Germs of analytic families of diffeomorphisms unfolding a parabolic point (III)

Christiane Rousseau

Work done with C. Christopher, P. Mardešić, R. Roussarie and L. Teyssier

Structure of the mini-course

- Statement of the problem (first lecture)
- The preparation of the family (first lecture)
- Construction of a modulus of analytic classification in the codimension 1 case (second lecture)
- The realization problem in the codimension 1 case (third lecture)

The classification theorem

Theorem. [MRR] Two germs of generic families unfolding a codimension 1 parabolic point are analytically conjugate if and only if they have same formal invariant $a(\epsilon)$ and same modulus

$$
\left[\left(\Psi_{\hat{\epsilon}}^{0}, \Psi_{\widehat{\epsilon}}^{\infty}\right)_{\hat{\epsilon} \in V_{\delta}}\right] / \sim
$$

The realization problem

Which $a(\epsilon)$ and modulus

$$
\left[\left(\Psi_{\widehat{\epsilon}}^{0}, \Psi_{\widehat{\epsilon}}^{\infty}\right)_{\hat{\epsilon} \in V_{\delta}}\right] / \sim \text { are realizable? }
$$

The strategy

1. Any $a(\epsilon)$ and $\left(\Psi_{\hat{\epsilon}}^{0}, \Psi_{\hat{\epsilon}}^{\infty}\right)$ can be realized as the modulus of a diffeomorphism $f_{\hat{e}}$. This is the

 local realization.
The strategy

1. Any $a(\epsilon)$ and $\left(\Psi_{\hat{\epsilon}}^{0}, \Psi_{\hat{\epsilon}}^{\infty}\right)$ can be realized as the modulus of a diffeomorphism $f_{\hat{e}}$. This is the local realization.
2. If $a(\epsilon)$ is analytic and $\left(\Psi_{\hat{\epsilon}}^{0}, \Psi_{\hat{\epsilon}}^{\infty}\right)$ depend analytically on $\hat{\epsilon}$, then the realization $f_{\hat{\epsilon}}$ can be made depending analytically on $\hat{\epsilon} \in V_{\delta}$ with uniform limit for $\hat{\epsilon}=0$.
3. On the auto-intersection of V_{δ} we let

$$
\left\{\begin{array}{l}
\bar{\epsilon}=\hat{\epsilon} \\
\tilde{\epsilon}=\hat{\epsilon} e^{2 \pi i}
\end{array}\right.
$$

A necessary condition for the realization by a uniform family is that $f_{\bar{\epsilon}}$ and $f_{\tilde{\epsilon}}$ be conjugate.
3. On the auto-intersection of V_{δ} we let

$$
\left\{\begin{array}{l}
\bar{\epsilon}=\widehat{\epsilon} \\
\tilde{\epsilon}=\widehat{\epsilon} e^{2 \pi i}
\end{array}\right.
$$

A necessary condition for the realization by a uniform family is that $f_{\bar{\epsilon}}$ and $f_{\tilde{\varepsilon}}$ be conjugate.
4. This necessary condition, called the compatibility condition, is also sufficient and allows to "correct" $f_{\hat{\epsilon}}$ to a uniform family. This is the global realization.

The local realization for a fixed $\hat{\epsilon}$

The technique is standard: we realize on an abstract 1-dimensional complex manifold, which we recognize to be holomorphically equivalent to an open set of \mathbb{C}.

The local realization for a fixed $\hat{\epsilon}$

The technique is standard: we realize on an abstract 1-dimensional complex manifold, which we recognize to be holomorphically equivalent to an open set of \mathbb{C}.

Indeed, we consider the two sectors $U_{\hat{\epsilon}}^{ \pm}$, each endowed with the model diffeomorphism $f_{\epsilon}^{ \pm}$, i.e. the time-1 map of the vector field

$$
v_{\epsilon}=\frac{z^{2}-\epsilon}{1+a(\epsilon) z} \frac{\partial}{\partial z}
$$

The gluing on $U_{\hat{\epsilon}}^{+} \cap U_{\widehat{\epsilon}}^{-}$

This gluing must be compatible with $f_{\epsilon}^{ \pm}$on the three parts of the intersection, $U_{\hat{\epsilon}}^{0}, U_{\hat{\epsilon}}^{\infty}$ and $U_{\hat{\epsilon}}^{C}$.

The gluing on $U_{\hat{\epsilon}}^{+} \cap U_{\widehat{\epsilon}}^{-}$

This gluing must be compatible with $f_{\epsilon}^{ \pm}$on the three parts of the intersection，$U_{\hat{\epsilon}}^{0}, U_{\hat{\epsilon}}^{\infty}$ and $U_{\hat{\hat{e}}}^{C}$ ．

In the time coordinate W of v_{ϵ} this gluing is simply given by

$$
\left\{\begin{array}{lll}
\Psi_{\hat{仑}}^{0} & \text { on } & U_{\hat{仑}}^{0} \\
\Psi_{\hat{\epsilon}}^{\infty} & \text { on } & U_{\hat{\imath}}^{\infty} \\
\mathscr{T} \hat{\epsilon} & \text { on } & U_{\hat{仑}}^{C}
\end{array}\right.
$$

which commutes with T_{1} ．
 The map \mathscr{T} is a translation： it is the Lavaurs map．

The time W of v_{ϵ}

$$
W=q_{\hat{\epsilon}}^{-1}(z)= \begin{cases}\frac{1}{2 \sqrt{\hat{\imath}}} \ln \frac{z-\sqrt{\hat{\epsilon}}}{z+\sqrt{\hat{\imath}}}+\frac{a(\epsilon)}{2} \ln \left(z^{2}-\epsilon\right), & \hat{\epsilon} \neq 0, \\ -\frac{1}{z}+a(0) \ln (z), & \hat{\epsilon}=0 .\end{cases}
$$

Why \mathscr{T} is a translation?

In the time coordinate W, it is a diffeomorphism commuting with T_{1} on a strip of width larger then 1 going from $\operatorname{Im} W=-\infty$ to $\operatorname{Im} W=+\infty$.

The gluing in z-coordinate

In the z-coordinate, the gluing is simply given by

$$
\left\{\begin{array}{lll}
\Xi_{\hat{\epsilon}}^{0}=q_{\hat{e}} \circ \Psi_{\hat{\epsilon}}^{0} \circ q_{\hat{e}}^{-1} & \text { on } & U_{\hat{\hat{E}}}^{0} \\
\Xi_{\hat{\epsilon}}^{\infty}=q_{\hat{\varepsilon}} \circ \Psi_{\hat{\epsilon}}^{\infty} \circ q_{\hat{\epsilon}}^{-1} & \text { on } & U_{\hat{\epsilon}}^{\infty} \\
\text { id } & & \text { on }
\end{array} U_{\hat{\epsilon}}^{C}\right.
$$

Behavior of the gluing near the fixed points

$$
\begin{aligned}
\Xi_{\widehat{\epsilon}}^{0, \infty}(z)= & i d+\xi_{\hat{\epsilon}}^{0, \infty}(z) \text { with } \\
& \left\{\begin{array}{l}
\left|\xi_{\hat{\epsilon}}^{0}(z)\right|<C(\widehat{\epsilon})|z+\sqrt{\widehat{\epsilon}}|^{\frac{A}{\sqrt{\hat{\epsilon}} \mid}} \\
\left|\xi_{\widehat{\epsilon}}^{\infty}(z)\right|<C(\widehat{\epsilon})|z-\sqrt{\hat{\epsilon}}|^{\frac{A}{\sqrt{\hat{\epsilon}} \mid}}
\end{array}\right.
\end{aligned}
$$

The compatibility condition

For $\hat{\epsilon}$ in the autointersection of V_{δ} we have two descriptions of the modulus. A necessary condition for realizability to a uniform family in ϵ is that they encode conjugate dynamics.

Parameter values in the auto-intersection

For these values, the fixed points are linearizable and there is an orbit from one point to the other.

Parameter values in the auto-intersection

For these values, the fixed points are linearizable and there is an orbit from one point to the other.

This allows for a third description of the modulus studied by Glutsyuk.

Parameter values in the auto-intersection

For these values, the fixed points are linearizable and there is an orbit from one point to the other.

This allows for a third description of the modulus studied by Glutsyuk.

Indeed, we can bring the diffeomorphism to the model (normal form) in the neighborhood of each fixed point by means of maps $\varphi^{ \pm}$. The two normalization domains intersect.

Parameter values in the auto-intersection

For these values, the fixed points are linearizable and there is an orbit from one point to the other.

This allows for a third description of the modulus studied by Glutsyuk.

Indeed, we can bring the diffeomorphism to the model (normal form) in the neighborhood of each fixed point by means of maps $\varphi^{ \pm}$. The two normalization domains intersect. The Glutsyuk modulus is given by the comparison of the two normalizations

$$
\varphi^{-} \circ\left(\varphi^{+}\right)^{-1}
$$

Parameter values in the auto-intersection

For these values, the fixed points are linearizable and there is an orbit from one point to the other.

This allows for a third description of the modulus studied by Glutsyuk.

Indeed, we can bring the diffeomorphism to the model (normal form) in the neighborhood of each fixed point by means of maps $\varphi^{ \pm}$. The two normalization domains intersect. The Glutsyuk modulus is given by the comparison of the two normalizations

$$
\varphi^{-} \circ\left(\varphi^{+}\right)^{-1}
$$

The Glutsyuk modulus is unique up to composition on the left and on the right by maps of the form η_{ϵ}^{t}.

Construction of the Fatou Glutsyuk coordinates

As before we construct Fatou Glutsyuk coordinates, Φ^{l} and Φ^{r}, but we use lines parallel to the line of holes

Construction of the Fatou Glutsyuk coordinates

As before we construct Fatou Glutsyuk coordinates, Φ^{l} and Φ^{r}, but we use lines parallel to the line of holes

The Glutsyuk modulus is

$$
\Psi^{G}=\Phi^{r} \circ\left(\Phi^{l}\right)^{-1}
$$

It is unique up to composition on the left and on the right with translations and satisfies

$$
T_{\alpha^{r}} \circ \Psi^{G}=\Psi^{G} \circ T_{\alpha^{l}}
$$

How to recover the Fatou Glutsyuk coordinates?

How to recover them from the modulus

$$
\left(\hat{\epsilon}, a(\epsilon), \Psi_{\hat{\epsilon}}^{0}, \Psi_{\hat{\epsilon}}^{\infty}\right) ?
$$

We describe the orbit space of F_{ϵ} with the help of ONE Fatou coordinate and a renormalized return map.

The renormalized return maps

Lavaurs point of view

They are given by

$$
\left\{\begin{array}{l}
T_{\tilde{\alpha}^{0}} \circ \tilde{\Psi}^{0} \\
T_{\tilde{\alpha}^{0}} \circ \tilde{\Psi}^{\infty}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\tilde{\Psi}^{0} \circ T_{\tilde{\alpha}^{0}} \\
\tilde{\Psi}^{\infty} \circ T_{\tilde{\alpha}^{0}}
\end{array}\right.
$$

The renormalized return maps

Glutsyuk point of view

The Fatou Glutsyuk coordinates are the coordinates in which the renormalized return maps are given by

$$
\left\{\begin{array}{l}
T_{\tilde{\alpha}^{0}} \\
T_{\tilde{\alpha}^{\infty}}
\end{array}\right.
$$

The change of coordinates

The changes from Fatou (Lavaurs) coordinates to Fatou Glutsyuk coordinates are the changes of coordinates transforming

$$
\left\{\begin{array}{l}
T_{\tilde{\alpha}^{0}} \circ \tilde{\Psi}^{0} \\
T_{\tilde{\alpha}^{0}} \circ \tilde{\Psi}^{\infty}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\tilde{\Psi}^{0} \circ T_{\tilde{\alpha}^{0}} \\
\tilde{\Psi}^{\infty} \circ T_{\tilde{\alpha}^{0}}
\end{array}\right.
$$

to

$$
\left\{\begin{array}{l}
T_{\tilde{\alpha}^{0}} \\
T_{\tilde{\alpha}^{\infty}}
\end{array}\right.
$$

Working in the upper region

There exists maps

$$
\left\{\begin{array}{l}
\tilde{H}^{0} \circ T_{\tilde{\alpha}^{0}} \circ \tilde{\Psi}^{0}=T_{\tilde{\alpha}^{0}} \circ \tilde{H}^{0} \\
\tilde{H}^{\infty} \circ T_{\tilde{\alpha}^{\circ}} \circ \tilde{\Psi}^{\infty}=T_{\tilde{\alpha}^{\infty}} \circ \tilde{H}^{\infty} \\
\bar{H}^{0} \circ \bar{\Psi}^{0} \circ T_{\bar{\alpha}^{0}}=T_{\bar{\alpha}^{0}} \circ \bar{H}^{0} \\
\bar{H}^{\infty} \circ \bar{\Psi}^{\infty} \circ T_{\bar{\alpha}^{0}}=T_{\bar{\alpha}^{\infty}} \circ \bar{H}^{\infty}
\end{array}\right.
$$

The maps $\tilde{H}^{0, \infty}$ and $\bar{H}^{0, \infty}$ are the changes of coordinates to Fatou Glustyuk coordinates.

The compatibility condition

It is given by:

$$
\tilde{H}^{\infty} \circ\left(\tilde{H}^{0}\right)^{-1}=T_{D_{\epsilon}} \circ \bar{H}^{0} \circ\left(\bar{H}^{\infty}\right)^{-1} \circ T_{D_{\epsilon}^{\prime}}
$$

It is possible to normalize the coordinates so that $D_{\epsilon} \equiv-2 \pi i a$.
Corollary: The functions $\Psi_{\widehat{\epsilon}}^{0, \infty}$ are 1-summable in $\sqrt{\widehat{\epsilon}}$. The directions of non-summability are the Glutsyuk directions (real multipliers).

Theorem: The family

$$
\left\{\left(\psi_{\hat{\epsilon}}^{0}, \psi_{\hat{\epsilon}}^{\infty}\right)\right\}_{\hat{\epsilon} \in V}
$$

is realizable if and only if the compatibility condition is satisfied.

Proof of the Corollary

In upper region

$$
\left\{\begin{array}{l}
\tilde{H}^{0} \circ T_{\tilde{\alpha}^{0}} \circ \tilde{\Psi}^{0}=T_{\tilde{\alpha}^{0}} \circ \tilde{H}^{0} \\
\tilde{H}^{\infty} \circ T_{\tilde{\alpha}^{0}} \circ \tilde{\Psi}^{\infty}=T_{\tilde{\alpha}^{\infty} \circ} \tilde{H}^{\infty} \\
\bar{H}^{0} \circ \bar{\Psi}^{0} T_{\bar{\alpha}^{0}}=T_{\bar{\alpha}^{0}} \circ \bar{H}^{0} \\
\bar{H}^{\infty} \circ \bar{\Psi}^{\infty} \circ T_{T_{0}}=T_{\bar{\alpha}^{\infty}} \circ \bar{H}^{\infty}
\end{array}\right.
$$

This implies

$$
\left\{\begin{array}{l}
\tilde{H}^{0}=i d+O\left(\bar{C}^{0}\right) \\
\tilde{H}^{\infty}=T_{2 \pi i a} \tilde{\Psi}^{\infty}+O\left(\bar{C}^{0}\right) \\
\bar{H}^{0}=i d+O\left(\bar{C}^{0}\right) \\
\left(\bar{H}^{\infty}\right)^{-1}=\bar{\Psi}^{\infty} \circ T_{2 \pi i a}+O\left(\bar{C}^{0}\right)
\end{array}\right.
$$

In lower region

$$
\left\{\begin{array}{l}
\tilde{K}^{0} \circ \tilde{\Psi}^{0} \circ T_{\tilde{\alpha}^{0}}=T_{\tilde{\alpha}^{0}} \circ \tilde{K}^{0} \\
\tilde{K}^{\infty} \circ \tilde{\Psi}^{\infty} \circ T_{\tilde{\alpha}^{0}}=T_{\tilde{\alpha}^{\infty} \circ} \circ \tilde{K}^{\infty} \\
\bar{K}^{0} \circ T_{\bar{\alpha}^{0}} \circ \bar{\Psi}^{0}=T_{\bar{\alpha}^{0}} \circ \bar{K}^{0} \\
\bar{K}^{\infty} \circ T_{\bar{\alpha}^{0}} \circ \bar{\Psi}^{\infty}=T_{\bar{\alpha}^{\infty} \circ} \circ \bar{K}^{\infty}
\end{array}\right.
$$

The functions K are given by:

$$
\left\{\begin{array}{l}
\tilde{K}^{0}=T_{-\tilde{\alpha}^{0}} \circ \tilde{H}^{0} \circ T_{\tilde{\alpha}^{0}} \\
\tilde{K}^{\infty}=T_{-\tilde{\alpha}^{0}} \circ \tilde{H}^{\infty} \circ T_{\tilde{\alpha}^{0}} \\
\bar{K}^{0}=T_{\bar{\alpha}^{0}} \circ \bar{H}^{0} \circ T_{-\bar{\alpha}^{0}} \\
\bar{K}^{\infty}=T_{\bar{\alpha}^{0}} \circ \bar{H}^{\infty} \circ T_{-\bar{\alpha}^{0}}
\end{array}\right.
$$

The compatibility condition becomes
$\tilde{K}^{\infty} \circ\left(\tilde{K}^{0}\right)^{-1}=\bar{K}^{0} \circ\left(\bar{K}^{\infty}\right)^{-1} \circ T_{2 \pi i a+D_{\epsilon}^{\prime}}$

The 1-summability follows

In upper region:

$$
\left\{\begin{array}{l}
\tilde{H}^{0}=i d+O\left(\bar{C}^{0}\right) \\
\tilde{H}^{\infty}=T_{2 \pi i a} \circ \tilde{\Psi}^{\infty}+O\left(\bar{C}^{0}\right) \\
\bar{H}^{0}=i d+O\left(\bar{C}^{0}\right) \\
\left(\bar{H}^{\infty}\right)^{-1}=\bar{\Psi}^{\infty} \circ T_{2 \pi i a}+O\left(\bar{C}^{0}\right)
\end{array}\right.
$$

In lower region:

$$
\left\{\begin{array}{l}
\left(\tilde{K}^{0}\right)^{-1}=\tilde{\Psi}^{0}+O\left(\bar{C}^{0}\right) \\
\tilde{K}^{\infty}=i d+2 \pi i a+O\left(\bar{C}^{0}\right) \\
\bar{K}^{0}=\bar{\Psi}^{0}+O\left(\bar{C}^{0}\right) \\
\left(\bar{K}^{\infty}\right)^{-1}=i d+2 \pi i a+O\left(\bar{C}^{0}\right)
\end{array}\right.
$$

Substituting in the compatibility condition:

$$
\left\{\begin{array}{l}
\tilde{H}^{\infty} \circ\left(\tilde{H}^{0}\right)^{-1}=T_{2 \pi i a} \circ \bar{H}^{0} \circ\left(\bar{H}^{\infty}\right)^{-1} \circ T_{D_{\epsilon}^{\prime}} \\
\tilde{K}^{\infty} \circ\left(\tilde{K}^{0}\right)^{-1}=\bar{K}^{0} \circ\left(\bar{K}^{\infty}\right)^{-1} \circ T_{2 \pi i a+D_{\epsilon}^{\prime}}
\end{array}\right.
$$

yields the existence of a constant A such that:

$$
\left|\tilde{\Psi}^{\infty}-\bar{\Psi}^{\infty}\right|<A \bar{C}^{0} \quad\left|\tilde{\Psi}^{0}-\bar{\Psi}^{0}\right|<A \bar{C}^{0}
$$

The 1-summability in $\sqrt{\epsilon}$ follows from Ramis-Sibuya's theorem since

$$
\left|\bar{C}^{0}\right| \sim \exp \left(-\frac{2 \pi}{2|\sqrt{\bar{\epsilon}}|}\right)
$$

The global realization

How to correct? Newlander-Nirenberg's theorem.
We construct a family over an abstract manifold by gluing

$$
(\tilde{z}, \tilde{\epsilon})= \begin{cases}\left(g_{\bar{\epsilon}}(\bar{z}), \bar{\epsilon}\right) & \text { on the right } \\ (\bar{z}, \bar{\epsilon}) & \text { on the left }\end{cases}
$$

where

$$
g_{\bar{\epsilon}} \circ \bar{f} \circ g_{\bar{\epsilon}}^{-1}=\tilde{f}
$$

Adding $\epsilon=0$ yields a C^{∞} manifold. Why?

- $|\bar{f}-\tilde{f}|=O\left(\exp \left(-\frac{A}{\sqrt{|\epsilon|}}\right)\right)$

- Hence $g_{\bar{\epsilon}}=i d+O\left(\exp \left(-\frac{A}{\sqrt{|\epsilon|}}\right)\right)$

End of the proof

The abstract manifold has an almost complex structure which is integrable and is a product. Hence it is a neighborhood of the origin in \mathbb{C}^{2} with coordinates (Z, ϵ).

The Riccati case

We rather consider

$$
\left\{\begin{array}{l}
\psi_{\hat{\epsilon}}^{0}=E \circ \psi_{\hat{\epsilon}}^{0} \circ E^{-1} \\
\psi_{\hat{\epsilon}}^{\infty}=E \circ \Psi_{\hat{\epsilon}}^{\infty} \circ E^{-1}
\end{array}\right.
$$

where

$$
E(W)=\exp (-2 \pi i W)
$$

The Riccati case

We rather consider

$$
\left\{\begin{array}{l}
\psi_{\widehat{\epsilon}}^{0}=E \circ \Psi_{\widehat{\epsilon}}^{0} \circ E^{-1} \\
\psi_{\hat{\epsilon}}^{\infty}=E \circ \Psi_{\hat{\epsilon}}^{\infty} \circ E^{-1}
\end{array}\right.
$$

where

$$
E(W)=\exp (-2 \pi i W)
$$

The Riccati case corresponds to

$$
\left\{\begin{array}{l}
\psi_{\widehat{\epsilon}}^{0}(w)=\frac{w}{1+A(\hat{\epsilon}) w} \\
\psi_{\widehat{\epsilon}}^{\infty}(w)=\exp \left(-4 \pi^{2} a(\epsilon)\right)(w+B(\widehat{\epsilon}))
\end{array}\right.
$$

The Riccati case

We rather consider

$$
\left\{\begin{array}{l}
\psi_{\widehat{\epsilon}}^{0}=E \circ \Psi_{\widehat{\epsilon}}^{0} \circ E^{-1} \\
\psi_{\hat{\epsilon}}^{\infty}=E \circ \Psi_{\hat{\epsilon}}^{\infty} \circ E^{-1}
\end{array}\right.
$$

where

$$
E(W)=\exp (-2 \pi i W)
$$

The Riccati case corresponds to

$$
\left\{\begin{array}{l}
\psi_{\widehat{\epsilon}}^{0}(w)=\frac{w}{1+A(\hat{\epsilon}) w} \\
\psi_{\widehat{\epsilon}}^{\infty}(w)=\exp \left(-4 \pi^{2} a(\epsilon)\right)(w+B(\widehat{\epsilon}))
\end{array}\right.
$$

Then the compatibility condition is equivalent to say that there exists a presentation of the modulus with $A(\epsilon)$ and $B(\epsilon)$ analytic in ϵ.

Conjecture

If $\psi_{\hat{\epsilon}}^{0}$ and $\psi_{\widehat{\epsilon}}^{\infty}$ are both nonlinear, then the only case where $\psi_{\hat{\epsilon}}^{0}$ and $\psi_{\hat{\epsilon}}^{\infty}$ can be taken depending analytically in ϵ is the Riccati case.

Conjecture

If $\psi_{\hat{\epsilon}}^{0}$ and $\psi_{\widehat{\epsilon}}^{\infty}$ are both nonlinear, then the only case where $\psi_{\widehat{\epsilon}}^{0}$ and $\psi_{\widehat{\epsilon}}^{\infty}$ can be taken depending analytically in ϵ is the Riccati case.
Otherwise, the compatibility condition is so violent that it forces non analyticity.

The end

