Addendum to the paper "Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms"

C. Rousseau, DMS and CRM, Université de Montréal

May 2004

Abstract

The paper [2] describes a complete modulus of analytic classification under weak equivalence for generic analytic 1-parameter unfoldings of diffeomorphisms with a generic parabolic point. In this note it is shown that weak equivalence can be replaced by conjugacy.

1 Introduction

We consider a prepared family g_{ν}

$$
\begin{equation*}
g_{\nu}(z)=z+\left(z^{2}-\nu^{2}\right)\left[1+\beta(\nu)+A(\nu) z+\left(z^{2}-\nu^{2}\right) Q(z, \nu)\right] \tag{1.1}
\end{equation*}
$$

as in[2], which is compared to the time-one map of the flow of

$$
\begin{equation*}
\left(v_{\nu}\right) \quad \frac{z^{2}-\nu^{2}}{1+a z} \frac{\partial}{\partial z} . \tag{1.2}
\end{equation*}
$$

Note that $g_{\nu}=g_{-\nu}$. We prove the following theorem:
Theorem 1.1 If two prepared families g_{ν} and \bar{g}_{ν} as in (1.1) have the same modulus then they are analytically conjugate under an analytic change of coordinate $h(\nu, z)=h_{\nu}(z)$ depending analytically on (ν, z) in a small neighborhood of the origin and satisfying $h_{-\nu}=h_{\nu}$. In particular $h(\nu, z)=\tilde{h}(\epsilon, z)$ depends analytically on (ϵ, z), where $\epsilon=\nu^{2}$.

2 Symmetries of families unfolding a parabolic fixed point

In this section we discuss briefly the symmetries of the family g_{ν} as a tool to prove the Theorem 1.1.

Definition 2.1 1. The group of symmetries of g_{0} is the commutator of g_{0} inside the group of germs of analytic diffeomorphisms tangent to the identity at the origin.
2. Similarly, given g_{ν} defined on a neighborhood containing its fixed points, we will call symmetry of g_{ν} any analytic diffeomorphism on the same neighborhood which commutes with it.

Proposition 2.2 [1] Depending on the modulus $\left(\psi_{0}^{0}, \psi_{0}^{\infty}\right)$ we get the following cases:
(1) If g_{0} is generic, i.e. ψ_{0}^{0} or ψ_{0}^{∞} does not commute with any linear map, then the symmetry group of g_{0} is the group of iterates $\left\{g_{0}^{n} \mid n \in \mathbb{Z}\right\}$.
(2) If g_{0} is not embedable and $g_{0}=k_{0}^{m}$ with k_{0} tangent to the identity and $m \in \mathbb{N}$ (i.e. $\psi_{0}^{0}(w)=w \xi_{0}^{0}\left(w^{m}\right)$ and $\psi_{0}^{\infty}(w)=w \xi_{0}^{\infty}\left(w^{m}\right)$ and one of them is nonlinear of order $m+1)$, then the symmetry group of g_{0} is the group of iterates $\left\{k_{0}^{n} \mid n \in \mathbb{Z}\right\}$.
(3) If g_{0} is embedable, i.e. ψ_{0}^{0} and ψ_{0}^{∞} are linear and g_{0} is conjugate by m_{0} to the time-one map v_{0}^{1} of the flow of the vector field v_{0}, where v_{ν} is given in (1.2), then all symmetries of g_{0} are conjugate by m_{0} to time-t maps v_{0}^{t} of the flow of v_{0} with $t \in \mathbb{C}$. We can think of them as the t-th iterates g_{0}^{t} of g_{0}.

Proposition 2.3 We consider a prepared family g_{ν} unfolding g_{0}.
(1) If g_{0} is generic, i.e. ψ_{0}^{0} or ψ_{0}^{∞} do not commute with any linear map, then, for sufficiently small ν, any symmetry of g_{ν} is of the form g_{ν}^{n} for $n \in \mathbb{Z}$. In particular if γ_{ν} is a symmetry of g_{ν} depending continuously on ν in a sector, and such that $\gamma_{0}=i d$, then $\gamma_{\nu}=i d$.
(2) If g_{0} is not embedable and $g_{0}=k_{0}^{m}$ with k_{0} tangent to the identity and $m \in \mathbb{N}$ (i.e. $\psi_{0}^{0}(w)=w \xi_{0}^{0}\left(w^{m}\right)$ and $\psi_{0}^{\infty}(w)=w \xi_{0}^{\infty}\left(w^{m}\right)$ and one of them is nonlinear of order $m+1$), and if γ_{ν} is a symmetry of g_{ν} depending continuously on ν in a sector such that $\gamma_{0}=i d$, then $\gamma_{\nu}=i d$.
(3) If g_{0} is embedable, then one of the following cases occurs:
(a) If γ_{ν} is a symmetry of g_{ν} depending continuously on ν in a sector, and such that $\gamma_{0}=i d$, then $\gamma_{\nu}=i d$.
(b) The map g_{ν} is embedable, i.e. conjugate under m_{ν} to the time-one map v_{ν}^{1} of the flow of v_{ν} given in (1.2) and its symmetries are conjugate by m_{ν} to the time- $t(\nu)$ maps $v_{\nu}^{t(\nu)}$ of the flow of v_{ν} for some continuous map $t(\nu)$ with values in \mathbb{C}. The map $t(\nu)$ associated to a symmetry is unique as soon as it unfolds the zero map, in which case it makes sense to call the corresponding symmetry the $t(\nu)$-th iterate $g_{\nu}^{t(\nu)}$ of g_{ν}.

Proof. A symmetry sends orbits to orbits. For $\nu \neq 0$ the orbit structure is completely determined by the quotient of a sphere $\left(\mathbb{C P}^{1}\right)$ by the return maps in the neighborhood of 0 and ∞. So a symmetry is given by a diffeomorphism of the sphere preserving 0 and ∞ (i.e. a linear map) which commutes with the return maps.
(1) This case occurs as soon as one of ψ_{0}^{0} and ψ_{0}^{∞} is nonlinear and both are not of the form $\psi_{0}^{0}(w)=w \xi_{0}^{0}\left(w^{m}\right)$ and $\psi_{0}^{\infty}(w)=w \xi_{0}^{\infty}\left(w^{m}\right)$. This can be seen on a finite jet. (Indeed if $\psi_{0}^{0}(w)=\sum_{i=1}^{\infty} a_{i} w^{i}$ and $\psi_{0}^{\infty}(w)=\sum_{i=1}^{\infty} b_{i} w^{i}$ this occurs as soon as there exists $m, n>1$ with $(m, n)=1$ such that $a_{n} \neq 0$ or $b_{n} \neq 0$ and simultaneously $a_{m} \neq 0$ or $b_{m} \neq 0$.) Then the same property is true for ψ_{ν}^{0} and ψ_{ν}^{∞} for ν sufficiently small. So all symmetries γ_{ν} of g_{ν} are of the form g_{ν}^{n} with $n \in \mathbb{Z}$. If a family γ_{ν} depends continuously on ν then n needs to be constant and $n=0$ is the only possibility if we add the condition that $\lim _{\nu \rightarrow 0} h_{\nu}=i d$.
(2) is similar. Note that the discrete symmetries may or may not be preserved in the unfolded family. Continuous families of symmetries will be given by some κ_{ν}^{n} for a fixed $n \in \mathbb{Z}$ where $\kappa_{\nu}^{d}=g_{\nu}$ and κ_{ν} is continuous in ν. Of course $d \mid m$ so that for $\nu=0$ we have $\kappa_{0}=k_{0}^{m / d}$.
(a) The first case occurs as soon as one of $\psi_{1, \nu}^{0}$ or $\psi_{1, \nu}^{\infty}$ is nonlinear. Indeed suppose that $\psi_{\nu}^{0}(w)=a_{1}(\nu) w+a_{s}(\nu) w^{s}+o\left(w^{s}\right)$ with $a_{s} \not \equiv 0$. As $a_{s}(\nu)$ depends analytically on $\nu \neq 0$ it is nonzero on an open dense subset on which we can apply the same argument as in (1) or (2) since the only possible symmetries are discrete.
(b) Let us look at an individual symmetry H_{ν} of v_{ν}, given by the time- $t(\nu)$ map of its flow. Then $H_{\nu}^{\prime}(\pm \nu)=\exp \left(\pm \frac{2 \nu}{1 \pm a \nu} t(\nu)\right)$. Different times $t(\nu)$ and $\tau(\nu)$ yield the same symmetry H_{ν} if and only if there exists $k, k^{\prime} \in \mathbb{Z}$ such that

$$
T(\nu)=t(\nu)-\tau(\nu)=\frac{k \pi i(1+a \nu)}{\nu}=-\frac{k^{\prime} \pi i(1-a \nu)}{\nu} .
$$

The only continuous solution $T(\nu)$ satisfying $T(0)=0$ is $T \equiv 0$.

3 Proof of Theorem 1.1

Proof of Theorem 1.1. We consider two prepared families g_{ν} and \bar{g}_{ν} which have the same modulus. For $\nu \in V_{\delta, 0}^{L}$ defined in (2.15) of [2] we have constructed a conjugacy $h_{\nu}(z)$ between g_{ν} and \bar{g}_{ν} depending analytically on $\nu \neq 0$ and continuously on ν near $\nu=0$. If we pass to $\epsilon=\nu^{2}$ this gives us two conjugacies $h_{1, \epsilon}$ and $h_{2, \epsilon}$ between g_{ν} and \bar{g}_{ν} for $\arg \epsilon \in(-\pi+2 \delta, \pi-2 \delta)$. We will be done if we show that we can choose the conjugacy $h_{\nu}(z)$ such that $h_{1, \epsilon} \equiv h_{2, \epsilon}$. Indeed $\gamma_{\epsilon}=\left(h_{1, \epsilon}\right)^{-1} \circ h_{2, \epsilon}$ is a symmetry of g_{ν} (this is the case since $g_{\nu}=g_{-\nu}$). Moreover γ_{ϵ} depends analytically on $\epsilon \neq 0$ and has a continuous limit at $\epsilon=0$. As $h_{i, \epsilon}, i=1,2$, have the same limit h_{0} when $\epsilon \rightarrow 0$, then $\gamma_{0}=i d$. In cases (1), (2) and (3)(a) of Proposition 2.3 then $\gamma_{\epsilon}=i d$.

So we only need to discuss case (3)(b). In this case we stay with the parameter ν and we use the two sectorial domains $V_{\delta, 0}^{L}$ and $V_{\delta, 1}^{L}$ defined in (2.15) of [2]. On each of them we have defined a family of diffeomorphims $h_{0, \nu}$ and $h_{1, \nu}$ between g_{ν} and \bar{g}_{ν}. Moreover it is easy to manage that

$$
\begin{equation*}
h_{0, \nu}=h_{1,-\nu} . \tag{3.1}
\end{equation*}
$$

(it suffices to take the same normalized Fatou coordinates on each sector). The two sectors intersect on two smaller sectors $V_{\delta}^{+}=\left\{\nu \in V_{\delta, 0}^{L} \mid \arg \nu \in(-\pi / 2+\delta, \pi / 2-\delta)\right\}$ and $V_{\delta}^{-}=\{\nu \in$ $\left.V_{\delta, 0}^{L} \mid \arg \nu \in(\pi / 2+\delta, 3 \pi / 2-\delta)\right\}$. On each of these sectors the diffeomorphims $\gamma_{\nu}^{ \pm}=h_{1, \nu}^{-1} \circ h_{0, \nu}$ is a symmetry of g_{ν} unfolding the identity. By Proposition 2.3 there exist times $\tau^{ \pm}(\nu)$ such that $\gamma_{\nu}^{ \pm}=g_{\nu}^{\tau^{ \pm}(\nu)}$ on $V_{\delta}^{ \pm}$. Moreover from (3.1) we have that

$$
\begin{equation*}
\tau^{+}(\nu)=-\tau^{-}(-\nu) \tag{3.2}
\end{equation*}
$$

There exists $T_{i}(\nu), i=0,1$, defined respectively on $V_{\delta, i}^{L}$ such that

$$
\begin{equation*}
T_{0}(\nu)-T_{1}(\nu)=\tau^{ \pm}(\nu) \quad \nu \in V_{\delta}^{ \pm} \tag{3.3}
\end{equation*}
$$

Let

$$
\left\{\begin{array}{l}
\bar{T}_{0}(\nu)=\frac{1}{2}\left(T_{0}(\nu)+T_{1}(-\nu)\right) \tag{3.4}\\
\bar{T}_{1}(\nu)=\frac{1}{2}\left(T_{0}(-\nu)+T_{1}(\nu)\right) .
\end{array}\right.
$$

Then $\bar{T}_{0}(-\nu)=\bar{T}_{1}(\nu)$ and

$$
\begin{equation*}
\bar{T}_{0}(\nu)-\bar{T}_{1}(\nu)=\tau^{ \pm}(\nu) \quad \text { for } \quad \nu \in V_{\delta}^{ \pm} . \tag{3.5}
\end{equation*}
$$

We replace the conjugating diffeomorphisms $h_{i, \nu}$ by

$$
\begin{equation*}
\hat{h}_{i, \nu}=h_{i, \nu} \circ g_{\nu}^{-\bar{T}_{i}(\nu)} \tag{3.6}
\end{equation*}
$$

Then the two $\hat{h}_{i, \nu}$ coincide on $V_{\delta}^{ \pm}$and moreover satisfy $\hat{h}_{i, \nu}=\hat{h}_{i,-\nu}$, yielding a conjugacy \hat{h}_{ϵ} depending analytically on ϵ.

4 Acknowledgements

The author thanks Colin Christopher for helpful discussions.

References

[1] Y. Ilyashenko, Nonlinear Stokes phenomena, in Nonlinear Stokes phenomena, Y. Ilyashenko editor, Advances in Soviet Mathematics, vol. 14, Amer. Math. Soc., Providence, RI, (1993), 1-55.
[2] P. Mardešić, R. Roussarie and C. Rousseau, Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms, preprint CRM (2002), to appear in Moscow Mathematical Journal.
[3] C. Rousseau, Modulus of orbital analytic classification for a family unfolding a saddlenode, preprint CRM (2002), to appear in Moscow Mathematical Journal.

