
PP-graphics with a nilpotent elliptic singularity in
quadratic systems and Hilbert’s 16th problem

Christiane Rousseau∗

Department of Mathematics and Statistics
University of Montreal, Montreal, Quebec, Canada, H3C 3J7

Huaiping Zhu†

Department of Mathematics and Statistics
York University, Toronto, Ontario, Canada, M3J 1P3

Abstract

This paper is part of the program launched in [4] to prove the finiteness part of
Hilbert’s 16th problem for quadratic system, which consists in proving that 121 graphics
have finite cyclicity among quadratic systems. We show that any pp-graphic through
a multiplicity 3 nilpotent singularity of elliptic type which does not surround a center
has finite cyclicity. Such graphics may have additional saddles and/or saddle-nodes.
Altogether we show the finite cyclicity of 15 graphics of [4]. In particular we prove the
finite cyclicity of a pp-graphic with an elliptic nilpotent singular point together with a
hyperbolic saddle with hyperbolicity 6= 1 which appears in generic 3-parameter families
of vector fields and hence belongs to the zoo of Kotova-Stanzo [11].

1 Introduction

This paper is part of a large attack on the finiteness part of Hilbert’s 16th problem
for quadratic fields which consists in proving the existence of a uniform bound for the
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number of limit cycles of a quadratic vector field

P (x, y)
∂

∂x
+ Q(x, y)

∂

∂x
. (1.1)

In [4], the following theorem is proved:

Theorem 1.1. There exists a uniform bound for the number of limit cycles of a quadratic
vector field if and only if all limit periodic sets surrounding the origin inside the family

{
ẋ = λx− µy + a1x

2 + a2xy + a3y
2

ẏ = µx + λy + b1x
2 + b2xy + b3y

2
(1.2)

have finite cyclicity inside (1.2).

The complete list of 121 graphics was also given. The program is progressing well
and several papers have permitted to prove the finite cyclicity of nearly all elementary
graphics ([1], [2], and [5]). The paper of Dumortier, Roussarie and Sotomayor [7] is the
first study of a graphic with a nilpotent point. The ideas have been refined in Zhu and
Rousseau [15] and extended and have permitted to prove the finite cyclicity of several
graphics of codimension 3 or 4 passing through a nilpotent point of saddle or elliptic
type. The finite cyclicity theorems usually have genericity conditions on the regular
transition map along the graphic.

In this paper we apply the theorems and/or methods of [15] to all the pp-graphics
through a nilpotent singularity of elliptic type appearing in the list of [4]. In some cases
the finite cyclicity follows from a verification of the genericity conditions inside quadratic
systems while in others the proofs of [15] must be adapted to graphics which may have up
to three additional elementary singular points (one or two hyperbolic saddles and/or one
saddle-node). The proofs given in [15] are very complete. The applications to quadratic
systems require long calculations and checking of details. In the present paper we have
tried to keep the proofs to a minimum as long as they require no new ideas and are
copied on “classical” proofs of finite cyclicity for elementary graphics.

(a) A pp-graphic

R

(b) Blow-up

Figure 1: pp-graphics with a nilpotent elliptic point having finite cyclicity

From the results of [15], we will also be able to prove the finite cyclicity of several
graphics in [4]: hp-graphics and hh-graphics with a nilpotent elliptic point and graphics
through a nilpotent saddle. As the calculations are quite long and some are subtle, these
will be treated in a forthcoming publication.
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(c) (H3
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1
5a) (I1

5b) (d) (H3
10)(I

2
18a) (I2

18b)

(e) (I2
23)(I

1
7a) (I1

7b) (f) (I2
24)(I

1
8a) (I1

8b)

(g) (I2
25)(I

1
9a) (I1

9b) (h) (I2
39)(I

1
10a) (I1

10b)

Figure 2: The 15 pp-graphics for which we prove finite cyclicity (the finite cyclicity of (I1
10a)

is proved in [3])
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2 Preliminaries

2.1 General finite cyclicity theorems

The following theorem is proved in [15]:

Theorem 2.1. A pp-graphic with a triple nilpotent elliptic point (Epp) of any codimen-
sion with 2 parabolic and 2 hyperbolic sectors (Fig. 1) has cyclicity ≤ n (Cycl(Epp) ≤ n)
if the regular transition map R calculated using normalizing coordinates has its n−th
derivative non-vanishing.

To check the hypothesis, we do not need to unfold the family. A simple blow-up
(x, y) = (rx̄, r2ȳ) will be sufficient. As shown in Fig. 1b, we will take normalizing
coordinates near the two nodes on the blow-up circle. The map R is defined on sections
parallel to the coordinate axes defined in these charts.

2.2 Statement of the result

Theorem 2.2. All the 16 pp-graphics listed in Fig. 2 have finite cyclicity.

Remark 2.3. For the none pp-graphics graphics listed in Fig.2:

1. Graphics (F 1
6b), (I1

5b), (I1
7b) and (I1

8b) have finite cyclicity by [15].

2. Graphics (I1
17b) and (I1

18b) are still open.

3. Graphics (I1
9b) and (I1

10b) have finite cyclicity but the proof is not yet published.

4. The proof of the finite cyclicity of (I1
10a) appears in [3].

2.3 Dulac map near a hyperbolic saddle in the plane

To prove the finite cyclicity results, we need the following statements about the Dulac
maps near a hyperbolic saddle.

Definition 2.4.

1. A singular point is elementary if it has at least one nonzero eigenvalue. It is
hyperbolic (resp. semi-hyperbolic) if the two eigenvalues are not on the imaginary
axis (resp. exactly one eigenvalue is zero).

2. The hyperbolicity ratio at a hyperbolic saddle is the ratio σ = −λ1
λ2

, where λ1 <
0 < λ2 are the two eigenvalues.

Let (Xλ)λ∈Λ, be a C∞ family of vector fields defined in the neighborhood of a hy-
perbolic saddle at the origin. We also assume that the coordinate axes are the invariant
manifolds near the saddle point. By normal form theory, we can for any fixed k ∈ N, up
to Ck-equivalence write the family of vector fields Xλ into some explicit normal form
(cf. [13], [10]). Let σ(λ) be the hyperbolicity ratio of Xλ at the origin.

• If σ(0) is irrational, then, ∀k ∈ N, the family of vector fields Xλ is Ck-equivalent
to {

ẋ = x
ẏ = −σ(λ)y

(2.1)

for λ in some neighborhood W of the origin in parameter space.
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Figure 3: Dulac map near a hyperbolic saddle in the plane

• If σ(0) = p
q ∈ Q, (p, q) = 1. Then ∀k ∈ N, the family Xλ is Ck-equivalent to





ẋ = x

ẏ = y
[
− p

q
+

N(k)∑

i=0

αi+1(λ)(xpyq)i
]
.

(2.2)

for λ in some neighborhood W of the origin in parameter space. In particular,
α1 = σ(0)− σ(λ).

Let Σ̃1 = {y = y0} and Σ̃2 = {x = x0} be two sections transverse to the vector field
Xλ (Fig. 3), where x0, y0 > 0 constants. The flow of Xλ induces a Dulac map Dλ(., λ):

Dλ : Σ̃1 −→ Σ̃2

for all λ ∈ W .
The Dulac map is C∞ for x > 0. The following theorem of Mourtada ([12]) describes

its behavior near x = 0.

Proposition 2.5. (Mourtada) The Dulac map Dλ can be written as

Dλ(x) = xσ(λ)[c(λ) + ψ(x, λ)] (2.3)

where c(λ) = y0

x
σ(λ)
0

, ψ(x, λ) is C∞ for (x, λ) ∈ (0, x0]×W . Furthermore, ψ satisfies the

following property (I∞0 ):

(I∞0 ) : ∀n ∈ N, lim
x→0

xn ∂nψ

∂xn
(x, λ) = 0 uniformly for λ ∈ W (2.4)

where

1. if σ(0) /∈ Q, then ψ ≡ 0;

2. if σ(0) = p
q , then we have the more precise expression (see [1]).

Let

ω(x, α1) =

{
x−α1−1

α1
if α1 6= 0

− lnx if α1 = 0.
(2.5)
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be the Ecalle-Roussarie compensator of the vector field Xλ where α1(λ) = σ(0) −
σ(λ). Then

Dλ(x) = xσ(λ)


1 +

∑

1≤j≤i≤K(k)

βijx
ipωj + ψ̄k(x, λ)


 (2.6)

where ψ̄k(x, λ) is k−flat.

Consequently the map ψ(x, λ) in (2.3) has the form ψ(x, λ) = o(xη) for all η < 1.

Proposition 2.6. The Ck−normal form for a family unfolding a saddle-node is
{

ẋ = x2 − ε
ẏ = ±y(1 + ax).

(2.7)

The transition Dulac map from x = −x0 to x = x0 has the form

y 7→ m(ε)y (2.8)

where lim
ε→0

m(ε) = +∞ (resp. lim
ε→0

m(ε) = 0) for a repelling (resp attracting) saddle-node.

The next proposition developed in [2] and [15] will be used to calculate the first and
second order derivatives of a regular transition map of a vector field.

Proposition 2.7. Consider the regular transition map R for a vector field

ẋ = P (x, y)
ẏ = Q(x, y)

(2.9)

between two arcs without contact Σ1 = {y = y1} and Σ2 = {y = y2}. The formulas are
simpler if we add the following hypotheses

• P (0, y) ≡ 0, so the transition is along the axis x = 0;

• Q(0, y) 6= 0 for y ∈ (y1, y2).

Then

R′(0) = exp
(∫ y2

y1

P ′
x

Q
(0, y) dy

)
, (2.10)

R′′(0) = R′(0)
∫ y2

y1

(
P ′′

x

Q
(0, y)− 2

P ′
xQ′

x

Q2
(0, y)

)
exp

(∫ y

y1

P ′
x

Q
(0, z) dz

)
dy. (2.11)

2.4 Normal forms near nilpotent singularities of multiplic-
ity 3

We present two normal forms: the classical one of Dumortier and Roussarie [6] which
allows the reader to understand our results with no translation needed and a second one
which has been proved to be particularly convenient in [15] and which is well adapted to
applications to quadratic systems since its principal part is quadratic instead of cubic.

A family containing a triple nilpotent singularity of elliptic type with two parabolic
sectors can be written as ([6])

{
ẋ = y
ẏ = −x3 + λ2x + λ1 + y(λ3 + bx + ε2x

2 + x3h(x, λ)) + y2Q(x, y, λ)
(2.12)
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Figure 4: An elliptic nilpotent point

where b > 2
√

2 (Fig. 4), λ = (λ1, λ2, λ3, λ̂) are the parameters, Q(x, y, λ) is C∞ in
(x, y, λ) and of arbitrarily high order in (x, y, λ).

For the purpose of studying the passages in the neighborhood of the nilpotent sin-
gularity, in [15] we developed a new normal form for the unfolding of the nilpotent
singularity of the saddle and elliptic type. For the elliptic case, we have

Theorem 2.8. The family (2.12) is C∞-equivalent to
{

Ẋ = Y + µ2 + aX2

Ẏ = µ1 + Y (µ3 + X + ε̄2X
2 + X3h1(X, µ)) + X4h2(X, µ) + Y 2Q(X,Y, µ)

(2.13)
where a ∈ (0, 1

2), ε̄2 = aε2, and µ = (µ1, µ2, µ3, µ̂) is the parameter, h1(X, µ), h2(X, µ) =
ε2a + O(µ) + O(X) and Q(X,Y, µ) are C∞ and Q(X, Y, µ) is of arbitrary high order in
(X,Y, µ).

If a = 1
2 , the unfolding is of codimension 4, type 1, which corresponds to the case

b = 2
√

2 (the two characteristic trajectories coalesce into one).

Remark 2.9. If ε2 = 0, the 3-parameter unfolding (2.13) is not universal. In this case,
the codimension of the nilpotent singularity is at least 4.

2.5 Quadratic systems with a nilpotent singular point in
the finite plane

Theorem 2.10. A quadratic system with a nilpotent singular point of multiplicity 3 at
the origin and an anti-saddle in the upper half-plane is linearly equivalent to

{
ẋ = y + ax2 + cxy − y2

ẏ = xy.
(2.14)

where a 6= 0 and c ∈ R.

Proof. By Jordan normal form theorem, we can write the quadratic system with a triple
nilpotent singular point of saddle or elliptic type at the origin in the form

{
ẋ1 = y1 + a1x

2
1 + b1x1y1 + c1y

2
1

ẏ1 = e1x1y1 + f1y
2
1

(2.15)
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where a1e1 6= 0.
By a linear transformation

{
x1 = 1

e1
x2 − f1

e2
1
y2

y1 = 1
e1

y2

system (2.15) is equivalent to
{

ẋ2 = y2 + a2x
2
2 + b2x2y2 + c2y

2
2

ẏ2 = x2y2.
(2.16)

Adding an additional singular point on the y-axis, we should have c2 6= 0. This
singular point is an anti-saddle if c2 < 0. By rescaling we get (2.14). It follows from
Theorem 2.10 that for a ∈ (0, 1

2), the nilpotent point at the origin is elliptic.

One can verify that for (2.14) with a ∈ (0, 1
2), if 0 < c < 2

√
1− a, we have (H1

6 ), if
c = 2

√
1− a, we have (H3

7 ). We will use (2.14) to prove the finite cyclicity for (H1
6 ).

2.6 Quadratic systems with a nilpotent singular point at
infinity

Theorem 2.11. A quadratic system with a triple singularity point of elliptic type at
infinity and a finite singular point of focus or center type can be brought to the form

{
ẋ = δx− y + Ax2

ẏ = x + γy + xy
(2.17)

with A < 1. For the graphics of Fig.2(c)-(h) we will have 1
2 < A < 1. Moreover,

1. The system has an invariant line y = −1 if γ = 0.

2. The value of “a” in the corresponding normal form (2.13) is a = 1 − A. For the
graphics of Fig.2(c)-(h), 0 < a < 1

2 .

Proof. We can suppose that the nilpotent singular point at infinity is located on the
y-axis and the other singular point at infinity on the x-axis. Then the system can be
brought to the form

{
ẋ = δ10x + δ01y + δ20x

2 + δ11xy
ẏ = γ10x + γ01y + γ11xy + γ02y

2.
(2.18)

For the finite singular point to be an anti-saddle, we should have δ10γ01 − δ01γ10 > 0.
Localizing the system (2.18) at the singular point at infinity on y-axis by v = x

y , z =
1
y , we then have

{
v̇ = (δ11 − γ02)v + δ01z + (δ20 − γ11)v2 + (δ10 − γ01)vz − γ10v

2z
ż = z(−γ02 − γ01z − γ11v − γ10vz)

(2.19)

The singular point (0, 0) of system (2.19) is nilpotent, we should have δ11 = γ02 = 0.
The point is triple if γ11(δ20 − γ11) 6= 0. By a rescaling and still using the original
coordinates (x, y), we obtain the system (2.17)

Note that to bring (2.19) to the form (2.14), we take X = −v, Y = z.
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For system (2.17) with A ∈ (1
2 , 1) and γ = 0, if 0 < δ < 2

√
A, we have (H3

9 ), if
δ = 2

√
A, we have (H3

10). To make the calculation easier, we will use an equivalent for
of (2.17) to prove the finite cyclicity of (H3

10).
In the following discussions, we will use P to denote the intervals of the parameters

a and A in each case. P is defined in Tab.1.

in the finite plane at infinity
Elliptic type a ∈ (0, 1

2
) A ∈ (1

2
, 1)

Table 1: The definition of the interval P in each case

2.7 Blow-up of the family (normal form)

We are interested in the family for a ∈ P where a can depend on parameters and
(x, y, µ) in a neighborhood U ×Λ of (0, 0, 0). Taking Λ as a sphere, we make the change
of parameters 




µ1 = ν3µ̄1

µ2 = ν2µ̄2

µ3 = νµ̄3

(2.20)

where µ̄ = (µ̄1, µ̄2, µ̄3) ∈ S2 and ν ∈ (0, ν0). Adding to the system (2.13) the equation
ν̇ = 0, we have





ẋ = y + ν2µ̄2 + ax2

ẏ = ν3µ̄1 + y
[
νµ̄3 + x + ε2x

2 + x3h1(x, νµ̄)
]

+x4h2(x, νµ̄) + y2Q(x, y, νµ̄)
ν̇ = 0.

(2.21)

We then make the weighted blow-up




x = rx̄
y = r2ȳ
ν = rρ

(2.22)

where r > 0 and (x̄, ȳ, ρ) ∈ S2.
Note that for each µ̄, the foliation given by {ν = rρ = const} is preserved by X(a,µ̄):

• For {rρ = ν} with ν > 0, the leaf is a regular manifold of dimension 2.

• For {rρ = 0}, we get a stratified set in the critical locus. As shown in Fig. 5, there
are two strata of 2-dimensional manifolds:

– F̂µ̄
∼= S1 ×R+ the blow-up of the fibre µ = 0,

– Dµ = {x̄2 + ȳ2 + ρ2 = 1, ρ ≥ 0}.
On F̂µ̄ = {ρ = 0}, (2.22) is just the common blow-up of the nilpotent point:

{
x = rx̄
y = r2ȳ

(2.23)
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P

PP1

P3

2

F

D
4

Figure 5: The stratified set {rρ = 0} in the blow-up

P P34

P1 P2

Figure 6: Common blow-up of the nilpotent singularity

and by the blow-up (2.23), we get a vector field with four singular points Pi (i =
1, 2, 3, 4). P1 and P2 are nodes, P3 and P4 are hyperbolic saddles (Fig. 6).

The four points Pi on the circle x2 + y2 = 1, r = ρ = 0 are studied in the charts
x = ±1, while the upper part of the sphere r = 0, ρ > 0 is studied in the chart ρ = 1.

In [15] we find the list of the phase portraits of (2.21) on this half sphere for the
different values of µi. Together with the regular part of the graphics this gives us the list
of limit periodic sets for which finite cyclicity must be proved. These appear in Table. 2.

graphic Epp1 graphic Epp2 graphic Epp3

Table 2: Limit periodic sets of pp-type for the graphic with an elliptic point
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2.8 Dulac maps near P1 and P2

To prove the finite cyclicity results in [15] we have proved results about the two different
types of Dulac maps near the points P1 (resp. P2) and P3 (resp. P4). For the purpose
of proving the finite cyclicity of pp-graphics, we only need the first type of Dulac maps
near P1 and P2.

Although after blow-up we deal with a 3-dimensional vector field, because of the
invariant foliation, we can consider the Dulac maps to be 1-dimensional maps. The
first type is similar to the passage near a saddle-node while the second is similar to the
passage near a hyperbolic saddle.

The eigenvalues at P1 and P2 appear in Tab. 2.8. Due to the special form of the
family, the vector fields at each point P1 and P2 are linear in r and ρ after dividing by
a C∞ positive function. We study P1. The study near P2 is similar. Let

σ1(a) =
1− 2a

a
.

r ρ y
P1 −a a −(1− 2a)
P2 a −a (1− 2a)

Table 3: The eigenvalues at P1 and P2

Near P1, the system is of the form

X(a,µ̄)





ṙ = −r
ρ̇ = ρ
˙̄y = −σ1(a)ȳ + f(a,µ̄)(r, ρ, ȳ)

(2.24)

where

f(a,µ̄)(r, ρ, ȳ)

= σ1(a)ȳ + −(1−2a)ȳ+2ȳ2+ȳ[ε2r+µ̄3ρ+2µ̄2ρ2−r2h1(r,rρ,µ̄)]+µ̄1ρ3+rh̄2(r,rρ,µ̄)+ȳ2Q2(r,ρ,ȳ,µ̄)
a+ȳ+µ̄2ρ2

(2.25)
and the parameters (a, µ) ∈ P× S2.

Proposition 2.12. Consider the family X(a,µ̄) in the form of (2.24) with parameters
(a, µ̄) ∈ P×S2. Then ∀(a0, µ̄) ∈ P×S2 and ∀k ∈ N, there exists P0 ⊂ P, a neighborhood
of a0, N(k) ∈ N and a Ck−transformation

Ψ(a,µ̄) : (r, ρ, ȳ) −→ (r, ρ, ψ(a,µ̄)(r, ρ, ȳ))

where
ψ(a,µ̄)(r, ρ, ȳ) = ȳ + o(|(r, ρ, ȳ)|) (2.26)

such that ∀(a, µ̄) ∈ P0 × S2, the map ψ(a,µ̄) transforms X(a,µ̄) into one of the following
normal forms:

• If σ1(a0) /∈ Q

X̃(a,µ̄)





ṙ = −r
ρ̇ = +ρ
ẏ = −σ̄1(a, µ̄, ν)y.

(2.27)
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• If σ1(a0) = p
q ∈ Q

X̃(a,µ̄)





ṙ = −r
ρ̇ = ρ

ẏ =
1
q

[
− p +

N(k)∑

i=0

αi+1(a, µ̄, ν)(ρpyq)i
]
y

(2.28)

where ν = rρ > 0 and

σ̄1(a, µ̄, ν) = σ1(a)− α0(a, µ̄, ν)

α0(a, µ̄, ν) =
N(k)∑

i=1

γiν
i

α1(a, µ̄, ν) = p− σ̄1(a, µ̄, ν)q

(2.29)

where γi(a, µ̄), αi and κ are smooth functions defined for (a, µ̄) ∈ P0 × S2.

Proof. The proof [15] is a straightforward application of normal form theory.

∆

ρ

Ο

y

r

y)

(d, D)
Π

Σ
(ν,

Figure 7: The first type Dulac map

We consider the first type Dulac map (Fig. 2.8):

∆(a,µ̄) = (d,D) : Σ −→ Π

where Σ = {r = r0} and Π = {ρ = ρ0} are sections in the normal form coordinates, r0

and ρ0 are positive constants.
To simplify the notation, for all the maps and vector fields, we will drop the index

(a, µ̄). For example, the Dulac map ∆(ν, ỹ1) means ∆(a,µ̄)(ν, ỹ1).
If we parameterize the sections Σ and Π by (ν, y) with the obvious relation ρ = ν

r0

on Σ and r = ν
ρ0

on Π, then we have

Theorem 2.13. For any a0 ∈ P and µ̄ ∈ S2, consider the family X̃ = X̃(a,µ̄) with
eigenvalues −1, 1, σ1(a0) in normal form (2.27) or (2.28). Then ∀Y0 ∈ R, there exist
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P0 ⊂ P, a neighborhood of a0, and ν1 > 0 such that ∀ν ∈ (0, ν1) and (a, µ̄, y) ∈ P0 ×
S2 × [0, Y0], the Dulac map ∆(ν, y) = (d(ν, y), D(ν, y)) has the form





d(ν, y) = ν

D(ν, y) =
( ν

ν0

)σ̄1
[
y + φ(ν, ω(

ν

ν0
,−α1), y)

] (2.30)

where ν0 = r0ρ0 > 0 a constant and

If σ1(a0) /∈ Q, φ = 0;
If σ1(a0) = p

q ∈ Q, p, q ∈ N and (p, q) = 1, then φ(ν, ω( ν
ν0

,−α1), y) is C∞ and
φ = O(ν p̄ωq+1( ν

ν0
,−α1) ln ν

ν0
)

∂φ
∂y = O(ν p̄ωq( ν

ν0
,−α1) ln ν

ν0
)

∂jφ
∂yj = O

(
ν

p̄(1+[ j−2
q

])
ω

q−j+1+q[ j−2
q

](
ν

ν0
,−α1) ln

ν

ν0

)
, j ≥ 2

(2.31)
where

p̄ =
{

qσ̄1(a, ν) α1 ≥ 0
p α1 < 0.

(2.32)

Also all the partial derivatives with respect to the parameters (a, µ̄) are of order

O
(
ν p̄ωq(

ν

ν0
,−α1) ln

ν

ν0

)
.

Remark 2.14.

1. As the first component of ∆ is the identity we only write the second component.
We will do the same with the other transition maps.

2. Theorem 2.13 gives the inverse of the Dulac map Π2 −→ Σ2 near P2.

3. Essentially Theorem 2.13 ensures that the Dulac map behaves under derivation
and composition with Ck maps as in the simple case where a(0) /∈ Q. Whenever
there is no additional difficulty in the case a(0) ∈ Q compared to the case a(0) /∈ Q
and the ideas are very similar to [15] we will present the proof in the simple case
a(0) /∈ Q, so as to enlighten the ideas.

Remark 2.15. In this paper, all the graphics through a nilpotent point are studied inside
the global blown-up families with several parameters:

• case of a nilpotent point in the finite plane a ∈ P, µ̄ = (µ̄1, µ̄2, µ̄3) ∈ V ⊂ S2, ν > 0;

• case of a nilpotent point at infinity A ∈ P, µ̄ = (µ̄1, µ̄2) ∈ V ⊂ S1, ν > 0.

We will simply denote all the parameters described above which relate to a graphic by
λ. When we study the cyclicity of a graphic, we take a section Σ (sections Σ1 and
Σ2) in the normal form coordinates in a neighborhood of a singular point, and we study
the number of small zeros of the displacement map for the parameter λ in some subset
(cone) of P× S2 × [0, ν) for ν > 0 sufficiently small.

Consider the transition map Tλ along the passage from P1 to P2 (in fact its second
component). Let Vi be the subset of parameters in which the pp-graphics Eppi exists
(i = 1, 2, 3). By Prop. 6.2 in [15], there exists ν0 > 0 such that for any k ∈ N, if λ ∈ V3

(resp. λ ∈ V2) all the derivatives of Tλ (resp. T−1
λ ) are sufficiently small. For λ ∈ V1,

Tλ(ỹ1) is Ck, and the transition has a “funnelling effect”, i.e. Tλ is almost affine.
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Figure 8: The transition map along the pp-passage:“funnelling effect”.

Theorem 2.16. [15] There exists ε0 > 0 such that for any k ∈ N, a0 ∈ (0, 1
2), there

exist A0 ⊂ (0, 1
2), a neighborhood of a0 such that for ∀(a, µ̄) ∈ A0×V3, T ′λ is sufficiently

small; while for (a, µ̄) ∈ A× V2, (Tλ−1)′ is sufficiently small. For any (a, µ̄) ∈ A0 × V1

and ν > 0 sufficiently small, Tλ is Ck, and

Tλ(ỹ1) =
k∑

i=0

γ12i(λ)ỹi
1 + O(yk+1) (2.33)

where

γ120 = m120(ν)( ν
ν0

)−σ̄1 + κ1r
p
0(1−m121(ν))ω( ν

ν0
, α1) + O

(
( ν

ν0
)σ̄1ω2( ν

ν0
,−α0)

)

γ121 = m121(ν) + O
(
( ν

ν0
)p̄ωq( ν

ν0
,−α0) ln ν

ν0

)

γ12i = O
(
ν

p̄(1+[ i−2
q

])
ω

q+1−i−q[ i−2
q

])(
ν

ν0
,−α0) ln

ν

ν0

)
, i ≥ 2

where m120(0) = 0 and m121(0) = exp( πµ̄3√
aµ̄2

).

3 The finite cyclicity of the pp-graphics

In the proof of the finite cyclicity, we will always use * to denote a positive constant.

3.1 Finite cyclicity of the codimension 3 graphic with an
elliptic nilpotent point with pp-transition together with a
hyperbolic saddle

Note that this graphic should figure in the zoo of Kotova-Stanzo in the generic case
where the singular point has hyperbolicity ratio 6= 1 [11].

Theorem 3.1. Consider a graphic with pp-transition through a nilpotent elliptic point
of multiplicity 3 for which a 6= 1

2 in (2.13) and a hyperbolic saddle. If the hyperbolic
saddle has hyperbolicity ratio σ 6= 1, then the graphic has finite cyclicity at most 2.

Proof. As shown in Tab. 2, to prove the graphic has finite cyclicity, we have to prove
that all the limit periodic sets Epp1, Epp2 and Epp3 have finite cyclicity. We limit
ourself to the case σ > 1.

14
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Figure 9: Graphic through a nilpotent elliptic point and a hyperbolic saddle

Let Tλ : Σ1 −→ Σ2 be the transition map in the neighborhood of the nilpotent point
as defined in Theorem 2.16. Let Vi be the subset of parameters in which the pp-graphics
Eppi exists (i = 1, 2, 3).

In the neighborhood of the hyperbolic saddle, take sections Σ3 and Σ4 using the
normal form coordinates. By Prop. 2.5, the Dulac map D : Σ3 −→ Σ4 has the form

D(x, λ) = xσ(λ)(1 + φ(x, λ)) (3.1)

where φ(x, λ) ∈ (I∞0 ).
For the graphics Epp1 and Epp3, consider the displacement map defined from Σ3 to

Σ2:
L : Σ3 −→ Σ2

L = Tλ ◦ T1 ◦D − T−1
2

(3.2)

where T1 : Σ4 −→ Σ1 and T2 : Σ2 −→ Σ3 are the regular transition maps using normal
form coordinates on each section. By the chain rule,

L′ = σT ′λT ′1x
σ−1(1 + φ(x, λ))− (T−1

2 )′.

The second term is bounded away from 0 while the first term is small which gives the
finite cyclicity of the graphic is at most 1.

For the graphic Epp2, we consider the displacement map defined from Σ3 to Σ1:

L : Σ3 −→ Σ1

L = T1 ◦D − T−1
λ ◦ T−1

2 .
(3.3)

Then a straightforward calculation gives that

L(x, λ) = m̃10(λ) + m̃1(λ)xσ(λ)[1 + φ̃(x, λ)]− [m̃20(λ) + m̃2(λ)x(1 + O(x))] (3.4)

where m̃1(λ0)m̃2(λ0) 6= 0, φ ∈ (I∞0 ) and m̃2(λ0) is very small.
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The first derivative of L(x, λ) gives

L′(x, λ) = σ(λ)m̃1(λ)xσ(λ)−1
(
1 + φ̃1(x, λ)

)
− m̃2(λ)[1 + O(x)] (3.5)

where φ̃1(x, λ) ∈ (I∞0 ). Let L1(x, λ) = L′(x,λ)
1+O(x) . Then by (3.5), L′(x, λ) = 0 is equivalent

to L1(x, λ) = 0. Since

L′1(x, λ) = m̃1(λ)σ(λ)(σ(λ)− 1)xσ(λ)−2
(
1 + φ̃2(x, λ)

)
6= 0

where φ̃2(x, λ) ∈ (I∞0 ), so L(x, λ) = 0 has at most 2 small positive roots which gives
that the graphic has cyclicity at most 2. (A standard checking ensures that the case
σ(λ) = 2 causes no problem.)

Corollary 3.2. The graphics (I2
23), (I2

24) and (I2
25) have cyclicity ≤ 2.

Proof. This follows immediately from Theorem 3.1 since the graphics occur in family
(2.17) with A 6= 1

2 and the additional hyperbolic saddle at infinity has hyperbolicity
ratio σ = A

1−A 6= 1 or 1
σ .

3.2 Finite cyclicity of the hemicycles (H1
6) and (H3

9)

In order to prove the finite cyclicity of the hemicycles (H1
6 ) and (H3

9 ), we will need to
prove that some regular transition in these hemicycles has a nonzero second derivative.
This is the purpose of the following lemma.

PΣ

Πr

r
rlP

R

Dl

Πl

lΣ

D rR R

3

21 .
0

Figure 10: Transition maps related to the quadratic system (2.14)

Lemma 3.3. Consider the quadratic system (2.14) with a ∈ (0, 1
2), Fig. 10. The graphic

(H1
6 ) occurs for c2 − 4(1− a) < 0. We work under this hypothesis.

1. Take sections Σl = {x = −X0}, Σ1 = {x = −x0}, Σ2 = {x = x0} and Σr =
{x = X0}, where 0 < x0 < X0 constants. Let R1 : Σl −→ Σ1 = {x = −x0} and
R2 : Σ2 −→ Σr be the two regular transformations along the invariant line y = 0.
Then

R1(y) = ( x0
X0

)1/a,

R2(y) = (X0
x0

)1/a.
(3.6)
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2. Let (v, w) = (x
y , 1

y ). Then system (2.14) at infinity becomes

{
v̇ = (a− 1)v2 + cv − 1 + w
ẇ = −vw.

(3.7)

Let u0 > 0 small, Πl = {v = − 1
u0
} and Πr = {v = 1

u0
}. Then the transformation

map
R3 : Πr −→ Πl

is C∞ and if we write

R3(w) = β001(u0)w + β002(u0)w2 + O(w3). (3.8)

then

β001(u0) = exp(−c2π) + O(u0),

β002(u0) = − exp(−3c2π)[exp(c2π)− 1]
(2k1 − 2)(1− a)2

u
2(k2−k1+1)
0 [1 + O(u0)]

(3.9)

where
k1 =

3− 4a

2(1− a)
∈ (1,

3
2
)

k2 =
1

2(1− a)
∈ (

1
2
, 1)

2(k2 − k1 + 1) =
2a

1− a
∈ (0, 2)

c1 =
√

4(1− a)− c2

c2 =
c

(1− a)
√

4(1− a)− c2
.

(3.10)

Proof. The proof for the first part is straightforward. We now prove the second part.
Note that for system (3.7), the w−axis is invariant, also with 0 < c < 2

√
1− a, there

holds v̇ |w=0= (a− 1)v2 + cv − 1 < 0. Hence R3 is a C∞ map which can be written as
(3.8). By Prop. 2.7, a straightforward calculation gives

β001 = exp
(∫ − 1

u0

1
u0

vdv

(1− a)v2 − cv + 1

)

= exp
(
−c2

[
arctan 2(1−a)−cu0

c1u0
− arctan −2(1−a)−cu0

c1u0

]) [
(1−a)+cu0+u2

0

(1−a)−cu0+u2
0

]k2

= exp(−c2π) + O(u0)

(3.11)

and

β002(u0) = −β001(u0)
∫ 1

u0

− 1
u0

2v exp
(∫ v

1
u0

vdv

(1− a)v2 − cv + 1

)

((1− a)v2 − cv + 1)2
dv

= − 2u
2k2
0 [1+O(u0)] exp(− 3c2π

2
)

(1−a)k2

∫ 1
u0

− 1
u0

2v exp
(
c2 arctan(2(1−a)v−c

c1

)

((1− a)v2 − cv + 1)k1
dv

(3.12)

where k1, k2, c1 and c2 are given by (3.10).
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Note that

lim
u0→0

∫ 1
u0

− 1
u0

2v exp
(
c2 arctan(2(1−a)v−c

c1
)
)

((1− a)v2 − cv + 1)k1
dv

1

u
2k1−2
0

=
exp(1

2c2π)− exp(−1
2c2π)

(2k1 − 2)(1− a)k1
.

Therefore by (3.12), we have (3.9).

Theorem 3.4. The hemicycle (H1
6 ) has finite cyclicity.

Proof. The hemicycle (H1
6 ) occurs in (2.14) with 0 < c < 2

√
1− a. After the blow-up

of the family, take sections Σ1 and Σ2 in the normal form coordinates at the entrance
and exit parabolic sectors in the neighborhood of P1 and P2 respectively (Fig. 11). To
prove that (H1

6 ) has finite cyclicity, we first study the transition map

R : Σ2 −→ Σ1 (3.13)

along the equator. We are going to prove in detail that the second component R2(λ0, ỹ2)
is nonlinear in ỹ2.

Σ Σ Σ Σ

Π

l

Πl

r

r

2
Pl Pr

R

1

Figure 11: The hemicycle (H1
6 )

(1). Normal forms and Dulac maps at infinity
As shown in Fig. 11, let Pr be the saddle point at infinity in the direction of the

positive x−axis. Using coordinates (zr, ur) = ( 1
x , y

x), we have

{
u̇r = ur(1− a− cur + u2

r − urzr)
żr = −zr(a + cur − u2

r + urzr)
(3.14)

Hence Pr is a hyperbolic saddle of hyperbolicity ratio σr = a
1−a . For a ∈ (0, 1

2), we
have 0 < σr < 1. Dividing system (3.14) by 1 − a − cur + u2

r − urzr (positive in the
neighborhood of Pr), a normalizing change of coordinates can be taken of the form
(ur, zr) = (ur, Ψr(ur, Zr) where

Ψr(ur, Zr) = dr1(ur)Zr + dr2(ur)Z2
r + urO(Z3

r )
= [1 + O(ur)]Zr + O(ur)O(Z2

r ).
(3.15)
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Take two sections Σr = {Zr = Z0} and Πr = {ur = u0} in the normal form
coordinates. By [12], for the Dulac map Dr : Σr −→ Πr, we have

Dr(ur) = uσr
r (Ar + ψr(ur)) (3.16)

where Ar > 0 constant, also ψr ∈ (I∞0 ).
To study Pl, the singular point at infinity in the direction of the negative x-axis,

we use coordinates (zl, ul) = (− 1
x ,− y

x). The study is obtained from that of Pr by
(ur, zr) 7→ (−ul,−zl), yielding a normalizing change of coordinates of the form

(ul, Zl) = (ul,Ψl(ul, zl)) = dl1(ul)zl + dl2(ul)z2
l + ulO(z3

l ).

Taking two sections Πl = {ul = u0}, Σl = {Zl = Z0} in the normal form coordinates,
the Dulac map Dl : Πl −→ Σl can be written as

Dl(Zl) = Zσl
l (Al + ψl(Zl)) (3.17)

where σl = 1
σr

> 1, Al > 0 constant, also ψl ∈ (I∞0 ).

(2). Decomposition of the map R
The transition map R defined in (3.13) can be calculated by the decomposition

R = R1 ◦Dl ◦R0 ◦Dr ◦R2 (3.18)

where R1 and R2 are the regular transition maps in the first part of Lemma 3.3 and R0

is the map R3 in the second part of Lemma 3.3 seen in different coordinates allowing the
compositions. Then a straightforward calculation from (3.16), (3.17) and (3.18) gives

R(ỹ) = β1ỹ + β2ỹ
1+σr + o(ỹ1+σr) (3.19)

where
β1 = R′

1(0)R′
2(0)(ArR

′
o(0))

1
σr Al > 0

β2 =
1

2σr
R′

1(0)(R′
2(0))σr+1(R′

0(0))
1

σr
−1R′′

0(0)AlA
1+ 1

σr
r .

(3.20)

(3). Calculation of R′′
0(0) to show R(ỹ) is nonlinear

It follows from (3.19) and (3.20) that to show R(ỹ) is nonlinear, it suffice to prove
R′′

0(0) 6= 0.
To do this, we introduce the coordinates (v, w) = (x

y , 1
y ) and make the following

decomposition
R0 := Ψ̄l ◦ Φ2 ◦R3 ◦ Φr ◦ Ψ̄r (3.21)

where we denote Ψ̄r(Zr) = Ψr(u0, Zr) and similarly Ψ̄l(zl) = Ψl(u0, zl), and

Φr :
{

v = 1
ur

w = zr
ur

, Φl :
{

ul = − 1
v

zl = −w
v

(3.22)

are the coordinate changes between the charts.
It follows from (3.21),(3.22) and (3.8) that

R0(Zr) = β01Zr + β02Z
2
r + O(Z3

r )

19



where

β01(u0) = dr1(u0)dl1(u0)β001

= e−c2π + O(u0),

β02(u0) = β001dl1(u0)dr2(u0) + dl2(u0)d2
r1(u0)β2

001 +
1
u0

d2
r1(u0)dl1(u0)β002

= O(u0) + O(u0)− 1
u0

exp(−3c2π)[exp(c2π)− 1]
(2k1 − 2)(1− a)2

u
2(k2−k1+1)
0 [1 + O(u0)]

= − exp(−3c2π)[exp(c2π)− 1]
(2k1 − 2)(1− a)2

u
2(k2−k1)+1
0 [1 + O(u0)] + O(u0).

Since
2(k2 − k1) + 1 =

3a− 1
1− a

∈ (−1, 1),

so β02 6= 0. i.e., R has the form in (3.19) with β2 6= 0.

(4). Cyclicity of (H1
6 )

Note that all steps of the proof of Theorem 2.1 work with this form of the transition
in (3.19), yielding Cycl(H1

6 ) ≤ 2.

Theorem 3.5. The hemicycle (H3
9 ) has finite cyclicity.

Proof. For the hemicycle (H3
9 ), we have to prove that all the three limit periodic sets

have finite cyclicity. The proof is similar to that of the (H1
6 ) in the above theorem.

T D

Σ Σ

Σ Σ

Σ Σ4 3

2

2

1

1

1 2

Tλ

T3T4

1D

Figure 12: The hemicycle (H3
9 )

As shown in Fig. 12, take sections in the normal form coordinates in the neighborhood
of the two hyperbolic saddles at infinity respectively.

We consider the transition map

L : Σ1 −→ Σ1

L = D1 ◦ T4 ◦ Tλ − T−1
1 ◦D−1

2 ◦ T−1
3

where Tλ is the pp-transition through the nilpotent elliptic point, and as show in Fig. 12,
the connections in Tλ, T3 and T4 are fixed while the connection T1 can be broken. Note
that σ(0) = 1−A

A < 1 where σ(0) is the hyperbolicity ratio of the left hyperbolic saddle
point at infinity. A straightforward calculation gives that

L(ỹ, λ) = ỹσ(λ)
[
m̄1(λ) + m̄2(λ)ỹ + O(ỹ2)

]
− [

m0(λ) + m1(λ)ỹσ(λ) + m2(λ)ỹ2σ(λ) + o(ỹ2σ(λ))
] (3.23)
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where m2(λ) = ∗∂2T−1
1

∂y2 and m1(λ) is bounded and bounded away from zero.
Differentiating of L(ỹ, λ) with respect to ỹ yields

L′(ỹ, λ) = ỹσ(λ)−1
[
σ(λ)m̄1(λ) + (1 + σ(λ))m̄2(λ)ỹ + O(ỹ2)

]
−ỹσ(λ)−1

[
σ(λ)m1(λ) + 2σ(λ)m2(λ)ỹσ(λ) + o(ỹσ(λ))

] (3.24)

For Epp2, m̄1(λ) is very large, hence L′(ỹ, λ) > 0 for ỹ > 0 small and λ small. For
Epp3, m̄1(λ) is very small, hence L′(ỹ, λ) < 0 for ỹ > 0 small and λ small. Therefore
Epp2 and Epp3 have cyclicity at most 1.

We now consider the case of Epp1. Let

L1(ỹ, λ) = ỹ1−σ(λ)L′(ỹ, λ).

Then the number of small roots of L(ỹ, λ) = 0 is at most 1 plus the number of roots of
L1(ỹ, λ) = 0. Since 0 < σ(λ) < 1, so

L′1(ỹ, λ) = −2σ(λ)m2(λ)ỹσ(λ)−1
(
1 + o(ỹσ(λ))

)
+ (1 + σ(λ))m̄2(λ) + O(ỹ) 6= 0

which gives that the number of small positive roots of L(ỹ, λ) = 0 is at most 2, i.e.
Cycl(H3

9 ) ≤ 2, if we show that m2(λ0) 6= 0.
Let us now show that m2(0) 6= 0. The graphic occurs inside the family (2.17) with

γ = 0. By Theorem 2.11, the invariant line y = −1 is part of the hemicycle. The
transition map T1 : Σ2 −→ Σ1 along the invariant line then can be decomposed as

T1 = Φ1 ◦ T0 ◦ Φ−1
2 (U, λ) (3.25)

where Φ1 and Φ2 are the normalizing coordinates changes on the sections Σ1 and Σ2

respectively and U is the normalizing coordinate (see below). Let the sections Σi (i =
1, 2) be given by z = z0 with z0 > 0 small, then

T0 : {x = − 1
z0
} −→ {x =

1
z0
}

is the regular transition map along the invariant line y = −1 for the system (2.17) with
δ2 − 4A < 0.

Note that for system (2.17), if we move the invariant line ŷ = −1 to y = 0 by making
the transformation

x = −x̂, y = ŷ − 1,

then system (2.17) becomes
{ ˙̂x = −δx̂ + ŷ − 1−Ax̂2

˙̂y = −x̂ŷ.
(3.26)

System (3.26) is exactly the system (3.7) if we take A = 1 − a and δ = −c. Hence the
calculation of the transition map along the invariant line ŷ = 0 can be done as before.
We need also consider the normalizing changes of coordinates. For that purpose we
transform (3.26) by means of (u, z) = ( y

x , 1
x). This yields the system

{
u̇ = (A− 1)u + δuz − u2z − uz2

ż = Az + δz2 + z3 − uz2.
(3.27)
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In order to bring to normalizing coordinates we divide the system by A+ δz + z2−uz2.
Hence normalizing coordinates can be taken as

(U,Z) =
(

1 + O(z)u + O(z)O(u2), z
)

.

As in part (3) in Theorem 3.4, we can conclude that m = m2(λ0) 6= 0.

3.3 Finite cyclicity of a graphic with a nilpotent elliptic
point, a saddle and a saddle-node

Theorem 3.6. A graphic with a pp-transition through a nilpotent elliptic point together
with an attracting saddle node and a repelling hyperbolic saddle (with hyperbolicity ratio
σ < 1) has finite cyclicity ≤ 2 provided that the saddle is located on the side of the
parabolic sector of the saddle-node (Fig. 13).

Σ1

Π

Σ

Π

2

1

2

Π3
3Σ

Figure 13: Graphic with a pp-transition, hyperbolic saddle and a saddle node

Proof. We take two sections Σ1 and Π1 located at the entrance and the exit of the
saddle and other sections as in Fig. 13. Let

R1 : Π1 −→ Σ2

R2 : Π2 −→ Σ3

R5 : Π3 −→ Σ1

be the regular transition maps. The map from Σ3 −→ Π3 has the form (for a
irrational)

ν−σ1R4,λ(M(λ)R3,λ(νσ1 ŷ))

where M(λ) is 1 (resp. large, small) for Epp1 (resp. Epp2, Epp3) and R3,λ, R4,λ are
regular transitions, hence diffeomorphisms such that R′

3,λ and R′
4,λ are bounded and

bounded away from 0.
We consider the displacement map

Vλ : Π1 → Σ1.
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Here again we write the proof for a irrational which implies σ(0) irrational but we
explain what is the non trivial adaptation for the case σ(0) = 1

2 . The displacement map
has the form

Vλ(y) = R5,λ

(
ν−σ1R4,λ

(
M(λ)R3,λ

(
νσ1R2,λ(m(λ)R1,λ(y))

)))
− y

1
σ(λ) (3.28)

where the Ri,λ are regular transitions satisfying R′
i,λ(y) 6= 0 and m(λ) → 0 as λ → 0.

Then
V ′

λ(y) = m(λ)M(λ)R′
1,λR′

2,λR′
3,λR′

4,λR′
5,λ −

1
σ(λ)

y
1

σ(λ)
−1

. (3.29)

We divide a neighborhood of 0 in parameter space in two cones. In the first cone
where M(λ)m(λ) > 1

2 , then V ′
λ(y) > 0 for small y yielding cyclicity ≤ 1. Note that this

cone contains the values of parameter λ corresponding to Epp1 and Epp3.
In the second cone where M(λ)m(λ) < 1 then zeros of V ′

λ(y) are zeros of

Wλ(y) = σ(λ)M(λ)m(λ)− y
1

σ(λ)
−1

R′
1,λR′

2,λR′
3,λR′

4,λR′
5,λ

. (3.30)

Then for σ(0) 6= 1
2

W ′
λ(x) = −[ 1

σ(λ)
− 1

]
x

1
σ(λ)

−2
[
M̂(λ) + O(M(λ)m(λ))O(x) + O(m(λ))O(x)

]
(3.31)

where M̂(λ) 6= 0. Then W ′
λ(x) is nonzero for small nonzero y.

In the particular case σ(0) = 1
2 , we apply the same argument but we replace the

function Wλ(y) by the function

W̄λ(y) = [σ(λ)M(λ)m(λ)]
1
2 −

[
x

1
σ(λ)

−1

R′
1,λR′

2,λR′
3,λR′

4,λR′
5,λ

] 1
2

. (3.32)

Corollary 3.7. The graphic (I2
39) has finite cyclicity.

Proof. The graphic (I2
39) occurs inside the family (2.17) with 1

2 < A < 1 and the
hyperbolicity ratio is 1−A

A < 1. The finite cyclicity of (I2
39) follows from Theorem 3.6.

3.4 Finite cyclicity of a graphic with a nilpotent elliptic
point and a saddle-node

Theorem 3.8. A graphic with a nilpotent elliptic point of multiplicity 3, a pp-transition,
and a saddle-node with central transition has finite cyclicity if the regular transition from
the nilpotent point to the node sector of the saddle-node is nonlinear.

Proof. The graphics Epp1 and Epp3 have cyclicity 1 as the first return map P satisfies
P ′(0) < 1. We now consider the case of Epp2. As shown in Fig. 14, we take sections Σi
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Figure 14: Graphic through a nilpotent elliptic point and a saddle-node

and Πi (i = 1, 2) in normal form coordinates in the neighborhood of the elliptic point
and the saddle-node respectively. Let

R1 : Π1 −→ Σ2

R2 : Π2 −→ Σ1

be the regular transition maps. By assumption there exists N such that the transition
map R1 can be written as

R1(y, λ) =
N∑

i=0

mi(ν, λ)yi + O(yN+1) (3.33)

where mN (0, λ) 6= 0.
We will consider the displacement map V : Π1 −→ Σ2. As in the proof of Theo-

rem 3.6, the transition map through the blown-up sphere has the form

R0(ŷ, λ) = ν−σ1R4,λ

(
M(λ)R3,λ(νσ1 ŷ)

)
. (3.34)

where M(λ) is large. It follows from Proposition 2.6 that the central transition map
through the saddle-node has the form (2.8) with the constant m(λ) small.

The displacement map V now reads

V (y, λ) = R1(y, λ)−m−1(λ)R−1
2 ◦R−1

0 (y, λ)

= R1(y, λ)−m−1(λ)R−1
2

(
ν−σ1R−1

3,λ

(
M(λ)−1R−1

4,λ(νσ1y)
))

.
(3.35)

Then

V ′(y, λ) = R′
1(y, λ)−m−1(λ)R−1

2
′
(

R−1
0 (y, λ)

)
R−1

0
′(y, λ)

= R′
1(y, λ)−m−1(λ)M(λ)−1R−1

2
′
(

R−1
0 (y, λ)

)
(R−1

4,λ)′(R−1
3,λ)′.

(3.36)

Let

W (y, λ) =
R′

1(y, λ)

R−1
2
′
(

R−1
0 (y, λ)

)
(R−1

4,λ)′(R−1
3,λ)′

−m−1(λ)M−1(λ). (3.37)
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It follows from Theorem 2.16, (3.33) and (3.34) that W (N−1)(y, λ) 6= 0 as all the higher
order derivatives of R0 and R2 are small for small y because of the funnelling effect.
This gives that the cyclicity of the graphic is at most N .

Since we will have to deal with family of graphics of the same type, we state the
following important principle which will be used to deal with all the families of graphics.

Theorem 3.9. Analytic extension principle to prove a regular transition map
is nonlinear:
The transition map must be calculated in normalizing coordinates on sections parallel to
the axes.

1. For the points Pi we deal with 3-dimensional hyperbolic saddles with two eigen-
values of the same sign and for which the planes r = 0 and ρ = 0 are invariant.
Using Poincaré theorem stating that it is possible to bring a node to normal form
via an analytic change of coordinates it is possible to choose normalizing coordi-
nates which are analytic in the coordinate plane where the singular point has a node
behavior. Our section is then analytic and parameterized by an analytic coordinate
inside that plane (details in [15]).

2. Using the sectorial normalizing theorem for a saddle-node it is possible to show that
there exist a normalizing change of coordinates which is analytic in the node sector
for the zero value of the parameters. Then the section parallel to the stable (un-
stable) manifold in the node sector is analytic for the zero value of the parameters
and parameterized by an analytic coordinate (details in [3]).

Then the principle says: if a regular transition appears for a graphic in a family of
graphics and if the two sections on which it is defined are analytic and parameterized
by analytic coordinates, then, if the transition is nonlinear in one point, it is nonlinear
everywhere.

It is usually easy to prove the nonlinearity of the transition near one of the boundary
graphics of the family.

By the above Analytic extension principle and the finite cyclicity results obtained
above, we immediately have

Corollary 3.10. The graphics (F 1
6a), (I1

5a), (I1
7a), (I1

8a), (I1
9a) and (I1

10a) have finite
cyclicity.

Proof. Since the pp-transition through the nilpotent elliptic point is almost affine, to
prove the finite cyclicity of these graphics we only need to verify that the corresponding
“external” map is nonlinear.

1. (F 1
6a) and (I1

5a)
In the proof of Theorem 3.4 we show that the map R along the hemicycle (H1

6 )
is nonlinear of order 2, therefore by Theorem 3.9, the corresponding transition for
each of the graphic in the family (F 1

6a) is nonlinear too.
The nonlinearity of the corresponding map for (I1

5a) comes from the proof of The-
orem 3.5 for the hemicycle (H3

9 ) and the fact that the regular transition map along
the invariant line is nonlinear of order 2.
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2. (I1
7a), (I1

8a), (I1
9a) and (I1

10a)
These graphics occur in family (2.17) with A 6= 1

2 and the additional hyperbolic
saddle at infinity has hyperbolicity ratio σ = A

1−A 6= 1. Thus the corresponding
maps for the boundary graphics (I2

23), (I2
24), (I2

25) and (I2
39) are nonlinear respec-

tively.

Remark 3.11. In [3], Dumortier, Ilyashenko and Rousseau proved that the graphic
(I1

10a) has finite cyclicity.

3.5 Finite cyclicity of the hemicycles (H3
7) and (H3

10)

Consider the hemicycle (H3
7 ). As shown in Fig. 15, take the transversal sections Π2 and

Π0 in the neighborhood of the saddle point at infinity and the attracting saddle-node
on the equator. Let

R3,0 : Π2 −→ Π0

be the regular transition map in the normalizing coordinates.

Theorem 3.12. If R′′
3,0(0) 6= 0, then the hemicycle (H3

7 ) has finite cyclicity ≤ 2.

Proof. We write the proof in the case a ∈ P irrational. Then the hyperbolicity ratios of
the two saddle points at infinity on the right (resp. left) are σr = a

1−a (resp σl = 1
σr

)
with σr(0) < 1 irrational.

2

0Π

RD

R

R D
1 1 2 2

3

D4 0

Sλ

Σ1 Σ2

R

Π

Figure 15: The transition maps of hemicycle (H3
7 ) in proving its finite cyclicity

As shown in Fig. 15, let R1,λ (resp. R2,λ) be the regular transitions along the x-axis
on the left (resp. right). We can suppose that the transition R4,λ along the equator
to the left of the saddle-node is the identity (see [9]). Let R3,λ be the transition along
the equator on the right side of the saddle-node. In particular R3,λ(0) = 0. The Dulac
maps D1 and D2 have the form of (2.3) in Proposition 2.5 with ψi = 0. If we denote
the central transition map of the saddle-node by D0 and write it as in (2.8) with the
coefficient m1(λ) → 0, then, the transition Σ2 −→ Σ1 along the equator can be written
as

Rλ(y) = D1 ◦R4,λ ◦D0 ◦R3,λ ◦D2

=
[
m1(λ)R3,λ((R2,λ(y))σr)

]σl .

26



Let Sλ be the inverse of the transition map Tλ defined in (2.33). Consider the
displacement map Vλ : Σ2 −→ Σ1 given by

Vλ(y) = Rλ(y)−R−1
1 ◦ Sλ ◦R−1

2,λ(y).

The first derivative of Rλ is small for small y and the first derivative of Sλ is nonzero
(resp. small, large) for Epp1 (resp. Epp2, Epp3). Hence for limit periodic sets of type
Epp1 or Epp3, the displacement map has a nonzero derivative, yielding cyclicity ≤ 1.

For Epp2, it follows from (2.33) that we can rewrite the map Sλ(y1) (we will apply
this with y1 = R−1

2,λ(y)) as

Sλ(y1) = ν−σ1

(
ε0 + m2(λ)νσ1y1

(
1 + O

(|(νσ1 , m2(λ))|)O(y1)
))

,

with m2(λ) → 0 as λ → 0. Hence

S′λ(y1) = m2(λ)
(
1 + O(|(νσ1 ,m2(λ))|)O(y1)

)
= m2(λ)

(
1 + ψ(y1, λ)

)

where ψ(y1, λ) = O(νσ1m2(λ)). Moreover for y1 = R−1
2,λ(y) we will have

1 + ψ(y1, λ) = 1 + ψ1(y, λ),

where again ψ1(y, λ) = O(νσ1m2(λ)).
Let

Wλ(y) =
V ′

λ(y)

m1(λ)
(
1 + ψ1(y, λ)

)(
R−1

1,λ

)′(
R−1

2,λ

)′

=
R′

λ(y)

m1(λ)(1 + ψ1(y, λ))
(
R−1

1,λ

)′(
R−1

2,λ

)′ − m2(λ)
m1(λ)

= a0(λ) + a1(λ)yσr(λ) + O(y)

(3.38)

where a1(λ) = ∗R′′
3,λ(0) is bounded and bounded away from 0 for small z and λ as R′′

3,0

is nonzero (see Lemmas 3.14 and 3.15 below). Hence W ′
λ(y) is large for small y and λ,

yielding that (H3
7 ) has cyclicity at most 2.

We will postpone the proof that R3,0 after the proof of the finite cyclicity of (H3
10).

The difference between (H3
7 ) and (H3

10) is that the transition map along the invariant
line is not fixed in (H3

10) while the transition along the equator was fixed in (H3
7 ). As

shown in Fig. 16, let
R1,0 : Σ1 −→ Σ̂1

be the regular transition map from the saddle point to the attracting saddle-node in the
normalizing coordinates. Similar to the case of (H3

7 ), we will show that it is sufficient
to prove that R′′

1,0(0) 6= 0. This will be proved in Lemma 3.15.

Theorem 3.13. The hemicycle (H3
10) has finite cyclicity ≤ 2 if R′′

1,0(0) 6= 0.
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Figure 16: The transition maps for the hemicycle (H3
10)

Proof. Again, we write the proof in the case A ∈ P irrational. As shown in Fig. 16, we
take two sections Σ1 and Σ2 near the hyperbolic saddles at infinity using the normalizing
coordinates. Then we consider the displacement map

Vλ(y) = Rλ(y)−Gλ(y) : Σ1 −→ Σ2 (3.39)

where Rλ is the transition from Σ1 to Σ2 along the invariant line, Gλ is the transition
map along the equator (which is the composition of two regular transitions along the
equator and the transition map Sλ through the nilpotent elliptic point) composed with
the two Dulac maps near the hyperbolic saddles at infinity.

A straightforward calculation gives

Rλ(y) = ε0 + m1(λ)[y + M2y
2 + O(y3)] (3.40)

where m1(λ) → 0 and M2(0) = ∗R′′
1λ(0).

For the transition map G, note that the transition map Tλ through the nilpotent
elliptic point is almost linear since it also satisfies Tλ(0) = 0. So, we can write the
inverse of the transition map T as

Sλ(y1) = m2(λ)y1

(
1 + O(|(νσ,m2(λ))|)O(y1)

)
= m2(λ)y1

(
1 + ψ(y1, λ)

)
,

with m2(λ) nonzero (resp. small, large) for Epp1 (resp. Epp2, Epp3). Therefore, we
can write the transition map Gλ as

Gλ(y) = m̂2(λ)y
(
1 + M̂2y

σr + O
(
y1+σr

))
(3.41)

where σr = A
1−A > 1 and m̂2(λ) = ∗m2(λ).

Using the expression of (3.40) and (3.41) in (3.39), we have

V ′
λ(y) = m1(λ)

[
1 + 2M2y + O(y2)]− m̂2(λ)

[
1 + σrM̂2y

σr + O
(
y1+σr

)]
. (3.42)

Hence for the limit periodic sets of type Epp1 and Epp3, V ′
λ(y) 6= 0 for y and λ small,

yielding cyclicity ≤ 1.
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For the limit periodic set of type Epp2, m̂2(λ) = ∗m2(λ) is small. Let

Wλ(y) =
V ′

λ(y)
m̂2(λ)[1 + 2M2y + O(y2)]

=
m1(λ)
m̂2(λ)

− 1 + σrM̂2y
σr + O

(
y1+σr

)

1 + 2M2y + O(y2)
.

Then
Wλ(y) =

m1(λ)
m̂2(λ)

− 1 + 2M2y + O(y2) + O(yσr) (3.43)

where M2 = ∗R′′
1λ(0). Therefore for y and λ sufficiently small

W ′
λ(y) = 2M2 + O(y) + O(yσr−1).

Hence (H3
10) has cyclicity at most 2 if M2 = R′′

1λ(0) 6= 0.

Next we show the the nonlinearity of the two transition maps in the above two
theorems.

It follows from the results in Section 2.6 that the hemicycle (H3
10) occurs in the

family {
ẋ = −y + Ax2 + 2

√
A x + 1,

ẏ = xy
(3.44)

with 1
2 < A < 1, while (H3

7 ) occurs in the family
{

ẋ = y + ax2 + 2
√

1− a xy − y2,
ẏ = xy,

(3.45)

with a ∈ (0, 1
2 . If we calculate the regular transition map R3λ for (H3

7 ) using system
(3.45) by relocating system through x = v

w , y = 1
w , we have system

{
v̇ = w + (a− 1)v2 +

√
1− av − 1,

ẇ = vw.
(3.46)

A further change v 7→ −v can bring (3.46) to exactly system (3.44). Hence the calcula-
tion of R3,0 is the same as the calculating for R1,0 using system (3.44), yielding

Lemma 3.14. The condition R′′
3,0(0) 6= 0 is satisfied for (H3

7 ) if and only if R′′
1,0(0) 6= 0

for (H3
10).

Note that system (3.44) has a saddle-node at (− 1√
A

, 0). To make the calculations
easier, we first translate the saddle-node to the origin. Then a rescaling

x 7→ −A
√

A x, y 7→ −A2 y, t 7→ − 1√
A

t

yields {
ẋ = y + x2,
ẏ = y(1 + Bx)

(3.47)

where B = 1
A ∈ (1, 2).

For system (3.47), we have a hemicycle (Fig. 17). As shown in the figure, let Σ1 and
Σ2 be two sections parameterized by the normalized coordinates in the neighborhood
of the repelling saddle-node and hyperbolic saddle at infinity respectively. One can see
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Figure 17: The transition map T for system (3.47) in Lemma 3.15

that to show R′′
1,0(0) 6= 0 for (H3

10) using system (3.44), it is equivalent to show that the
transition map

T : Σ1 −→ Σ2

in the normalizing coordinates satisfies T ′′(0) 6= 0.

Lemma 3.15. The transition map T has a nonzero second derivative, i.e., T ′′(0) 6= 0.

Proof. Let us call (X, Y ) (resp. (U,Z)) the normalizing coordinates at Q1, the origin
(resp. Q2, the point at infinity). The regular transition map R can be written as a
composition of the following 6 maps:

1) The map T1 from {X = X1} to {x = x0} in the (X, Y ) coordinates, where
(X1, 0) and (x0, 0) represent the same point with (X, Y ) and (x, y) coordinates
respectively. Both sections are parameterized by Y . Hence T ′1(0) = 1.

2) The map T2 which is the change of coordinates from Y to y on {x = x0}. Then

T2(Y ) = a1Y + a2Y
2 + O(Y 3) (3.48)

where a1 > 0.

3) The map T3(y) which is the transition from {x = x0} (x0 small ) to {x = X0}
(X0 large) in (x, y) coordinates.

4) The map T4 which is the transition from the coordinate y to the coordinate
u = y

X0
on {x = X0}. Then T4 is linear: T4(y) = y

X0
= Z0y with Z0 = 1

X0
(the

section {x = X0} becomes {z = Z0} in the (u, z) = ( y
x , 1

x) coordinates.

5) The change of coordinate T5 from u to U on {z = Z0}. Then

T5(u) = b1u + b2u
2 + O(u3) (3.49)

where b1 > 0.

6) The map T6 from the image of {z = Z0} in (U,Z) coordinates to {Z = Z1}
where (0, Z0) and (0, Z1) represent the same point written respectively in (u, z)
and (U,Z) coordinates. Then T ′6(0) = 1.
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Hence
T = T6 ◦ T5 ◦ T4 ◦ T3 ◦ T2 ◦ T1. (3.50)

A straightforward calculation from (3.48), (3.49) and (3.50) gives

T ′(0) =
6∏

i=1

T ′i (0) =
a1b1

X0
T ′3(0) (3.51)

and

T ′′(0) = T ′(0)
[
T ′′1 (0) +

2a2

a1
+

T ′′3 (0)
T ′3(0)

a1 +
2a1b2

b1
Z0T

′
3(0) + a1b1Z0T

′
3(0)T ′′6 (0)

]
. (3.52)

Now we calculate all the terms appearing in T ′′(0) in (3.52).

i). Calculation of T ′3(0) and T ′′3 (0).
Applying Proposition 2.7 to system (3.47), we have

T ′3(0) = exp
(∫ X0

x0

1 + Bx

x2
dx

)
=

(
X0

x0

)B

exp
(

1
x0
− 1

X0

)
(3.53)

and

T ′′3 (0)
T ′3(0)

= 2
∫ X0

x0

(
x

x0

)B

exp
(

1
x0
− 1

x

) −(1 + Bx)
x4

dx

= −2x−B
0 e

1
x0

∫ X0

x0

(
BxB−3 + xB−4

)
e−

1
x dx.

(3.54)

ii). Calculations at Q2

The system located at Q2 in (u, z) = ( y
x , 1

x) coordinates has the form
{

u̇ = (B − 1)u + uz − u2z,
ż = −z(1 + uz).

(3.55)

To bring system (3.55) to normal form, we first divided the system by 1+uz, then
{

u̇ = (B − 1)u + uz − (B − 1)u2z + O(|(u, z)|4)
ż = −z.

(3.56)

So the normalizing change of coordinates have the form

u = U − UZ − B

B − 2
U2Z +

1
2
UZ2 + O(|(U,Z)|4), z = Z

yielding

U = u + uz +
B

B − 2
u2z − 1

2
uz2 + O(|(u, z)|4), Z = z.

So on Z = Z0, the change of coordinate T5 can be written as

T5(u) = [1 + Z0 + O(Z2
0 )]u + [

B

B − 2
Z0 + O(Z2

0 )]u2 + O(u3).

Then we have

b1 = 1 + Z0 + O(Z2
0 ), b2 =

B

B − 2
Z0 + O(Z2

0 ). (3.57)
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Hence
b2

b1
=

B

B − 2
Z0 + O(Z2

0 ). (3.58)

Also T6 = identity.

iii) Normal form at the origin Q1

We diagonalize the normal form by means of x1 = x + y. Then
{

ẋ1 = x2
1 + (2−B)x1y + (1−B)y2,

ẏ = y + By2 + Bx1y.
(3.59)

We divide system (3.59) by 1 + Bx1 + By. One can verify that the normalizing
change of coordinate of the form

X = x1 − (2−B)x1y − 1−B

2
y2 + O(|(x1, y)|3), Y = y (3.60)

transforms system (3.59) into a normal form
{

Ẋ = X2,

Ẏ = Y (1 + BX).
(3.61)

Hence in the new coordinates, the section x = x0 has the equation

X = h1(Y ) = x0 + Y (−1 + O(x0) + O(Y 2). (3.62)

In particular, h(0) = x0, h′1(0) = −1.
It follows from (3.61) that we have

∫ h1(Y )

x0

1 + Bx

x2
dx =

∫ T1(Y )

Y
dY.

A straightforward calculation yields

T1(y) = Y −
( B

x0
+

1
x2

0

)
Y 2 + O(Y 3). (3.63)

Hence
T ′1(0) = 1, T ′′1 (0) = −2

( B

x0
+

1
x2

0

)
. (3.64)

As Y = y we have
a1 = 1, a2 = 0. (3.65)

Let us take Z0 = x0 and X0 = 1
x0

and let x0 > 0 sufficiently small. Note that
1 < B < 2, it follows from substitution of (3.51), (3.53), (3.54), (3.58), (3.64) and (3.65)
into (3.52) and a straightforward calculation gives

T ′′(0) = x1−2B
0 e

1
x0 (1 + O(x0))

[
−2

( B

x0
+

1
x2

0

)

−2x−B
0 e

1
x0

∫ 1
x0

x0

(BxB−3 + xB−4)e−
1
x dx + 2x2−2B

0 e
1

x0

(
B

B − 2
+ O(x0)

)]

= x1−3B
0 e

2
x0

[
−2

∫ 1
x0

x0

(BxB−3 + xB−4)e−
1
x dx + O(x2−B

0 )

]

< 0.
(3.66)

where since 1 < B < 2, we have 0 < 2−B < 1 and −2 < B − 3 < −1.
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3.6 Finite cyclicity of (I2
17a) and (I2

18a)

Theorem 3.16. The graphics (I2
17a) and (I2

18a) have finite cyclicity.

Proof. Let us consider (I2
17a) and the sections as defined in Fig. 15.

1 1
R

Π
3

RD

R

2

D0

2Sλ

1Σ Σ

Figure 18: The transition maps for (I2
17a)

We consider the displacement map V : Σ2 −→ Σ1 given by Vλ(y) = Rλ(y) − Sλ(y)
as in Theorem. 3.12. As before we write the proof in the case a(0) irrational. For the
passage near the saddle-node at infinity we can suppose that the normal form is taken so
that the equator coincides with one coordinate axis. Then we can scale the normalizing
coordinates so that the graphic cuts a section Π transversal to the equator at a height
1 (Fig.18). The transition R2,λ(y) : Σ2 −→ Π can be taken as

R2,λ(y) = 1 + T1,λ(y)

where T1,0(0) = 0 and T ′1,λ(0) > 0.
We can choose the normalizing coordinates so that R3 is a linear map. Then the

displacement map has the form

Vλ(y) = R1,λ

(
(m1(λ)(1 + T1,λ(y)))

1
σ(λ)

)
− Sλ(y). (3.67)

Let

ỹ = m1(λ)
(
1 + T1,λ(y)

) 1
σ(λ)

.

Then

V ′
λ(y) = R′

1,λ(ỹ)m1(λ))
1

σ(λ)

(
1 + T1,λ(y)

) 1
σ(λ)

−1
T ′1,λ(y)− S′λ(y). (3.68)

For limit periodic sets of type Epp1 (resp. Epp3) V ′
λ(y) is nonzero (resp. large) yielding

cyclicity ≤ 1 as σ(λ) < 1.
For limit periodic set of type Epp2 we have S′λ(y) = ∗m2(λ)(1+O(νσ1)O(y)), where

* is a nonzero constant. Let

Wλ(y) =
V ′

λ(y)

(m1(λ))
1

σ(λ)
(
1 + O(νσ1)O(y)

) . (3.69)
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Then
W ′(y) = R′′

1,λ(ỹ)m1(λ)
1

σ(λ)
(
1 + T1,λ(y)

)2( 1
σ(λ)

−1)
T ′1,λ

2(y)

+1−σ(λ)
σ(λ) R′

1,λ(ỹ)(1 + T1,λ(y))
1

σ(λ)
−2

T ′1,λ
2(y)

+R′
1,λ(ỹ)(1 + T1,λ(y))

1
σ(λ)

−1
T ′′1,λ(y)

+O(νσ1).

The first and fourth terms are small as well as all their derivatives. Let us look at
the sum of the second and third terms. It is given by a nonzero function multiplied by:

Kλ(y) =
1− σ(λ)

σ(λ)
(T ′1,λ)2(y) + (1 + T1,λ(y))T ′′1,λ(y). (3.70)

For λ = 0 the equation K0(y) ≡ 0 can be integrated by quadratures. It is equivalent
to say that (1+T1,0(y))

1
σ(λ) is an affine map. Hence the proposition follows by finding a

nonzero derivative of W ′(y) as soon as we show that K0(y) has a nonlinear term, which
is equivalent to say that, at a finite order (1 + T1,0(y))

1
σ(λ) differs from an affine map.

We can choose analytic coordinates on Σ2 and Π. By the analytic extension principle
it suffices to verify the condition for graphics very close to the hemicycle. There the
transition map is the composition of a regular map together with a Dulac map for which
σ < 1 and a regular map with non-vanishing second derivative. This last property is
exactly the needed obstruction which guarantees that (1 + T1,0(0))

1
σ(0) differs from an

affine map.
Proving that the graphic (I2

18a) has finite cyclicity is completely similar.
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