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Abstract

In this paper we give the complete classification of generic 1-parame-
ter unfoldings of germs of real analytic curves with a cuspidal point
under conformal equivalence. A cusp is obtained by squaring an ana-
lytic curve having contact of order 1 with a line through the origin. We
show that this point of view can be extended to the unfolding. This
allows to reduce the classification of unfoldings of cusps to the classifi-
cation of unfoldings of a pair of curves having a contact of order 1 at
the origin, one being obtained from the other through a reflection with
respect to the origin. This unfolding can be studied in the same way
as an unfolding of a curvilinear angle with zero angle, called a horn.
We then classify the unfoldings of the special horns corresponding to
cusps by means of the associated diffeomorphisms. We interpret the
results geometrically.

1 Introduction

In dynamical systems, singularities are studied through normal forms. It is
known that in analytic dynamics the change of coordinates to normal form
may diverge, even for several of the simplest singularities. Then, there are
many equivalence classes of singularities with a given normal form, classified
by the moduli space. Quite often, the moduli space is infinite dimensional.
This paper is part of a large program to understand the conditions under
which two analytic objects are equivalent, and to explain why the mod-
uli spaces are so large. This has been performed to study the unfolding
of a parabolic point of a germ of diffeomorphism ([9] and [3]). Indeed, a
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parabolic point is a double fixed point of the diffeomorphism. If we unfold
the diffeomorphism, we may have two hyperbolic fixed points. The generic
case is when the normalizations do not match up to the limit of confluence.
This original idea of Martinet [8] was pushed in more details by Glutsyuk
[5]. The works [9] and [3] complete the study for parameter values where
the fixed points are not hyperbolic, or when the normalization domains do
not intersect.

In this paper we perform the same program with the cusp singularity.
We are interested to classify the germs of analytic parameterized curves with
a cusp singularity under conformal equivalence. A cusp singularity is a real
analytic parameterized curve Γ(t) of the form

Γ(t) = (t2, t3 + o(t3)),

up to a conformal transformation. It is common in the literature to consider
Γ(t) as the square of a curve γ(t) with a contact of order 1 with the real axis
through the origin. Of course, Γ(t) is also the square of −γ(t) and the two
curves γ(t) and −γ(t) have a contact of order 1 at the origin. They form
a curvilinear angle called a horn. Let Σ (resp. Σ′) be the Schwarz reflec-
tion generated by γ(t) (resp. −γ(t)). Both Σ and Σ′ are anti-holomorphic
involutions. Their composition f = Σ◦Σ′ is called the diffeomorphism asso-
ciated to the curvilinear angle. This diffeomorphism is reversible under the
symmetry R2 with respect to the origin (R2(z) = −z) and under Σ and Σ′,
namely {

f ◦R2 = R2 ◦ f−1,

f ◦ Σ = Σ ◦ f−1, f ◦ Σ′ = Σ′ ◦ f−1.

It is shown in [10] and [1] that classifying cusps up to conformal equivalence
is equivalent to classifying germs of diffeomorphisms f under conjugacy pre-
serving the reversibility properties.

We deal with three ways of considering the problem. In Section 3 we
study the cusp curve as a parameterized curve Γ(t) in C-space and the curve
Γ(t) as the square of a curve γ(t) with a contact of order 1 with a line through
the origin. In Section 4 we study the diffeomorphism f associated to the
horn formed by the curves γ(t) and −γ(t). In each case, we consider the
unfolding and we give a prenormal form for this unfolding that is adequate
for that particular point of view. In Section 5 we derive the complete mod-
ulus space for the germs of generic unfoldings of cusps singularities through
the modulus of their associated diffeomorphisms. Section 6 contains a geo-
metric interpretation of the results. For that part, we use that, on adequate
domains, there exist unique vector fields of which the diffeomorphism fε is
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the time-1 map and we interpret the modulus on the geometry of these flow
lines.

2 Preliminaries

2.1 Notation

The following notation is used through the whole paper

• σ(z) = z is the complex conjugation in C.

• R2(z) = −z is the rotation of order 2.

• τ(z) = −z = σ ◦R2 is the reflection with respect to the imaginary axis
in C.

• S(z) = z2.

• TC(z) = z + C is the translation by C.

• σA = TA ◦ σ.

• τB = TB ◦ τ = TB ◦ σ ◦R2

• α = π√
ε̂
, where ε̂ belongs to the universal covering of ε-space punctured

at 0.

2.2 The diffeomorphism associated to a cusp and adequate
neighborhood of a cusp point

We consider a germ of analytic parameterized curve Γ0 in Z-space with a
cusp at the origin. Such a parametrization has the form

Γ0(t) = t2 + i(t3 + o(t3)),

and is hence the square of a smooth parameterized analytic curve γ0 in
z-space, where

γ0(t) = t+ o(t) + i(
t2

2
+ o(t2)).

It is of course also the square of the curve −γ0(t). In a neighborhood of
the origin U = Dr, the curve γ0 (resp. −γ0) can be sent to the real axis by
a conformal diffeomorphism h. On h(U) we have the symmetry σ(z) = z.

3



Figure 1: The two petals on the boundary of U .

Hence, this allows to define the Schwarz reflection, Σ = h−1 ◦ σ ◦ h, with
respect to the curve γ0.

Then Σ′ = R2 ◦Σ◦R2 is the Schwarz reflection with respect to the curve
−γ0. We consider the diffeomorphism

f0 = Σ ◦ Σ′.

Since γ0 and −γ0 are tangent to the real axis at the origin, then f0 is a
holomorphic diffeomorphism, with a parabolic point at the origin of codi-
mension 1, (i.e. a double fixed point with multiplier equal to 1). We call f0

the diffeomorphism associated to the cusp.
We will suppose that U is sufficiently small so that

• 0 is the unique fixed point of f0 inside U ;

• U is symmetric under R2;

• U is contained in the domain of the conformal diffeomorphism h de-
fined above;

• the behavior of f0 on the boundary of U is given by two petals (Fig-
ure 1).

Such a neighborhood is called an adequate neighborhood for γ0. (Note
that U is also adequate for −γ0.) Later, we will consider analytic pertur-
bations γε of γ0. For the whole paper we choose U whose radius is not
maximal. We then restrict to sufficiently small values of ε (|ε| < ρ), so that
the two fixed points of the unfolding fε of f0 belong to U , when ε ∈ Dρ.
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Let S(z) = z2. The image U ′ = S(U) = B(0, r2) is called an adequate
neighborhood for the cusp point of Γ0. We use Z = Γ0(t) and z = γ0(t).

In the z-plane, we consider the reflections Σ (resp. Σ′) with respect to
γ0 (resp. −γ0) and the diffeomorphism f0 = Σ ◦Σ′. If we now switch to the
Z-plane by means of z 7→ Z = z2 then we get a map F0, which is ramified.
So, it is only a diffeomorphism on the 2-covering of Z-plane punctured at
the origin. What is the meaning of this map F0? We may define F0 as the
composition of the Schwarz reflections with respect to the two branches of
the cusp. This is perfectly well defined far from the cusp point, and then
we use analytic extension. The ramified character comes from the fact that
one branch is an extension of the other.

A complete modulus for the cusp will be nothing else than the Ecalle-
Voronin modulus of the diffeomorphism f0 which has a parabolic point at
the origin [1]. But, of course, not all diffeomorphisms f0 with a parabolic
curve are diffeomorphisms associated to a cusp. Indeed, the diffeomorphism
f0 satisfies the two additional properties:{

R2 ◦ f0 = (f0)−1 ◦R2,

Σ ◦ f0 = (f0)−1 ◦ Σ.

This implies in particular that the formal invariant a of f0 vanishes. Hence,
the formal normal form of f0 = Σ ◦ Σ′ is simply f0(z) = z

1−iz , where Σ

(resp Σ′) is the reflection with respect to the circle x2 + (y − 1
2)2 = 1

4 (resp.
x2 + (y + 1

2)2 = 1
4).

This description extends to the unfolding in a straightforward manner.

2.3 The modulus of conformal classification of a cusp

Let us define for any A ∈ C,

TA(W ) = W +A,

τA = TA ◦R2 ◦ σ.

It has been shown by Nakai [10] and Ahern and Gong [1] that the modu-
lus of conformal classification of a cusp is the Ecalle-Voronin modulus of the
associated diffeomorphism f0. In general, the Ecalle-Voronin modulus of a
diffeomorphism with a double fixed point is given by an equivalence class of
pairs of diffeomorphisms [Ψ0

0,Ψ
∞
0 ]/ ∼, where
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• Ψ0
0 (resp. Ψ∞0 ) is defined in a region Im W < −Y0 (resp. Im W > Y0)

for some Y0 > 0,

• Ψ0
0 and Ψ∞∞ commute with T1,

and the equivalence relation is defined as follows

(Ψ0
0,Ψ

∞
0 ) ∼ (Ψ̆0

0, Ψ̆
∞
0 )⇐⇒ ∃B,B′ ∈ C

{
Ψ0

0 = TB ◦ Ψ̆0
0 ◦ TB′ ,

Ψ∞0 = TB ◦ Ψ̆∞0 ◦ TB′ .

In the case of a diffeomorphism associated to a cusp, it is possible to
choose a canonical representative of the modulus and eliminate the equiva-
lence classes. This canonical representative satisfies

• Ψ0
0 = R2 ◦ (Ψ∞0 )−1 ◦R2, where R2(W ) = −W ;

•

{
Ψ0

0 = τ 1
2
◦ (Ψ0

0)−1 ◦ τ 1
2
,

Ψ∞0 = τ 1
2
◦ (Ψ∞0 )−1 ◦ τ 1

2
.

Moreover, any pair of germs of diffeomorphisms satisfying these conditions
is realizable as the modulus of a diffeomorphism associated to a cusp. (A
proof of these results will be included in our study of the unfolding below.)

We will show that the modulus of a family of germs fε unfolding f0 is
simply an unfolding of the modulus (Ψ0

ε ,Ψ
∞
ε ) satisfying similar conditions

as above.

2.4 The model family for the unfolding of a cusp

We have seen that for ε = 0 the model family is given by the two circles
x2 +(y−2)2 = 4 and x2 +(y+2)2 = 4 and that f0 = Σ◦Σ′ is simply f0(z) =
z

1−iz . In practice, f0(z) the time-one map of the vector field v0(z) = iz2 ∂
∂z .

A natural model for the unfolding fε(z) is simply the time-one map of the
vector field vε(z) = i(z2 − ε) ∂∂z , which yields

fε(z) =

√
εz
(

1 + e2i
√
ε
)

+ ε
(

1− e2i
√
ε
)

z
(
1− e2i

√
ε
)

+
√
ε
(
1 + e2i

√
ε
) .

(fε is invariant under
√
ε 7→ −

√
ε and hence an analytic function of ε.) The

map fε is the composition Σε ◦Σ′ε, where Σε (resp. Σ′ε) is the reflection with
respect to the circle x2 + (y − h)2 = ε + h2 (resp. x2 + (y + h)2 = ε + h2),

where h = h(ε) =
√
ε

tan
√
ε

2

. The two circles intersect in ±
√
ε and we have that

f ′ε(±
√
ε) = exp(±2i

√
ε).
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3 Reduction to the study of the unfolding of an
analytic curve

In this section we consider normal forms (under conformal equivalence) for
a generic unfolding Γε(t) of a curve Γ0(t) of cusp type and we show that
Γε(t) is of the form γ2

ε (t) for some unfolding γε(t) of γ0. We also study the
converse direction, thus showing that to classify germs of generic families
unfolding a cusp, it suffices to classify germs of generic families unfolding an
analytic arc having a contact point of order 1 with a line through the origin
under conformal equivalence commuting with R2.

3.1 Generic unfolding of a curve of cusp type

Proposition 3.1 We consider a germ of real analytic curve of cusp type of
the form Γ0(t) = t2 + i(t3 + o(t3)), defined for t in a small neighborhood of
the origin in R, and an unfolding Γε(t). Modulo affine change of coordinate
in Z = x+ iy and in t, we can bring the unfolding to the simple form

(x(t), y(t)) = (t2 + o(t2), t3 + η(ε)t+ o(t3)). (3.1)

Proof. We consider the image of Γ0 in the Z-plane. We can of course
enlarge the problem, and consider t in a small neighborhood of the origin in
C. We unfold Γ0(t) in a 1-parameter family Γε(t). The family has the form:

(x(t), y(t)) = (t2 + a(ε)t+ b(ε) + t3f(t, ε),

t3 + c(ε)t2 + d(ε)t+ e(ε) + t4g(t, ε)),

where a(0) = b(0) = c(0) = d(0) = e(0) = 0.
We consider a change of coordinates (x1, y1) = (x − δ1y + δ2, δ1x +

y + δ3) in the (x, y)-plane, together with a change t = s + δ4. We then
have (x1(t), y1(t)) = (A0(ε) + A1(ε)s + A2(ε)s2h(s, ε),

∑∞
n=0Bn(ε)sn), with

h(0, 0) = 1. We solve the system A0(ε) = A1(ε) = B0(ε) = B2(ε) = 0 in the
neighborhood of ε = 0. The Jacobian matrix with respect to (δ1, δ2, δ3, δ4)
at ε = 0 is given by the invertible matrix

0 1 0 0
0 0 0 2
0 0 1 0
1 0 0 3

 .

Hence, the system has a unique solution such that δj(0) = 0 by the implicit
function theorem, yielding (3.1). 2
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Definition 3.2 The unfolding Γε of the form (3.1) is generic if η′(0) 6= 0.

This allows to reparameterize so that η(ε) = −ε, and we consider the
family

Γε(t) = (x(t), y(t)) = (t2 + o(t2), t3 − εt+ o(t3)). (3.2)

As a complex function of t, Γ0(t) = x(t) + iy(t) has a critical point at
t = 0. Hence Γ′0(0) = 0 and Γ′′0(0) 6= 0. By the implicit function theorem,
Γε has a unique critical point for t = ξ(ε) = iε

2 + o(ε), with ξ(0) = 0, and Γε
is 2 : 1 in a neighborhood of ξ(ε).

We change to the coordinate Z 7→ Z1 = Z−Γε(ξ(ε)) and we let Γ1,ε(t) =
Γε(t)− Γε(ξ(ε)).

Lemma 3.3 There exists r, ρ > 0, and an analytic function γε(t) such that
γε is defined for t ∈ Dr for all ε ∈ Dρ, and

Γ1,ε(t) = γ2
ε (t) = (−γε(t))2.

Moreover, γε(ξ(ε)) = 0.

Proof. From the hypothesis, we have Γ1,ε(t) = (t− ξ(ε))2(1 +O(t− ξ(ε)))
from which the result follows. 2

If we restrict t to real values, we hence obtain two germs of analytic
curves γε(t) and −γε(t), which are considered to be sitting in z-plane, and
whose images under z 7→ S(z) = z2 = Z1 is the curve Γ1,ε. At ε = 0, the
two curves have a contact point at the origin of order 1. So, for ε 6= 0 real,
either they do not intersect, or they intersect transversally in two points z0

and −z0. If so, z0 and −z0 are sent in Z-plane to a double point of Γ1,ε.
From the form of Γ1,ε, we see that we have a double point for the real curve
when ε > 0, and a smooth real curve when ε < 0.

3.2 Generic unfolding of a curve having a contact of order 1
with a line through the origin

Conversely, we want to show that all generic unfoldings γε of a curve tangent
to a line passing through the origin lead, by squaring, to the unfolding of a
cusp.

Proposition 3.4 We consider a regular curve γ in the z-plane tangent to
the x-axis. This curve can be written z(t) = x(t) + iy(t) with

(x(t), y(t)) = (t, t2 + t3g(t)).
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Any 1-parameter unfolding can be brought to the form

(x(t), y(t)) = (t, t2 + η0(ε) + t3g(t, ε)), (3.3)

under linear transformations in z (keeping z = 0 fixed) and reparameteriza-
tion in t.

Proof. A general unfolding has the form

(x(t), y(t)) = (t+ η0(ε) + t2f(t, ε), t2 + η1(ε)t+ η2(ε) + t3g(t, ε)),

where f(t, 0) ≡ 0.
To simplify, we just treat ηj as independent parameters.
We apply simultaneously a transformation (x1, y1) = (x − δ1y, δ1x + y)

and a transformation moving t to t1:

t = t1k(t1, ε) + δ2,

with k(t1, ε) = 1 +O(t1) +O(ε).
Note that the functions

g1(s, ε, δ2) =
(s+ δ2)2g(s+ δ2, ε)− δ2

2g(δ2)

s
,

and

f1(s, ε, δ2) =
(s+ δ2)2f(s+ δ2)− δ2

2f(δ2)

s

are analytic and f1(s, δ2) = O(|(s, δ2)|2).
The transformed curve has the form (x1(t), y1(t)) with

x1(t1) = [η0 + δ2 + δ2
2f(δ2)− δ1δ

2
2 − δ1η1δ2 − δ1δ

2
2g(δ2)]

+
[
t1k(1− δ1η1 − 2δ1δ2) + (δ2 + t1k)2f(δ2 + t1k)− δ2

2f(δ2)

−δ1t
2
1k

2 − δ1

(
(t1k + δ2)2g(t1k + δ2)− δ2

2g(δ2)
)]
,

y1(t1) = y1(0) +
[
η1 + δ1 + 2δ2 + 2δ2g(δ2) + δ2

2g
′(δ2)

]
t1

+ t21(1 +O(|(ε, δ)|)) +O(t31).

(3.4)

Note that

t1k(1− δ1η1 − 2δ1δ2) + [δ2 + t1k)2f(δ2 + t1k)− δ2
2f(δ2)]

− δ1t
2
1k

2 − δ1

[
(t1k + δ2)2g(t1k + δ2)− δ2

2g(δ2)
]

= t1
[
k(1− δ1η1 − 2δ1δ2) + f1(t1k, δ2)− δ1t1k

2 − δ1g1(t1k)
]
.

(3.5)

9



We solve by the implicit function theorem the two equations

η0 + δ2 + δ2
2f(δ2)− δ1δ

2
2 − δ1η1δ2 − δ1δ

2
2g(δ2) = 0,

η1 + δ1 + 2δ2 + 2δ2g(δ2) + δ2
2g
′
1(δ2) = 0,

(3.6)

with respect to δ1, δ2. Since the Jacobian does not vanish, this system has
an analytic solution with δ1, δ2 depending analytically on ε.

We substitute in the equation

k(1− δ1η1 − 2δ1δ2) + f1(t1k, δ2)− δ1t1k
2 − δ1g2(t1k) = 1, (3.7)

which we can solve for k, near k = 1, as a function of (t1, ε).
Hence, we end up with an unfolding of the curve in the form (we forget

the indices)

(x(t), y(t)) = (t, t2 + η0(ε) + t3g(t, ε)). (3.8)

2

Definition 3.5 The unfolding γε of γ in (3.3) is generic if η′0(0) 6= 0.

This allows to reparameterize η0(ε) = −ε.

Corollary 3.6 The square of any generic 1-parameter unfolding of the form

(x(t), y(t)) = (t, t2 − ε+ t3g(t, ε)) (3.9)

is, up to a translation, a generic unfolding of a cusp of the form (3.2).

4 The associated diffeomorphism

We consider a generic γε. Let Σε and Σ′ε be the Schwarz reflections with
respect to γε and −γε and let R2 be the rotation of order 2. Of course,

Σ′ε = R2 ◦ Σε ◦R2.

We consider the analytic diffeomorphism

fε = Σε ◦ Σ′ε.

Then f is reversible with respect to R2, namely

R2 ◦ fε ◦R2 = (fε)
−1. (4.1)
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The diffeomorphism f0 has a parabolic fixed point at the origin for ε = 0.
For ε 6= 0, it has two fixed points z0 and −z0. From Proposition 3.4, we
suppose that γε(t) has the form (3.9). Then z0 is γε(t0) where t0 is solution
of γε(t) = −γε(t), namely

2(t2 − ε) + t3g(t, ε))− t3g(−t, ε) = 0 = (t2 − η(ε))h(t, ε),

the last equality following from Weierstrass preparation theorem. Since
η′(0) 6= 0, we can of course make the change of parameter ε 7→ η (note that
this changes somewhat the expression of γε).

When γε(t) has this form then, modulo a scaling in z

fε(z) = z + (z2 − ε)(A(ε) +O(z)).

Because of (4.1), then the formal invariant of f is zero. This means that
f ′ε(
√
ε) = (f ′ε(−

√
ε))−1. We can make a final analytic change

(z, ε) 7→ (µ(ε)z, εµ2(ε)),

linear in z, with µ(ε) real for real ε, so as to achieve

f ′ε(
√
ε) = (f ′ε(−

√
ε))−1 = exp(2i

√
ε). (4.2)

In this final form, the parameter is now canonical and an analytic invariant.
Again, this has changed somewhat the expression of γε. The corresponding
form of fε is now

fε(z) = z + (z2 − ε)[i+B(ε) + (z2 − ε)k(z, ε)]. (4.3)

Definition 4.1 A germ of generic family of diffeomorphisms of the form
(4.3), and satisfying (4.1) and (4.2), is called prepared.

Proposition 4.2 We consider two germs of families of curves γj,ε, j = 1, 2,
as above, both parameterized by their canonical parameter ε. They generate
Schwarz reflections Σj,ε. Then the germs of families γ1,ε and γ2,ε are con-
formally equivalent under a germ of family of analytic diffeomorphisms hε
commuting with R2 if and only if their associated diffeomorphisms fj,ε are
conjugate by a germ of family of diffeomorphisms hε satisfying

hε ◦ f1,ε = f2,ε ◦ hε,
hε ◦ Σ1,ε = Σ2,ε ◦ hε,
hε ◦R2 = R2 ◦ hε.

(4.4)
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Figure 2: The sectorial domain V .

Proof. Let hε be a germ of family of conformal diffeomorphisms such that
hε(γ1,ε) = γ2,ε and R2 ◦ hε = hε ◦R2. Then, of course Σ2,ε = hε ◦Σ1,ε ◦ h−1

ε .
Also, if Σ′j,ε = R2 ◦ Σj,ε ◦R2, j = 1, 2, then Σ′2,ε = hε ◦ Σ′1,ε ◦ h−1

ε . Hence,

f2,ε = Σ2,ε ◦ Σ′2,ε = hε ◦ f1,ε ◦ h−1
ε .

Conversely, we suppose that (4.4) is satisfied. Then, hε is a conformal equiv-
alence sending γ1,ε to γ2,ε and commuting with R2. 2

By Proposition 4.2, it suffices to classify the germs of prepared families
of diffeomorphisms fε of the form fε = Σε ◦ Σ′ε, where Σε is a family of
Schwarz reflections, and Σ′ε = R2 ◦Σε ◦R2. Such diffeomorphisms of course
satisfy fε ◦R2 = R2 ◦ f−1

ε and their formal invariant vanishes identically.

5 The modulus of conformal classification

A complete modulus of analytic classification for a germ of generic family
unfolding a parabolic diffeomorphism has been given in [9] and is called
the Lavaurs modulus. This modulus is an unfolding of the Ecalle-Voronin
modulus. It is an equivalence class of pairs of diffeomorphisms (Ψ0

ε̂ ,Ψ
∞
ε̂ )

defined for ε̂ in a sector Vδ in the universal covering of ε-space, punctured
at 0, of the form (see Figure 2):

Vδ = {ε̂ : |ε̂| < ρ, arg(ε̂) ∈ (−π − δ, π + δ)}, (5.1)

for some δ ∈ (0, π). Here, we are essentially interested in real values of ε.
The problem with the Lavaurs modulus for ε negative is that it provides
two different moduli and it is not well adapted to the “real character” of the
problem. So, when ε < 0, we will provide another modulus, the Glutsyuk
modulus, which will also be used to identify the realizable moduli.
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The underlying idea of the Lavaurs modulus is to conjugate fε with the
model family on sectorial domains with vertices at the fixed points, and to
compare the conjugacies on the intersection of the sectorial domains. In
the Glutsyuk modulus, we rather conjugate fε with the model family in the
neighborhood of each fixed point and we compare the conjugacies in the
intersection of the two neighborhoods.

5.1 The Lavaurs modulus

As described in [9], the modulus of a family fε is the unfolding of the Ecalle-
Voronin modulus. Since we need to derive its special property, we will
construct it.

We suppose that for all ε ∈ Dρ, the map fε is defined on Dr.

We move to coordinates

W = p−1
ε (z) =

{
1

2i
√
ε

ln z−
√
ε

z+
√
ε
, ε 6= 0,

i
z , ε = 0.

(5.2)

This multi-valued map has period Tα, where

α =
π√
ε̂
. (5.3)

For ε = 0, the image of the domain U = Dr is the exterior of a disk. The
lift of fε in W -coordinate is Fε, which commutes with Tα, and it is known
that Fε is a small perturbation of T1 (see for instance [9]). In this new
coordinate W , the model family is now T1. We want to construct changes
of coordinates conjugating Fε to the model family T1. Such changes of
coordinates are called Fatou coordinates and will be denoted Φ. Usually
they cannot be globally defined. They are defined on translation domains
in W -space (Figure 3).

Definition 5.1 1. An admissible line in W -space is a line ` so that `
and Fε(`) are disjoint, and such that the strip Sε(`) between ` and
Fε(`) is included in p−1

ε (Dr).

2. The translation domain Qε(`) associated with an admissible line is the
saturation of the strip Sε(`) under Fε (Figure 3):

Qε(`) = {W ∈ p−1
ε (Dr) | ∃n ∈ Z, F ◦nε (W ) ∈ Sε(`)

and ∀j ∈ [0, n] ⊂ Z,F◦jε (W) ∈ p−1
ε (Dr)}.
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Figure 3: Translation domains of Fatou coordinates in Lavaurs point of view.

The original diffeomorphism fε is reversible with respect to R2. Since
R2 has two centers of symmetry, 0 and ∞, we get that F0, the lift of f0

in W -coordinate, is also reversible with respect to R2 in W -space. The lift
of R2 when ε 6= 0 is a little more subtle. Note that 0 is sent to the points
(2k+1)π

2
√
ε̂

, for k ∈ Z. Then R2 is lifted to a multi-valued map corresponding

to a rotation of order 2 around any of these points. Let us call Rα (resp.
R−α) the rotation of order 2 around π

2
√
ε̂

(resp. − π
2
√
ε̂
). Then{

Rα = Tα
2
◦R2 ◦ T−α

2
= Tα ◦R2,

R−α = T−α
2
◦R2 ◦ Tα

2
= T−α ◦R2.

We then have
Rα ◦ Fε = (Fε)

−1 ◦Rα.
But, since Fε commutes with Tα we finally also get that

R2 ◦ Fε = (Fε)
−1 ◦R2.
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The construction of a Fatou coordinate, Φ, defined on a translation do-
main with image in C and satisfying Φ ◦ Fε = T1 ◦ Φ is quite standard (see
for instance [9]). Moreover, a Fatou ccordinate is unique on a translation
domain, up to left composition with translations. We consider a translation
domain Q+

ε̂ (resp. Q−ε̂ ) associated to a line `+ε̂ (resp. `−ε̂ ) located on the left
(resp. right) of the principal hole, and let Φ±ε̂ be a Fatou coordinate on Q±ε̂ .

Definition 5.2 Considering two translations domains Q±ε̂ associated to lines
transversal to the line of holes and located on both sides of the principal hole
and Fatou coordinates Φ±ε̂ on Q±ε̂ , the Lavaurs modulus is defined as

Ψε̂ = Φ−ε̂ ◦ (Φ+
ε̂ )−1.

It has two components Ψ0
ε̂ (resp. Ψ∞ε̂ ) on the two connected components of its

domain of definition containing half-planes Im(W) < −Y0 (resp. Im(W) >
Y0). In the limit ε = 0, the Lavaurs modulus is simply the Ecalle-Voronin
modulus.

Theorem 5.3 For ε̂ ∈ Vδ, there exist unique Fatou coordinates Φ±ε̂ on Q±ε̂
such that the associated Lavaurs modulus Ψ0,∞

ε̂ has the following properties

•
Ψ0
ε̂ = R2 ◦ (Ψ∞ε̂ )−1 ◦R2. (5.4)

• Ψ0,∞
ε̂ have zero constant terms in their Fourier series expansions (see

(5.7) below).

• Let ε̂ be the conjugate of ε̂ defined by arg(ε̂) = − arg(ε̂) and

τB = TB ◦R2 ◦ σ. (5.5)

Then, {
Ψ0,∞
ε̂ = τ 1

2
◦ (Ψ0,∞

ε̂
)−1 ◦ τ 1

2
,

Ψ0,∞
ε̂ = τ− 1

2
◦ (Ψ0,∞

ε̂
)−1 ◦ τ− 1

2
.

(5.6)

Proof. Because of the reversibility of Fε with respect to R2, and because
of the shape of the domains of the Fatou coordinates, it follows that we can
take

Φ−ε̂ = R2 ◦ Φ+
ε̂ ◦R2,

from which (5.4) follows because R2 sends the domain of Ψ0
ε̂ to that of Ψ∞ε̂ .
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Since Ψ∞ε̂ commute with T1 and from the form of their domain of defi-
nition, they can be expanded as Fourier series:{

Ψ0
ε̂ = W +

∑
n≤0 b

0
n(ε̂) exp(2πinW ),

Ψ∞ε̂ = W +
∑

n≥0 b
∞
n (ε̂) exp(2πinW ).

(5.7)

Because of (5.4), we have b00(ε̂) = b∞0 (ε̂). Considering a special choice Φ+
ε̂ ,

which we call Φ̆+
ε̂ and which is obtained by composing Φ+

ε̂ on the left with
an appropriate translation, we can manage that b00(ε̂) = b∞0 (ε̂) = 0 while
keeping (5.4). This fixes completely the Fatou coordinates which depend
analytically on ε̂ with continuous limit at ε = 0.

Let us now explain the treatment of the reversibility with respect to the
lift of Σε in W -space, which we call Σ1,ε. Note that Σ1,ε is uniform in ε and
that we have Σ1,ε ◦ Σ1,ε = id. We choose Φ̆+

ε̂ defined above as one of the
Fatou coordinates. Let

τ(W ) = −W = R2 ◦ σ(W ).

We let
Φ̆−ε̂ = τ ◦ Φ̆+

ε̂
◦ Σ1,ε.

If we define
Ψ̆ε̂ = Φ̆−ε̂ ◦ (Φ̆+

ε̂ )−1,

then we have
Ψ̆0,∞
ε̂ = τ ◦ (Ψ̆0,∞

ε̂
)−1 ◦ τ,

from which it follows that the constant terms in the expansions of Ψ̆0
ε̂ and

Ψ̆0
ε̂

(resp. Ψ̆∞ε̂ and Ψ̆∞
ε̂

) are conjugate.
Of course, we have that

Φ̆−ε̂ = T−B(ε̂) ◦ Φ−ε̂ ,

for some B(ε̂) satisfying B(ε̂) = B(ε̂). Hence,

Ψ̆0,∞
ε̂ = T−B(ε̂) ◦Ψ0,∞

ε̂
.

It follows that we have

Ψ0,∞
ε̂ = τB(ε̂) ◦ (Ψ0,∞

ε̂
)−1 ◦ τB(ε̂). (5.8)

We also have

Ψ0,∞
ε̂ = τ−B(ε̂) ◦ (Ψ0,∞

ε̂
)−1 ◦ τ−B(ε̂). (5.9)
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Indeed,

Ψ0
ε̂ = R2 ◦ (Ψ∞ε̂ )−1 ◦R2

= R2 ◦ τB(ε̂) ◦Ψ∞
ε̂
◦ τB(ε̂) ◦R2

= τ−B(ε̂) ◦R2 ◦Ψ∞
ε̂
◦R2 ◦ τ−B(ε̂)

= τ−B(ε̂) ◦ (Ψ0
ε̂
)−1 ◦ τ−B(ε̂).

Combining (5.8) with (5.9) yields

Ψ0,∞
ε̂ = T2B(ε̂) ◦Ψ0,∞

ε̂ ◦ T−2B(ε̂). (5.10)

Hence, Ψ0
ε̂ and Ψ∞ε̂ commute with T2B(ε̂). In the generic case, where one of

Ψ0
ε̂ and Ψ∞ε̂ is nonlinear for at least one value of ε, then we can conclude

that 2B(ε̂) is rational, hence constant in ε̂. Let us now show that B(ε̂) ≡ 1
2 .

Since B(ε̂) depends analytically on ε̂ 6= 0, it suffices to prove it for ε̂ = ε > 0.
We use that F = Σ1,ε ◦ (R2 ◦ Σ1,ε ◦R2).

T1 = Φ̆+
ε ◦ Σ1,ε ◦R2 ◦ Σ1,ε ◦R2 ◦ (Φ̆+

ε )−1

= τ ◦ Φ̆−ε ◦R2 ◦ Σ1,ε ◦ (Φ−ε )−1 ◦R2

= τB(ε) ◦ Φ−ε ◦R2 ◦ Σ1,ε ◦ (Φ̆−ε )−1 ◦ T−B(ε) ◦R2

= τB(ε) ◦ Φ−ε ◦R2 ◦ (Φ̆+
ε )−1 ◦ τ ◦ T−B(ε) ◦R2

= τB(ε) ◦ Φ−ε ◦ (Φ−ε )−1 ◦R2 ◦ τB(ε) ◦R2

= τB(ε) ◦ τ−B(ε) = T2B(ε),

from which B(ε̂) ≡ 1
2 follows. (5.6) is of course also true if both Ψ0

ε̂ and Ψ∞ε̂
are the identity. 2

5.2 The Glutsyuk modulus

In the case ε < 0, i.e. when the curves ±γε do not intersect, a second point
of view is given by the Glutsyuk modulus. This point of view will be needed
to identify the modulus space.

Definition 5.4 For ε < 0, let Φl
ε (resp. Φr

ε) be a Fatou coordinate asso-
ciated to a line parallel to the line of holes on the left (resp. right) of the
principal hole (Figure 4). The Glutsyuk invariant is defined as

ΨG
ε = Φr

ε ◦ (Φl
ε)
−1.
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Figure 4: Translation domains of Fatou coordinates in Glutsyuk point of
view.

Note that, because the formal invariant is identically zero, the Fatou
coordinates Φl,r

ε commute with Tα:

Φl,r
ε ◦ Tα = Tα ◦ Φl,r

ε ,

from which we deduce

ΨG
ε ◦ Tα = Tα ◦ΨG

ε . (5.11)

Theorem 5.5 For ε ∈ (−ρ, 0), there exist unique (Glutsyuk) Fatou coordi-

nates Φl,r
ε such that the associated Glutsyuk modulus Ψ0,∞

ε̂ has the following
properties

•
ΨG
ε = R2 ◦ (ΨG

ε )−1 ◦R2. (5.12)

• The Fourier series expansion of ΨG
ε̂ has zero constant terms in each

connected component of its domain.

•
ΨG
ε = τ± 1

2
◦ (ΨG

ε )−1 ◦ τ± 1
2
. (5.13)

The construction can be done so as to yield the same Ecalle-Voronin modulus
when ε→ 0 as in Theorem 5.3.
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Proof. (5.12) follows by taking

Φr
ε = R2 ◦ Φl

ε ◦R2.

Choosing appropriately Φr
ε , which we call Φ̆r we can suppose that the

constant term of ΨG
ε be 0 above the principal hole. From (5.11), it will

also be equal to 0 below the principal hole. Then, Φl
ε and Φr

ε are uniquely
determined with this property.

Let us now consider the reversibility property with respect to Σ1,ε, which
is the lift of the reflection Σε with respect to γε. Fε is reversible with respect
to Σ1,ε. As in the case ε ≥ 0 we take as right Fatou coordinate Φ̆r = Φr and
we let

Φ̆l
ε = τ ◦ Φ̆r

ε ◦ Σ1,ε.

Hence, this yields a representative of the modulus Ψ̆G
ε satisfying

Ψ̆G
ε = τ ◦ (Ψ̆G

ε )−1 ◦ τ.

Because of this property, ifB(ε) is the constant term in the Fourier expansion
of Ψ̆G

ε , then −B(ε) is the constant term in (Ψ̆G
ε )−1. We will show below that

B(ε) ≡ 1
2 . The first step is to show that B(ε) is real. We have Φl

ε = TB(ε)◦Φ̆l
ε,

and ΨG
ε = Ψ̆G

ε ◦ T−B(ε). If we let τB(ε) = TB(ε) ◦ τ = TB(ε) ◦ R2 ◦ σ, then it

follows that the Glutsyuk modulus ΨG
ε satisfies :

ΨG
ε ◦R2 = R2 ◦ (ΨG

ε )−1,

ΨG
ε = τ±B(ε) ◦ (ΨG

ε )−1 ◦ τ±B(ε),

ΨG
ε ◦ TB(ε)+B(ε) = TB(ε)+B(ε) ◦ΨG

ε .

(5.14)

Because of (5.12) and the normalization chosen for ΨG
ε , the constant term in

the Fourier expansion of (ΨG
ε )−1 vanishes. Since it is also equal toB(ε)−B(ε)

and because of (5.14), then B(ε) is real.
Let us now show that B(ε) ≡ 1

2 . Again we use that Fε = Σ1,ε ◦R2 ◦Σ1,ε ◦
R2. Then

T1 = Φr
ε ◦ Σ1,ε ◦R2 ◦ Σ1,ε ◦R2 ◦ (Φr

ε)
−1

= τ ◦ T−B(ε) ◦ Φl
ε ◦R2 ◦ Σ1,ε ◦ (Φ̆l

ε)
−1 ◦ T−B(ε) ◦R2

= τB(ε) ◦ Φl
ε ◦R2 ◦ (Φ)rε)

−1 ◦ τB(ε) ◦R2

= τB(ε) ◦ Φl
ε ◦ (Φ)lε)

−1 ◦ τ−B(ε) = T2B(ε).

It is clear that the construction can be done with continuous limit at ε = 0.
2
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5.3 The compatibility condition

The (Lavaurs) modulus (Ψ0
ε̂ ,Ψ

∞
ε̂ ) is defined for ε̂ ∈ Vδ, where Vδ is defined

in (5.1). We hence have two different moduli on the overlap of Vδ in ε-space
and, in particular, when ε ∈ R−. They must describe the same dynamics.
This is the compatibility condition that was described in [3] and [13], and
which turned out to be sufficient for realizability. In [13], it was also estab-
lished that when the Lavaurs modulus satisfies a reversibility condition with
respect to a Schwarz reflection, then the compatibility condition simply ex-
pressed that the Glutsyuk modulus derived from the Lavaurs modulus was
reversible for real values of the parameter. We analyze the corresponding
conditions here.

Since the modulus depends analytically on ε̂, it suffices to analyze the
compatibility condition for ε ∈ R−. Each such ε is represented by two ε̂ with
arguments −π and π. For that purpose we use the following notation

ε̂ =

{
ε̌, arg ε̂ = −π,
ε̃, arg ε̂ = +π,

(5.15)

and

Ψ0,∞
ε̂ =

{
Ψ̌0,∞, arg ε̂ = −π,
Ψ̃0,∞, arg ε̂ = π,

α(ε̂) =

{
α̌, arg ε̂ = −π,
α̃, arg ε̂ = π.

Recall that α(ε̂) = − π√
ε̂

and that α̌ = −α̃ = πi√
|ε̂|

.

We define maps Ȟ0,∞ and H̃0,∞ representing the change from Lavaurs
Fatou coordinates (on translation domains corresponding to a line transver-
sal to the line of holes) to Glutsyuk Fatou coordinates (on translation do-
mains corresponding to a line parallel to the line of holes). In the Lavaurs
Fatou coordinates, the renormalized return maps are given Ψ̌0,∞ ◦ Tα̌ or
Tα̃ ◦ Ψ̃0,∞, depending on which translation domain we start. The Glutsyuk
Fatou coordinates yield normalizations to the model which are uniform near
the singular points: they are characterized by the fact that the renormal-
ized return maps are just Tα. Hence, the maps Ȟ0,∞ and H̃0,∞ conjugate
the renormalized return maps Ψ̌0,∞ ◦ Tα̌ or Tα̃ ◦ Ψ̃0,∞ to translations (more
details in [3]): {

Ȟ0,∞ ◦ Ψ̌0,∞ ◦ Tα̌ = Tα̌ ◦ Ȟ0,∞,

H̃0,∞ ◦ Tα̃ ◦ Ψ̃0,∞ = Tα̃ ◦ H̃0,∞.
(5.16)
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(The maps Ȟ0,∞ and H̃0,∞ are not uniquely defined by (5.16). In fact, they
are defined up to composition on the left with a translation.) The Glutsyuk
modulus is then given on one side by

Ψ̃G = H̃∞ ◦ (H̃0)−1,

and on the other side by

Ψ̌G = Ȟ0 ◦ (Ȟ∞)−1.

Since it is unique up to left and right composition with translations, this
implies that there exists D,D′ ∈ C such that

H̃∞ ◦ (H̃0)−1 = TD ◦ Ȟ0 ◦ (Ȟ∞)−1 ◦ TD′ . (5.17)

We call (5.17) the compatibility condition. Using (5.4), it is easily checked
that we can take {

H̃∞ = R2 ◦ H̃0 ◦R2 ◦ T−α̃,
Ȟ∞ = R2 ◦ Ȟ0 ◦ T−α̌ ◦R2.

(5.18)

This in turn implies {
Ψ̌G = R2 ◦ (Ψ̌G)−1 ◦R2,

Ψ̃G = R2 ◦ (Ψ̃G)−1 ◦R2.

We decide to choose H̃0 and Ȟ0 so that the constant terms in the Fourier
expansion of Ψ̃G and Ψ̌G vanish. Together with (5.18), this uniquely defines
H̃0,∞ and Ȟ0,∞. Then, necessarily we take D = D′ = 0 and we let ΨG =
Ψ̌G = Ψ̃G, which satisfies

ΨG = R2 ◦ (ΨG)−1 ◦R2. (5.19)

We also have Ψ0,∞
ε̌ = τ 1

2
◦ (Ψ0,∞

ε̃ )−1 ◦ τ 1
2
. It is easily checked that we can

take

Ȟ
0,∞

= τ 1
2
◦ H̃0,∞ ◦ τ 1

2
,

and define the following representative of the Glutsyuk modulus

Ψ̌
G

= Ȟ
0
◦ (Ȟ

∞
)−1 = τ 1

2
◦ (ΨG)−1 ◦ τ 1

2
.
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Ψ̌
G

is reversible with respect to R2. Indeed,

R2 ◦ Ψ̌
G
◦R2 = R2 ◦ τ 1

2
◦ (Ψ̃G)−1 ◦ τ 1

2

= τ− 1
2
◦R2 ◦ (Ψ̃G)−1 ◦R2 ◦ τ− 1

2

= τ− 1
2
◦ Ψ̃G ◦ τ− 1

2
= (Ψ̃G)−1

= τ 1
2
◦ Ψ̃G ◦ τ 1

2
= (Ψ̌

G
)−1.

Since the constant term in the Fourier expansion of τ 1
2
◦ (ΨG)−1 ◦ τ 1

2
is zero,

then Ψ̌
G

= ΨG, and we finally have

ΨG = τ± 1
2
◦ (ΨG)−1 ◦ τ± 1

2
.

5.4 The moduli space

The following theorem summarizes the results discussed in this section.

Theorem 5.6 (1) We consider a germ of generic family Γε(t) unfolding
a germ of analytic curve Γ0(t) with a cusp. A complete modulus of
conformal classification is given by the modulus of the germ of fam-
ily of associated diffeomorphisms fε to the curvilinear angles formed
by ±γε(t) where γ2

ε (t) = Γε(t), under conjugacy commuting with R2

and the corresponding Schwarz reflections. The modulus is given by
(Ψ0

ε ,Ψ
∞
ε )ε∈[0,ρ) and (ΨG

ε )ε∈(−ρ,0), which depend analytically of ε 6= 0
with same continuous limit at ε = 0, and which represent respectively
the unique representative of the Lavaurs and Glutsyuk modulus satis-
fying {

Ψ0
ε ◦R2 = R2 ◦ (Ψ∞ε )−1,

ΨG
ε ◦R2 = R2 ◦ (ΨG

ε )−1,
(5.20)

Ψ0,∞,G
ε = τ± 1

2
◦ (Ψ0,∞,G

ε )−1 ◦ τ± 1
2
. (5.21)

Moreover, if (Ψ0
ε̂ ,Ψ

∞
ε̂ )ε̂∈Vδ is the extension of the Lavaurs modulus to

values of ε̂ ∈ Vδ (defined in (5.1)), and if Ȟ0,∞
ε and H̃0,∞

ε are defined
as in (5.16), then the compatibility condition

H̃∞ ◦ (H̃0)−1 = Ȟ0 ◦ (Ȟ∞)−1. (5.22)

is satisfied.

22



(2) (Ψ0
ε̂ ,Ψ

∞
ε̂ )ε̂∈Vδ is 1/2-summable in ε̂ with directions of non-summability

corresponding to arg ε̂ = ±π.

(3) If Γε(t) depends analytically on extra parameters, then so does the mod-
ulus.

(4) Any pair (Ψ0
ε ,Ψ

∞
ε )ε∈[0,ρ) and (ΨG

ε )ε∈(−ρ,0), which

• depends analytically on ε with same continuous limit at ε = 0,

• satisfies (5.20), (5.21),

• is such that (Ψ0
ε̂ ,Ψ

∞
ε̂ ) has a power series expansion in

√
ε̂ which

is 1/2-summable in ε̂ with sum defined for
√
ε̂ ∈ Vδ for some Vδ

of radius ρ′ ≤ ρ,

• the sum of the power series satisfies the compatibility condition
(5.22),

is realizable as the modulus of a germ of generic family Γε(t) unfolding
a germ of analytic curve Γ0(t) with a cusp.

Proof. We have already proved (1), and (3) follows easily from the con-
struction. (2) is proved in [3]. It follows from the Ramis-Sibuya theorem:
the argument is sketched here for the reader who knows about summabil-
ity. Since it is not needed explicitly here, we do not go into the details
of the definition of summability. Indeed, in (4), what we only need is that
(Ψ0

ε ,Ψ
∞
ε )ε∈[0,ρ) has an extension to ε̂ ∈ Vδ for some ρ′ (which may be smaller

than ρ). Then, considering that α̌ and α̃ are very large pure imaginary num-
bers, this allows to compute the H̃0,∞

ε and Ȟ0,∞
ε from (5.16). If we do this

computation above the principal hole we get

H̃0
ε = id+O

(
exp

(
− C√

|ε|

))
,

H̃∞ε = Ψ̃∞ε +O

(
exp

(
− C√

|ε|

))
,

Ȟ0
ε = id+O

(
exp

(
− C√

|ε|

))
(Ȟ∞ε )−1 = Ψ̌∞ε +O

(
exp

(
− C√

|ε|

))
,

(5.23)

for some positive constant C. This in turn implies∣∣∣Ψ̃∞ε − Ψ̌∞ε

∣∣∣ = O

(
exp

(
− C√
|ε|

))
,
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which is sufficient to ensure 1/2-summability of Ψ∞ε̂ in ε̂. A similar cal-
culation for the component of ΨG

ε below the principal hole yields the 1/2-
summability of Ψ0

ε̂ in ε̂.

So the only real thing to prove is (4), namely the realization. It is proved
in [3] that any (Ψ0

ε̂ ,Ψ
∞
ε̂ )ε̂∈Vδ which satisfies the compatibility condition is

realizable as a germ of generic family fε of diffeomorphisms unfolding a
parabolic diffeomorphism. Hence, it suffices to prove that it is possible to
realize some fε which satisfies the two reversibility properties and, moreover,
that fε can be factored as Σε ◦Σ′ε with Σ′ε = R2 ◦Σε ◦R2. The realization in
[3] was done in two steps. We first realize a pair (Ψ0

ε̂ ,Ψ
∞
ε̂ ) for a fixed ε̂. This

part does not require the compatibility condition, and was called the local
realization. The local realization could be performed to depend analytically
in ε̂ with continuous limit for ε = 0. In this way, we realize the modulus by
a family gε̂ which may depend in a ramified way of ε. The second step is to
correct gε̂ to a uniform family conjugate to it.

Local realization. It is performed by means of Ahlfors-Bers theorem. We
first realize the modulus on an abstract manifoldM ε̂ which we then recognize
to be a neighborhood of the origin in C. The abstract manifold is obtained
by gluing together two domains U± whose union is D \ ±

√
ε̂ (see Figure 5).

We take the two domains U± so that one is the symmetric of the other under
R2. We will make sure that the gluing respects this symmetry. In practice
the sectors are obtained as pε(S

±
ε̂ ), where S±ε̂ are the strips of Figure 6, the

gluing being done by means z− = pε ◦ Ψ0,∞
ε̂ ◦ p−1

ε (z+). At the level of the
strips, we have that S+

ε̂ = R2(S−ε̂ ). So, let W−1 = R2(W+
1 ) with W±1 ∈ S

±
ε̂ .

Suppose for instance that W+
1 is identified to W−2 = Ψ0

ε̂ (W
+
1 ). Then, we

want W−1 = R2(W+
1 ) to be identified with R2(W−2 ). But, W−1 ∈ S−ε̂ is

identified to (Ψ∞ε̂ )−1(W−1 ) = (Ψ∞ε̂ )−1 ◦R2(W+
1 ) = R2 ◦Ψ0

ε̂ (W
+
1 ) = R2(W−2 ),

hence the result. For ε̂ 6= 0, the intersection U+
ε̂ ∩ U

−
ε̂ is composed of three

parts, U0
ε̂ , U∞ε̂ and UCε̂ . The gluing is the following: we identify z− ∈ U−ε̂

with Ξε̂(z
+) for z+ ∈ U+

ε̂ , where

Ξε̂ =


pε ◦Ψ∞ε̂ ◦ p−1

ε , on U∞ε̂ ,

pε ◦ Tα ◦ p−1
ε = id, on UCε̂ ,

pε ◦Ψ0
ε̂ ◦ p−1

ε , on U0
ε̂ .

Note that the distinguished point z+ = 0 is in UCε̂ and hence coincides with
z− = 0. This point is simply called 0.

Let us recall the main steps of the construction of [3]: to recognize that
Mε̂ is conformally equivalent to a disk minus two points we construct a
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Figure 5: The sectors U±ε̂ and their intersection.

Ck-coordinate (with k large) of the form

χε̂(m) = z+Θ+
ε̂ + z−Θ−ε̂ , (5.24)

where (Θ+
ε̂ ,Θ

−
ε̂ ) is a partition of unity for {U+

ε̂ , U
−
ε̂ } and m ∈Mε̂ has coor-

dinate z± in U±ε̂ . It is shown there that the Beltrami field

µε̂ =
∂χε̂/∂z

+

∂χε̂/∂z+

satisfies |µε̂| < K < 1. By putting µε̂(±
√
ε̂) = 0 we extend µε̂ in a C1 way.

By the Ahlfors-Bers theorem, there exists a 1-1 map νε̂ : χε̂(Mε̂) → C
which is holomorphic in the sense of this structure and whose image is the
disk rD. Then

ζε̂ = νε̂ ◦ χε̂ (5.25)

is holomorphic, yielding that the manifold M ε̂ is conformally equivalent to
the disk rD. For ε̂ 6= 0, the map νε̂ is uniquely determined if we ask that
νε̂(0) = 0 and that the singular point corresponding to

√
ε̂ has the same

argument as
√
ε̂. The manifold M ε̂ was endowed with a diffeomorphism

coming from T1 on the strips. This diffeomorphism was reversible with
respect to a holomorphic involution R (coming from R2 sending one chart to
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Figure 6: The strips S±ε̂ projecting on the sectors of Figure 5.

the other) with a fixed point at 0. Through νε̂, this involution is transformed
into an involution of the disk Dr preserving the origin. Then this involution
is necessarily R2.

Now, we have the reflection τ 1
2

with respect to the line L = Re W = 1
4

defined on (part of) the strips S±ε̂ with image in the other. Again, if W−1 =
τ 1
2
(W+

1 ), and we have that W+
1 (resp. W−1 ) is identified to W−2 = Ψ(W+

1 )

(resp. W+
2 = (Ψ)−1(W−1 )), where Ψ can be any one of Ψ0

ε̂ , Ψ∞ε̂ or ΨG
ε , then

we want that W−2 = τ 1
2
(W+

2 ). This is precisely ensured by the reversibility

of Ψ with respect to τ 1
2
.
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Hence, τ 1
2

induces a global antiholomorphic involution Σε̂ on the abstract

manifold M ε̂. On each chart we had τ− 1
2

= R2 ◦ τ 1
2
◦R2, the diffeomorphism

T1 was decomposed as T1 = τ 1
2
◦τ− 1

2
and, moreover, the gluing is compatible

with these properties. This yields that τ− 1
2

induces a global antiholomorphic

involution Σ′ε̂ = R ◦Σε̂ ◦R on M ε̂ and such that that the diffeomorphism gε̂
constructed on M ε̂ is equal to gε̂ = Σε̂ ◦ Σ′ε̂.

Global realization. We then need to correct to a uniform family. This
is where the compatibility condition is needed. Indeed, we have realized
a family gε̂ for ε̂ ∈ V and z ∈ rD. The compatibility condition ensures
that, for ε < 0, then gε̌ is conjugate to gε̃; there exists a diffeomorphism hε
satisfying

hε ◦ gε̌ = gε̃ ◦ hε,

and also the conditions of (4.4). Of course, hε can be extended to a sectorial
neighborhood of the real negative axis and we can restrict δ in Vδ so that
hε be defined on the whole auto-intersection part (in ε-space). We call ž
(resp. z̃) the z coordinate for ε̂ = ε̌ (resp. ε̂ = ε̃). We construct an abstract
2-dimensional manifold by gluing V × rD on the auto-intersection part by
means of

(ž, ε̌) ' (z̃, ε̃) = (hε(ž), ε̌).

Newlander-Nirenberg’s theorem can be used to recognize that this manifold
is holomorphically equivalent to a neighborhood of the origin in C2, once we
have glued a disk rD above ε = 0 to fill the hole (details in [3]). Moreover,
from the form of the gluing, the new complex coordinates are of the form
(w, ε), where w = H(zε̂, ε̂) = Hε̂(zε̂) and Hε̂ is a diffeomorphism for fixed ε̂
such that H−1

ε̃ ◦Hε̌ = hε.

The abstract manifold comes equipped with a family of diffeomorphisms
which is Ck for ε = 0. Newlander-Nirenberg’s theorem transforms it into an
analytic family of diffeomorphisms. So the only thing to check is that the
realized family (on the neighborhood of the origin in C2) has the required
reversibility properties. Since the gluing commutes with both the holomor-
phic involution R2, and with the antiholomorphic involution Σε̂, there exist
well defined families of holomorphic involutions corresponding to R2 and of
antiholomorphic involutions corresponding to Σε̂, and for each value of ε,
the diffeomorphism is reversible with respect to both involutions. Indeed,
the gluing has sent 0 to 0. Hence, there is a uniform linearizable involution
tangent to minus the identity with a fixed point depending analytically on
(w, ε) and with a Ck limit at ε = 0. It is of course possible to take an an-
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alytic change of coordinates depending analytically on ε and transforming
the involution to R2.

The decomposition of fε = Σε ◦ Σ′ε follows from the corresponding de-
composition for each ε and the gluing respecting the decomposition. 2

6 Geometric interpretation

We have treated the problem of conformal classification of unfolding of cusps
on a fixed neighborhood U of the cusp point for real values of the parameters
in a small interval around the origin. In the unfolding, the curve is regular
for ε < 0, and has a regular singular point for ε > 0. In both cases, we
have a functional modulus (of infinite dimension) which should reflect the
underlying geometry of the curve. Of course, the modulus describes the
geometry of the associated complex curve. A non trivial modulus reflects
obstructions to a conformal equivalence of the complex curve with the model
curve (formal normal form). Some of these obstructions have been described
in the paper [11] and consist in the birth of singular points through the
parametric resurgence phenomenon. But here, we are more interested in
the obstructions that can be observed for the real curve inside the fixed
neighborhood U . We describe geometric obstructions of two kinds.

The first kind of obstructions are inherited from the obstruction to embed
the diffeomorphism fε into the time-one map of a vector field. However,
we can cover a neighborhood of the origin in z-space with two adequate
(possibly sectorial) domains. Over each such domain, the diffeomorphism
can be embedded into the time-one map of a unique vector field. Hence,
each domain is canonically endowed with the flow lines of a vector field.
The modulus measures the mismatch of the flow lines of the two vector
fields on the intersection of the two sectorial domains. This is the unfolding
of the point of view described by Gelfreich in [4]. In particular, if two flow
lines intersect at a point z they also intersect at all iterates fnε (z). The
angle between the flow lines is the same at all intersection points and it
can be calculated from the unfolded modulus. When passing to the Z-
coordinate, each of the two domains is sent to a full neighborhood of the
origin with an auto-intersection. We obtain vector fields on a 2-covering of
that neighborhood with a ramification point at the origin.

The second kind of obstructions comes from the presence of the special
points in z-space. There are three of them: z = 0, and the two fixed points
of fε. When ε > 0, these two fixed points are the intersection points of γε
and −γε. When ε < 0, these points are not located on the curves ±γε, but
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(a) ε < 0 (b) ε = 0 (c) ε > 0

Figure 7: The two domains covering U .

they organize the dynamics however.

6.1 The geometry of the flow lines

We cover a neighborhood of the origin in z-space with two (possibly sectorial)
domains (Figure 7) coming from strips in W -space as in Figure 8. Over these
strips we have the Fatou coordinates, conjugating Fε to T1. In section 5 we
have normalized the Fatou coordinates so that they be uniquely defined.
On the image of the Fatou coordinates we introduce the vector field ∂

∂W ,
whose flow lines are the horizontal lines Im W = Cst. Note that this vector
field is unique even if we had not uniquely defined the normalizations! But
the advantage of the normalized Fatou coordinates is that in the equation
of a flow line Im W = Y , then Y is intrinsically defined. These flow lines
induce flow lines on the sectorial domains in z-space, also parameterized by
Y . The modulus (Ψ0

ε ,Ψ
∞
ε ) for ε ≥ 0 (resp. ΨG

ε for ε < 0) measures the
angle between the two flow lines parameterized by the same Y on the two
Fatou coordinates Φr,l. Indeed, if two flow lines parameterized by the same
Y intersect at z and if we let W j = Φj ◦ p−1

ε (z), j ∈ {l, r}, with Im W j = Y
and Ψε = Φr ◦ (Φl)−1, then the angle between the two flow lines at z is
simply given by arg Ψε(W

l).

Let us consider the case ε ≥ 0 and let{
Ψ0
ε = W +

∑
n<−1 bn(ε) exp(2πinW ),

Ψ∞ε = W +
∑

n>1 bn(ε) exp(2πinW ).
(6.1)

Proposition 6.1 Let ε ≥ 0. Suppose bm(0) 6= 0 and bj(0) = 0 for jm > 0
and |j| < |m|. Let C±ε (Y ) be the flow line in U±0 coming from the line
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Figure 8: The strips which are the domains of the Fatou coordinates.

Im W = Y in the image of the Fatou coordinate Φ±ε , and let θ = θ(z) be the
angle at an intersection point z ∈ C+

ε (Y )∩C−ε (Y ). Then, for |Y | sufficiently
large and Y < 0 (resp. Y > 0) for m < 0 (resp. m > 0), and for ε ≥ 0
sufficiently small we have θ 6= 0. In the case ε = 0 we have the more precise
information:

|θ| = 2πm|bm(0)|e−2πmY +O
(
e−2πmY

)
.

Proof. The case ε = 0 was proved by Gelfreich in [4] and the case ε > 0
small follows by continuity of Ψ0,∞

ε . The map Φ±ε ◦p−1
ε being conformal, the

angle θ(z) is the angle at an intersection point of the curves E1 = {Im W =
Y} and E2 = {ΨW

ε | Im W = Y}. For the purpose of completeness we recall
the proof of [4]. Let X + iY ∈ E1 ∩ E2, and let ε = 0. We let bn(0) = bn.
From (6.1), we deduce

Im

∑
n≥m

bne
−2πnY e2iπnX

 = 0.

The intersection points of E1 and E2 have the form

X = −arg bm
2πm

+
k

2m
+O

(
e−2πY

)
, k ∈ Z.

Let

Ξ(X + iY ) =
∂Ψ∞0 (X + iY )

∂X
.
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Then, since X is parameterizing both E1 and E2, we have

tan θ =
Im Ξ(X + iY )

Re Ξ(X + iY )
.

For Y sufficiently large, we have

θ ∼ tan θ =
Im
∑

n≥m bn2iπne−2πnY+2iπnX

1 + Re
∑

n≥m bn2iπne−2πnY+2iπnX

= ±2πm|bm|e−2πmY +O
(
e−2πmY

)
.

When ε > 0 is sufficiently small we can have the conclusion on a whole strip
|Im W| > Y0 for some positive Y0 because all orbits have representatives in
a strip of finite width. 2

We now consider the case ε < 0. The Glutsyuk modulus ΨG
ε has two

representatives, one above the principal hole denoted by ΨG
u , and one below

denoted by ΨG
d . We suppose that ε = ε̃, i.e. that Im α > 0. Then ΨG

u and
ΨG
d are related through

ΨG
u ◦ Tα = Tα ◦ΨG

d .

Let {
ΨG
u = W +

∑
n∈ZB

u
n(ε) exp(2πinW ),

ΨG
d = W +

∑
n∈ZB

d
n(ε) exp(2πinW ).

Then, it follows from (5.23) (more details in [3]) that there exists C > 0
such that 

Bu
n(ε) = bn(0) +O(ε), n > 0,

Bu
n(ε) = O

(
exp

(
− C√

|ε|

))
, n < 0,

Bd
n(ε) = O

(
exp

(
− C√

|ε|

))
, n > 0,

Bd
n(ε) = bn(0) +O(ε), n < 0.

Proposition 6.2 Suppose bm(0) 6= 0 for and bj(0) = 0 for jm > 0 and

|j| < |m|. Let Cjε (Y ), j ∈ {l, r}, be the flow line in U±0 coming from the line

Im W = Y in the image of the Fatou coordinate Φj
ε, and let θ = θ(z) be the

angle at an intersection point z ∈ Clε(Y ) ∩ Crε (Y ). Then,

• If m > 0, there exists Y0 > 0 such that for Y ∈ [2Y0, 3Y0] and ε < 0
sufficiently small, we have θ 6= 0.
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• If m < 0, there exists Y0 > 0 such that for Y ∈ [−3Y0,−2Y0] and ε < 0
sufficiently small, we have θ 6= 0.

Proof. Let us consider the case m > 0. The proof is very similar to
that of Proposition 6.1. There, the conclusion was valid for Y > Y0 for
some Y0 > 0. We take ε sufficiently small so that |α| > 4Y0. Then, for
Y = Im W ∈ [2Y0, 3Y0], W belongs to the domain of ΨG

u . It is known that
ΨG
u → Ψ∞0 as ε → 0 and that the convergence is uniform on any compact

set. Then it follows by continuity that θ 6= 0 for ε sufficiently small. 2

Remark 6.3 Propositions 6.1 and 6.2 only concern large values of |Y |, and
indeed may not be valid for smaller values of |Y |.

Among all flow lines, we will in particular discuss the ones passing
through the special point z = 0 in Section 6.2.

6.2 The zero-flow lines

In both cases, ε > 0 or ε < 0, for each domain of the flow we have the
special flow line passing through 0, which we call the zero-flow line attached
to the special point z = 0. Even in the case of a non trivial modulus, it
may happen that the two zero-flow lines attached to the special point z = 0
coincide. We will be interested to identify the families for which this is
the case for all real values of ε. By continuity, for ε = 0, there will exist
two flow lines in each sector whose union is an analytic curve: we still call
this analytic curve the zero-flow line. Since this property is invariant under
conformal transformation, it can be read on the modulus. In particular,
this will be the case if the curves ±γε are symmetric with respect to the
imaginary axis or, of course, conformally equivalent to this case under a
conformal diffeomorphism commuting with R2. We will show that this is
the only possibility and see how this is expressed in the modulus.

Theorem 6.4 We consider a germ of family of curves ±γε as in (3.3). The
following are equivalent:

(i) For all ε sufficiently small, the family has a unique zero-flow line.

(ii) There exists a germ of family of conformal diffeomorphism commuting
with R2 and transforming the curves ±γε into curves ±γ̆ε symmetric
with respect to the imaginary axis.
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(iii) Let σA = TA ◦σ. The normalized representative of the modulus defined
in Section 5 satisfies: there exists A(ε) ∈ iR such that

Ψ0
ε = R2 ◦ (Ψ∞ε )−1 ◦R2, ε ≥ 0,

ΨG
ε = R2 ◦ (ΨG

ε )−1 ◦R2, ε < 0,

Ψ0
ε = σA(ε) ◦Ψ∞ε ◦ σA(ε), ε ≥ 0,

ΨG
ε = σA(ε) ◦ΨG

ε ◦ σA(ε), ε < 0,

ΨG
ε ◦ Tα = Tα ◦ΨG

ε , ε < 0.

(6.2)

Proof. Of course, (ii) implies (i).

Let us now show that (i) implies (iii). The zero-flow line is an analytic
curve in z-space, which is symmetric under R2. Hence, it is possible to
bring this curve to the imaginary axis in z-space under a conformal change
of coordinates commuting with R2 which transforms fε to f̆ε. In the new
coordinate, this line is invariant under f̆ε, implying that f̆ε is symmetric
with respect to this line:

f̆ε ◦ τ = τ ◦ f̆ε.
Hence, fε is conjugate to a symmetric f̆ε under a conjugacy commuting with
R2.

It is then easy, as in Section 5 to show the existence of A(ε) for which
(6.2) is satisfied. Indeed, the imaginary axis in z space is sent by p−1

ε to the

line Im W = 0 for ε ≥ 0 and to the family of lines Im W = k|α|
2 for k ∈ Z

when ε < 0.
When ε ≥ 0, because Fε is symmetric with respect to the line Im W = 0,

it is easy to show that the Fatou coordinate transforms the symmetry axis
into a horizontal line. (A proof in a slightly different context appears in [2].)
If the modulus Ψε is of the form Ψε = Φr

ε ◦ (Φl
ε)
−1, then it is possible to

preserve the reversibility property with respect to R2 by changing Φl
ε (resp.

Φr
ε) to Φ̆l

ε = TA ◦Φl
ε (resp. Φ̆r

ε = T−A ◦Φr
ε). for some A ∈ C. Because of the

reversibility of Fε with respect to R2, the image of the real axis by the two
Fatou coordinates are images one of the other under R2. Thus, choosing
appropriately A ∈ iR we can suppose that the symmetry axis is sent to the
real axis by the two Fatou coordinates. Hence, both Fatou coordinates Φ̆l,r

ε

commute with σ. If Ψ̆0,∞ = Φ̆r
ε ◦ (Φ̆l

ε)
−1, this implies Ψ̆0

ε = σ ◦ Ψ̆∞ε ◦ σ.
Coming back to Ψ0,∞

ε , this implies that

Ψ0
ε = σA ◦Ψ∞ε ◦ σA.

When ε < 0, we can again show that the horizontal lines are sent to
horizontal lines at a distance |α|2 from each other. Hence, by changing Φl

ε
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(resp. Φr
ε) to Φ̆l

ε = TA ◦ Φl
ε (resp. Φ̆r

ε = T−A ◦ Φr
ε), and by choosing A ∈ iR

appropriately, we can suppose that each line Im W = k|α|
2 is sent to itself,

and hence invariant under both Fatou coordinates, and thus that each line
Im W = k|α|

2 is invariant under Ψ̆G
ε = Φ̆r

ε ◦ (Φ̆l
ε)
−1. Coming back to ΨG

ε , this
yields the result.

It remains to show that (iii) implies (ii). This comes from the realization
process. Indeed, in Section 5.4 we have shown that for a fixed value of ε,
any modulus can be realized on an abstract 1-dimensional complex manifold,
which is further identified to an open neighborhood of the origin in C. On
the abstract manifold constructed by pasting two domains endowed with
flow lines, the gluing produces an analytic flow line through 0. This remains
the case in the identification, which preserves the reversibility with respect
to R2. Moreover, on each chart of the abstract manifold, the diffeomorphism
was given by T1 = τ 1

2
◦ τ− 1

2
which was symmetric with respect to σA. The

gluing condition ensures that the invariant lines for σA in each chart yield
a global invariant line.

The construction can be made to depend analytically on ε with a con-
tinuous limit at ε = 0. 2

6.3 Passing to Z-coordinate

In the previous discussion of the geometric interpretation in z-space, we were
covering a neighborhood of the origin with two domains, each endowed with
flow lines. These two domains and their flow lines were symmetric under
R2. So when we pass to Z = z2, the two domains and their flow lines have
the same image. However, the image of each domain should be seen in the
2-covering of Z-space punctured at 0, and the flow lines sit there. If two
points Ẑ1 and Ẑ2 project on the same Z, then the projection of their flow
lines intersect at Z. The angle is exactly the same as the one calculated
in Section 6.1 between the two flow lines intersecting at any of the two
preimages ±z of Z, as long as Z 6= 0.

As for the zero flow-line in Z coordinate, it ends at Z = 0. There is
exactly one zero-flow line if and only if the unfolded cusp is conformally
equivalent to a symmetric one.

The map Fε is multi-valued with a ramification point at the origin. In-
deed, far from the cusp point on the positive real axis it is well defined as
a composition of the two Schwarz reflections with respect to two distinct
parts of the curve. If Z makes a turn around the origin, then the two
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Schwarz reflections coincide and exchange order in the composition, so that
the analytic extension of Fε is transformed into F−1

ε .

6.4 A third geometric interpretation

Another geometric interpretation of the modulus has been described in [11]
for positive values of ε. It has been shown there that the non triviality of
the modulus implies the birth of periodic orbits of fε for sequences {εn} of
bifurcation values of ε converging to the origin for which the fixed points of
fε are resonant. If one makes “copies” of the curvilinear angle at one of the
fixed points ±

√
ε by Schwarz reflection with respect to one side of the angle

and iterating, then all sides of the different angles must pass through these
periodic points. (More details in [11].)
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complexe, Astérisque, 150-151 (1987), 131–149.
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