε̂

~

Ω+
ε̂

_
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ε̂

~

Ω−
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_
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In lower region


K̃0 ◦ Ψ̃0 ◦Tα̃0 = Tα̃0 ◦ K̃0

K̃∞ ◦ Ψ̃∞ ◦Tα̃0 = Tα̃∞ ◦ K̃∞
K0 ◦Tα0 ◦Ψ0

= Tα0 ◦K0

K∞ ◦Tα0 ◦Ψ∞
= Tα∞ ◦K∞

The functions K are given by:
K̃0 = T−α̃0 ◦ H̃0 ◦Tα̃0

K̃∞ = T−α̃0 ◦ H̃∞ ◦Tα̃0

K0
= Tα0 ◦H0 ◦T−α0

K∞
= Tα0 ◦H∞ ◦T−α0 .

The compatibility condition becomes

K̃∞◦(K̃0)−1 =K0◦(K∞
)−1◦T2πia+D ′ε
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The 1-summability follows
In upper region:

H̃0 = id+O(C0
)

H̃∞ = T2πia ◦ Ψ̃∞+O(C0
)

H0
= id+O(C0

)

(H∞
)−1 = Ψ

∞ ◦T2πia +O(C0
)

In lower region:
(K̃0)−1 = Ψ̃0 +O(C0

)

K̃∞ = id+2πia+O(C0
)

K0
= Ψ

0
+O(C0

)

(K∞
)−1 = id+2πia+O(C0

)

Substituting in the compatibility condition:{
H̃∞ ◦ (H̃0)−1 = T2πia ◦H0 ◦ (H∞

)−1 ◦TD ′ε

K̃∞ ◦ (K̃0)−1 = K0 ◦ (K∞
)−1 ◦T2πia+D ′ε

yields the existence of a constant A such that:

|Ψ̃∞−Ψ
∞
|< AC0

|Ψ̃0 −Ψ
0
|< AC0

The 1-summability in
√
ε follows from Ramis-Sibuya’s theorem since

|C0
| ∼ exp

(
−

2π
2|
√
ε|

)
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The global realization

How to correct? Newlander-Nirenberg’s theorem.
We construct a family over an abstract
manifold by gluing

(z̃, ε̃) =

{
(gε(z),ε) on the right
(z,ε) on the left

where
gε ◦ f ◦g−1

ε = f̃

Adding ε= 0 yields a C∞ manifold. Why?

I |f − f̃ |= O(exp(− A√
|ε|
))

I Hence gε = id+O(exp(− A√
|ε|
))
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End of the proof

The abstract manifold has an almost complex
structure which is integrable and is a product.
Hence it is a neighborhood of the origin in C2

with coordinates (Z,ε).
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The Riccati case

We rather consider{
ψ0
ε̂ = E◦Ψ0

ε̂ ◦E−1

ψ∞̂
ε = E◦Ψ∞̂

ε ◦E−1

where
E(W) = exp(−2πiW)

The Riccati case corresponds to

{
ψ0
ε̂(w) = w

1+A(ε̂)w
ψ∞̂
ε (w) = exp(−4π2a(ε))(w+B(ε̂))

Then the compatibility condition is equivalent to say that
there exists a presentation of the modulus with A(ε) and
B(ε) analytic in ε.
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Conjecture

If ψ0
ε̂ and ψ∞̂ε are both nonlinear, then the only

case where ψ0
ε̂ and ψ∞̂ε can be taken depending

analytically in ε is the Riccati case.

Otherwise, the compatibility condition is so
violent that it forces non analyticity.
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The end
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