Addendum to the paper "Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms"

C. Rousseau, DMS and CRM, Université de Montréal

May 2004

Abstract

The paper [2] describes a complete modulus of analytic classification under weak equivalence for generic analytic 1-parameter unfoldings of diffeomorphisms with a generic parabolic point. In this note it is shown that weak equivalence can be replaced by conjugacy.

1 Introduction

We consider a prepared family g_{ν}

$$g_{\nu}(z) = z + (z^2 - \nu^2)[1 + \beta(\nu) + A(\nu)z + (z^2 - \nu^2)Q(z,\nu)].$$
(1.1)

as in[2], which is compared to the time-one map of the flow of

$$(v_{\nu}) \qquad \frac{z^2 - \nu^2}{1 + az} \frac{\partial}{\partial z}.$$
 (1.2)

Note that $g_{\nu} = g_{-\nu}$. We prove the following theorem:

Theorem 1.1 If two prepared families g_{ν} and \overline{g}_{ν} as in (1.1) have the same modulus then they are analytically conjugate under an analytic change of coordinate $h(\nu, z) = h_{\nu}(z)$ depending analytically on (ν, z) in a small neighborhood of the origin and satisfying $h_{-\nu} = h_{\nu}$. In particular $h(\nu, z) = \tilde{h}(\epsilon, z)$ depends analytically on (ϵ, z) , where $\epsilon = \nu^2$.

2 Symmetries of families unfolding a parabolic fixed point

In this section we discuss briefly the symmetries of the family g_{ν} as a tool to prove the Theorem 1.1.

- **Definition 2.1** 1. The group of symmetries of g_0 is the commutator of g_0 inside the group of germs of analytic diffeomorphisms tangent to the identity at the origin.
 - 2. Similarly, given g_{ν} defined on a neighborhood containing its fixed points, we will call symmetry of g_{ν} any analytic diffeomorphism on the same neighborhood which commutes with it.

Proposition 2.2 [1] Depending on the modulus $(\psi_0^0, \psi_0^\infty)$ we get the following cases:

- (1) If g_0 is generic, i.e. ψ_0^0 or ψ_0^∞ does not commute with any linear map, then the symmetry group of g_0 is the group of iterates $\{g_0^n | n \in \mathbb{Z}\}$.
- (2) If g_0 is not embedable and $g_0 = k_0^m$ with k_0 tangent to the identity and $m \in \mathbb{N}$ (i.e. $\psi_0^0(w) = w\xi_0^0(w^m)$ and $\psi_0^\infty(w) = w\xi_0^\infty(w^m)$ and one of them is nonlinear of order m+1), then the symmetry group of g_0 is the group of iterates $\{k_0^n | n \in \mathbb{Z}\}$.
- (3) If g_0 is embedable, i.e. ψ_0^0 and ψ_0^∞ are linear and g_0 is conjugate by m_0 to the time-one map v_0^1 of the flow of the vector field v_0 , where v_{ν} is given in (1.2), then all symmetries of g_0 are conjugate by m_0 to time-t maps v_0^t of the flow of v_0 with $t \in \mathbb{C}$. We can think of them as the t-th iterates g_0^t of g_0 .

Proposition 2.3 We consider a prepared family g_{ν} unfolding g_0 .

- (1) If g_0 is generic, i.e. ψ_0^0 or ψ_0^∞ do not commute with any linear map, then, for sufficiently small ν , any symmetry of g_{ν} is of the form g_{ν}^n for $n \in \mathbb{Z}$. In particular if γ_{ν} is a symmetry of g_{ν} depending continuously on ν in a sector, and such that $\gamma_0 = id$, then $\gamma_{\nu} = id$.
- (2) If g_0 is not embedable and $g_0 = k_0^m$ with k_0 tangent to the identity and $m \in \mathbb{N}$ (i.e. $\psi_0^0(w) = w\xi_0^0(w^m)$ and $\psi_0^\infty(w) = w\xi_0^\infty(w^m)$ and one of them is nonlinear of order m+1), and if γ_{ν} is a symmetry of g_{ν} depending continuously on ν in a sector such that $\gamma_0 = id$, then $\gamma_{\nu} = id$.
- (3) If g_0 is embedable, then one of the following cases occurs:
 - (a) If γ_{ν} is a symmetry of g_{ν} depending continuously on ν in a sector, and such that $\gamma_0 = id$, then $\gamma_{\nu} = id$.
 - (b) The map g_ν is embedable, i.e. conjugate under m_ν to the time-one map v¹_ν of the flow of v_ν given in (1.2) and its symmetries are conjugate by m_ν to the time-t(ν) maps v^{t(ν)}_ν of the flow of v_ν for some continuous map t(ν) with values in C. The map t(ν) associated to a symmetry is unique as soon as it unfolds the zero map, in which case it makes sense to call the corresponding symmetry the t(ν)-th iterate g^{t(ν)}_ν of g_ν.

PROOF. A symmetry sends orbits to orbits. For $\nu \neq 0$ the orbit structure is completely determined by the quotient of a sphere (\mathbb{CP}^1) by the return maps in the neighborhood of 0 and ∞ . So a symmetry is given by a diffeomorphism of the sphere preserving 0 and ∞ (i.e. a linear map) which commutes with the return maps.

(1) This case occurs as soon as one of ψ_0^0 and ψ_0^∞ is nonlinear and both are not of the form $\psi_0^0(w) = w\xi_0^0(w^m)$ and $\psi_0^\infty(w) = w\xi_0^\infty(w^m)$. This can be seen on a finite jet. (Indeed if $\psi_0^0(w) = \sum_{i=1}^{\infty} a_i w^i$ and $\psi_0^\infty(w) = \sum_{i=1}^{\infty} b_i w^i$ this occurs as soon as there exists m, n > 1 with (m, n) = 1 such that $a_n \neq 0$ or $b_n \neq 0$ and simultaneously $a_m \neq 0$ or $b_m \neq 0$.) Then the same property is true for ψ_{ν}^0 and ψ_{ν}^∞ for ν sufficiently small. So all symmetries γ_{ν} of g_{ν} are of the form g_{ν}^n with $n \in \mathbb{Z}$. If a family γ_{ν} depends continuously on ν then n needs to be constant and n = 0 is the only possibility if we add the condition that $\lim_{\nu \to 0} h_{\nu} = id$.

Addendum

(2) is similar. Note that the discrete symmetries may or may not be preserved in the unfolded family. Continuous families of symmetries will be given by some κ_{ν}^{n} for a fixed $n \in \mathbb{Z}$ where $\kappa_{\nu}^{d} = g_{\nu}$ and κ_{ν} is continuous in ν . Of course d|m so that for $\nu = 0$ we have $\kappa_{0} = k_{0}^{m/d}$.

(3)

- (a) The first case occurs as soon as one of $\psi_{1,\nu}^0$ or $\psi_{1,\nu}^\infty$ is nonlinear. Indeed suppose that $\psi_{\nu}^0(w) = a_1(\nu)w + a_s(\nu)w^s + o(w^s)$ with $a_s \neq 0$. As $a_s(\nu)$ depends analytically on $\nu \neq 0$ it is nonzero on an open dense subset on which we can apply the same argument as in (1) or (2) since the only possible symmetries are discrete.
- (b) Let us look at an individual symmetry H_{ν} of v_{ν} , given by the time- $t(\nu)$ map of its flow. Then $H'_{\nu}(\pm \nu) = \exp\left(\pm \frac{2\nu}{1\pm a\nu}t(\nu)\right)$. Different times $t(\nu)$ and $\tau(\nu)$ yield the same symmetry H_{ν} if and only if there exists $k, k' \in \mathbb{Z}$ such that

$$T(\nu) = t(\nu) - \tau(\nu) = \frac{k\pi i(1 + a\nu)}{\nu} = -\frac{k'\pi i(1 - a\nu)}{\nu}$$

The only continuous solution $T(\nu)$ satisfying T(0) = 0 is $T \equiv 0$.

3 Proof of Theorem 1.1

PROOF OF THEOREM 1.1. We consider two prepared families g_{ν} and \overline{g}_{ν} which have the same modulus. For $\nu \in V_{\delta,0}^{L}$ defined in (2.15) of [2] we have constructed a conjugacy $h_{\nu}(z)$ between g_{ν} and \overline{g}_{ν} depending analytically on $\nu \neq 0$ and continuously on ν near $\nu = 0$. If we pass to $\epsilon = \nu^{2}$ this gives us two conjugacies $h_{1,\epsilon}$ and $h_{2,\epsilon}$ between g_{ν} and \overline{g}_{ν} for arg $\epsilon \in (-\pi+2\delta, \pi-2\delta)$. We will be done if we show that we can choose the conjugacy $h_{\nu}(z)$ such that $h_{1,\epsilon} \equiv h_{2,\epsilon}$. Indeed $\gamma_{\epsilon} = (h_{1,\epsilon})^{-1} \circ h_{2,\epsilon}$ is a symmetry of g_{ν} (this is the case since $g_{\nu} = g_{-\nu}$). Moreover γ_{ϵ} depends analytically on $\epsilon \neq 0$ and has a continuous limit at $\epsilon = 0$. As $h_{i,\epsilon}$, i = 1, 2, have the same limit h_{0} when $\epsilon \to 0$, then $\gamma_{0} = id$. In cases (1), (2) and (3)(a) of Proposition 2.3 then $\gamma_{\epsilon} = id$.

So we only need to discuss case (3)(b). In this case we stay with the parameter ν and we use the two sectorial domains $V_{\delta,0}^L$ and $V_{\delta,1}^L$ defined in (2.15) of [2]. On each of them we have defined a family of diffeomorphims $h_{0,\nu}$ and $h_{1,\nu}$ between g_{ν} and \overline{g}_{ν} . Moreover it is easy to manage that

$$h_{0,\nu} = h_{1,-\nu}.\tag{3.1}$$

(it suffices to take the same normalized Fatou coordinates on each sector). The two sectors intersect on two smaller sectors $V_{\delta}^+ = \{\nu \in V_{\delta,0}^L | \arg \nu \in (-\pi/2 + \delta, \pi/2 - \delta)\}$ and $V_{\delta}^- = \{\nu \in V_{\delta,0}^L | \arg \nu \in (\pi/2 + \delta, 3\pi/2 - \delta)\}$. On each of these sectors the diffeomorphims $\gamma_{\nu}^{\pm} = h_{1,\nu}^{-1} \circ h_{0,\nu}$ is a symmetry of g_{ν} unfolding the identity. By Proposition 2.3 there exist times $\tau^{\pm}(\nu)$ such that $\gamma_{\nu}^{\pm} = g_{\nu}^{\tau^{\pm}(\nu)}$ on V_{δ}^{\pm} . Moreover from (3.1) we have that

$$\tau^{+}(\nu) = -\tau^{-}(-\nu). \tag{3.2}$$

There exists $T_i(\nu)$, i = 0, 1, defined respectively on $V_{\delta,i}^L$ such that

$$T_0(\nu) - T_1(\nu) = \tau^{\pm}(\nu) \qquad \nu \in V_{\delta}^{\pm}.$$
 (3.3)

Let

$$\begin{cases} \overline{T}_0(\nu) = \frac{1}{2}(T_0(\nu) + T_1(-\nu)) \\ \overline{T}_1(\nu) = \frac{1}{2}(T_0(-\nu) + T_1(\nu)). \end{cases}$$
(3.4)

Then $\overline{T}_0(-\nu) = \overline{T}_1(\nu)$ and

$$\overline{T}_0(\nu) - \overline{T}_1(\nu) = \tau^{\pm}(\nu) \qquad \text{for} \quad \nu \in V_{\delta}^{\pm}.$$
(3.5)

We replace the conjugating diffeomorphisms $h_{i,\nu}$ by

$$\hat{h}_{i,\nu} = h_{i,\nu} \circ g_{\nu}^{-T_i(\nu)}.$$
(3.6)

Then the two $\hat{h}_{i,\nu}$ coincide on V_{δ}^{\pm} and moreover satisfy $\hat{h}_{i,\nu} = \hat{h}_{i,-\nu}$, yielding a conjugacy \hat{h}_{ϵ} depending analytically on ϵ .

4 Acknowledgements

The author thanks Colin Christopher for helpful discussions.

References

- Y. Ilyashenko, Nonlinear Stokes phenomena, in *Nonlinear Stokes phenomena*, Y. Ilyashenko editor, Advances in Soviet Mathematics, vol. 14, Amer. Math. Soc., Providence, RI, (1993), 1-55.
- [2] P. Mardešić, R. Roussarie and C. Rousseau, Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms, preprint CRM (2002), to appear in Moscow Mathematical Journal.
- [3] C. Rousseau, Modulus of orbital analytic classification for a family unfolding a saddlenode, preprint CRM (2002), to appear in Moscow Mathematical Journal.