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Abstract

In this paper we study equivalence classes of generic 1-parameter
germs of real analytic families Qε unfolding codimension 1 germs of
diffeomorphisms Q0 : (R, 0) → (R, 0) with a fixed point at the origin
and multiplier −1, under (weak) analytic conjugacy. These germs are
generic unfoldings of the flip bifurcation. Two such germs are ana-
lytically conjugate if and only if their second iterates, Pε = Q◦2

ε
, are

analytically conjugate. We give a complete modulus of analytic clas-
sification: this modulus is an unfolding of the Ecalle modulus of the
resonant germ Q0 with special symmetry properties reflecting the real
character of the germ Qε. As an application, this provides a complete
modulus of analytic classification under weak orbital equivalence for a
germ of family of planar vector fields unfolding a weak focus of order 1
(i.e. undergoing a generic Hopf bifurcation of codimension 1) through
the modulus of analytic classification of the germ of family Pε = Q◦2

ε
,

where Pε is the Poincaré first return map of the family of vector fields.

Résumé

Dans cet article, nous étudions la classification sous conjugaison
analytique (faible) des germes de familles analytiques génériques à
un 1 paramètre, Qε, déployant des germes de difféomorphismes Q0 :
(R, 0) → (R, 0) de codimension 1, ayant un point fixe à l’origine et de
multiplicateur −1. Ces germes sont des déploiements génériques de la
bifurcation de doublement de période. Deux germes sont analytique-
ment conjugués si et seulement si leurs itérés d’ordre 2, Pε = Q◦2

ε
, sont
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analytiquement conjugués. On donne un module complet de classifica-
tion analytique : ce module est un déploiement du module d’Écalle du
germe résonantQ0 avec des propriétés de symétrie reflétant le caractère
réel du germe Qε. Ceci donne, comme application, un module complet
de classification analytique sous équivalence orbitale faible pour un
germe de famille de champs de vecteurs du plan ayant une bifurcation
de Hopf générique de codimension 1 par le biais du module de classifi-
cation analytique du germe de famille Pε = Q◦2

ε
, où Pε est l’application

de premier retour de Poincaré de la famille de champs de vecteurs.

Contents

1 Introduction. 3

2 Preparation of the family. 5

3 The modulus of analytic classification. 7

3.1 The Ecalle modulus of Q0. . . . . . . . . . . . . . . . . . . . . 7
3.2 Glutsyuk point of view in the spherical coordinate. . . . . . . 9

4 Lifting of the dynamics. 11

4.1 The unwrapping coordinate. . . . . . . . . . . . . . . . . . . . 12
4.2 Glutsyuk point of view and translation domains. . . . . . . . 14
4.3 Conjugation in the Z coordinate. . . . . . . . . . . . . . . . . 18

5 Real Fatou Glutsyuk coordinates. 19

5.1 Construction of Fatou coordinates. . . . . . . . . . . . . . . . 19
5.2 Normalization of Real Fatou Glutsyuk coordinates. . . . . . . 24
5.3 Real Fatou Glutsyuk coordinates and translations. . . . . . . 26

6 Real and Symmetric Glutsyuk invariants. 30

6.1 Real Glutsyuk invariant: First Presentation. . . . . . . . . . . 31
6.2 Symmetric Glutsyuk invariant: Second Presentation. . . . . . 33

7 Invariants under weak conjugacy. 37

8 Application to the Hopf bifurcation. 39

9 Directions for future research. 40

10 Acknowledgements. 41

2



1 Introduction.

This paper is part of a program to study the analytic classification of
generic unfoldings of the simplest singularities of analytic dynamical sys-
tems. These dynamical systems can be germs of diffeomorphisms, in which
case we study classification under conjugacy, or germs of vector fields, in
which case we can study either classification under orbital equivalence or
under conjugacy.

The analytic classification of unfoldings of singularities follows the an-
alytic classification of the singularities themselves. The moduli of classifi-
cation for the simplest 1-resonant singularities have been given by Ecalle,
Voronin and Martinet-Ramis ([5], [19] and [12],[13]). Except for the case
of the node of a planar vector field, the modulus space is a huge functional
space, while the formal invariants are in finite number. This means that
there is an infinite number of analytic obstructions for the analytic equiva-
lence of two germs, that cannot be seen at the formal level.

These obstructions can be understood when first, one extends the un-
derlying space from R

n to C
n, n = 1, 2 and then, one unfolds the singularity.

Indeed, in the simplest 1-resonance cases, the singularity of the dynamical
system comes from the coallescence in a generic unfolding of the dynamical
system of a finite number of hyperbolic singularities or special hyperbolic
objects (like a periodic orbit or a limit cycle). Each hyperbolic object has
its own geometric local model, and the modulus measures the limit of the
mismatch of these local models. It is also a measure of the divergence of
the normalizing series to the formal normal form. Hence, if a singularity is
non equivalent to its formal normal form, then we should expect a mismatch
between the local models near the two hyperbolic objects in the unfolding.
This was the point of view suggested by Arnold and Martinet [11] and stud-
ied systematically by Glutsyuk [8] when the unfolding is considered only in
certain conic regions of the parameter space considered in complex space.
The treatment had to be adapted by Lavaurs and followers when the bifur-
cating objects were no more hyperbolic or when the domains of the local
models did not intersect.

As far as codimension 1 singularities are concerned, the case of a germ of
generic unfolding of a diffeormorphism with a double fixed point, also called
parabolic diffeomorphism has been studied in [4] and [10], and the case of
a germ of generic unfolding of a resonant diffeomorphism (one multiplier
being a root of unity) has been studied in [16] and [15]. Germs of generic
unfoldings of saddle-node (resp. resonant saddle) singularities of planar
vector fields have been studied in [17] (resp. [16]). All these papers consider
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the unfolding of the corresponding complex singularity. The paper [15] also
considers briefly the case of a saddle point of a real vector field. The modulus
of the unfolding is always constructed in the same way. The formal normal
form for the unfolding is identified and called the model family. The germ
of family is then compared to the formal normal form on special domains.
When one restricts to parameter values for which the special objects are
hyperbolic, then these domains are neighborhoods of the special objects.
For parameter values for which these neighborhoods intersect, the modulus
is given by the comparison of the two normalizations over the intersection of
the two domains. This is what is called the Glutsyuk point of view and the
corresponding modulus is called the Glutsyuk modulus. In the papers [16],
[4], [15] and [17], another point of view was used, called the Lavaurs point
of view. The Lavaurs point of view allows to give a modulus for all values
of the parameters. The domains on which we compare the germ of family
to the formal normal form (model family) are no more neighborhoods of the
special objects, but sectorial domains adjacent to two special objects. The
corresponding Lavaurs modulus depends in a ramified way on the parameter.
In particular, there are two different definitions of the Lavaurs modulus for
the parameter values for which the Glutsyuk modulus can be defined.

In this paper, we are concerned with the real character of a germ Qε of
an analytic family of diffeomorphisms with a flip bifurcation:

Qε(x) = −x(1− ε)± x3 + o(x3).

We study how this is reflected in the modulus. So, we are especially inter-
ested in the real values of the parameter. In particular, for nonzero values
of the parameter, we are in the Glutsyuk point of view. Hence, in this pa-
per, we have decided to make a profound analysis of the Glutsyuk modulus
for the case of the unfolding of a periodic diffeomorphism and to determine
how the real character of the diffeomorphism is reflected in the modulus.
For this reason, our study is restricted to the union of two sectors in the
(complexified) parameter space which do not cover a full neighborhood of
the origin. As an implication, we only obtain a modulus of classification
under weak orbital equivalence.

Our paper was initially motivated by the study of the Hopf bifurcation.
In [2], it is shown that two germs of analytic families of planar vector fields
with a generic Hopf bifurcation of order 1 are orbitally analytically equiva-
lent if and only if the germs of analytic families of their Poincaré maps are
conjugate. The (unfolded) Poincaré map is exactly a real diffeomorphism
Pε : (R, 0) → (R, 0), which is the second iterate of a semi-Poincaré map Qε
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with a flip bifurcation. Hence, through this result, the present paper pro-
vides a complete modulus of classification under weak orbital equivalence for
germs of families undergoing a generic codimension-one Hopf bifurcation.

2 Preparation of the family.

We consider a germ of codimension-one real analytic diffeomorphism Q0

with a fixed point at the origin and a multiplier equal to −1. Under scaling
of x and removing the x2-term by a normal form argument, such a germ of
diffeomorphism has the form

Q0(x) = −x∓ 1

2
x3 + ax5 + o(x5). (2.1)

A generic 1-parameter unfolding is a germ of family of diffeomorphisms

Qη(x) = Q(x, η) such that
∂2Q

∂x∂η
(0, 0) 6= 0.

It was shown in [16] that two generic families Qη unfolding germs of the
form (2.1) are conjugate if and only if their second iterate Pη = Q◦2

η are con-
jugate. One direction is obvious. The other direction, namely proving that
if the second iterates are conjugate, then the diffeomorphisms are also conju-
gate requires more work. The proof in [16] was done for complex germs. In
the case of real analytic germs a better proof of the other direction is given
in [2] for the case of families of real diffeomorphisms Qη. Indeed, given any
two generic families of real analytic diffeomorphims of the form Pη = Q◦2

η , it
is proved that they are realizable as Poincaré return maps of analytic vector
fields unfolding a weak focus, which are analytically orbitally equivalent (a
weak focus of a real vector field is a singular point with two pure imaginary
eigenvalues and which is not a centre). Considering their blow-up and the
holonomies of a well-chosen separatrix in the blow-up, these holonomies are
in turn conjugate ([9]). But these holonomies are nothing else than the cor-
responding diffeomorphisms Qη, so we will mainly discuss Pη .

Since the families Pη = Q◦2
η have real asymptotic expansion, then

Qη = C ◦ QC(η) ◦ C,
Pη = C ◦ PC(η) ◦ C,

(2.2)

where C is the standard complex conjugation x 7→ x. In this paper we
consider real analytic families unfolding codimension-one diffeomorphisms
of the form (2.1), and their second iterates. The following theorem is proved
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in [16] for a family of complex diffeomorphisms. Its proof can be adapted
to respect the real character of Qη. For the sake of completeness we include
the main steps here.

Theorem 2.1 Given a germ of diffeomorphims Q0 of the form (2.1) and a
germ of generic unfolding Qη, there exists a germ of real analytic change of
coordinate and parameter (x, η) 7→ (y, ε) conjugating the family Pη = Q◦2

η to
the prepared form

P̃ε(y) = y + y(ε±y2)(1 + b(ε) + a(ε)y2 + y(ε±y2)h(y, ε)), (2.3)

such that P̃ ′
ε(0) = exp(ε). In particular, the parameter ε is called canonical.

It is an invariant. The formal invariant A(ε) is defined implicitely through
the expression

P̃ ′
ε(±

√
−s ε) = exp

(
− 2 ε

1− sA(ε) ε

)
, (2.4)

where A(ε) is real analytic, and s = ±1 is an invariant defining two different
cases which are not equivalents by real conjugacy.

Proof. By the implicit function theorem we can suppose that x = 0 is
a fixed point for all η. By the Weierstrass-Malgrange preparation theorem,
the other two fixed points of Pη (which are periodic points of period 2 of Qη)
are the roots of pη(x) = x2+β(η)x+γ(η), with γ′(0) 6= 0 since the family is
generic. Because it is a flip bifurcation, the periodic points of Qη can only
coincide when they are equal to x = 0. Hence, β(η) ≡ 0. A reparametrization
allows to take γ(η) = ±η1. Then, the map Pη has the form

Pη1(x) = x+ x(η1 ± x2)(b1(η1) + c1(η1)x+ a1(η1)x
2 + x(η1 ± x2)g(x, η1)),

with b1(0) 6= 0. Since the fixed points ±√
η1 are periodic points of Qη1 of

order 2, then P ′
η1
(
√
η1) = P ′

η1
(−√

η1). Hence, c1(η1) ≡ 0. Then P ′
η1
(0) =

1 + η1b1(η1) with b1(0) 6= 0. An analytic change of parameter η1 7→ ε allows
to suppose that P ′

ε(0) = exp(ε). A corresponding scaling in x (replacing x
by y = c(ε)x) allows to suppose that the fixed points of Pε are given by
y(ε±y2) = 0 and yields the prepared form. The analyticity of A(ε), defined
in (2.4), is well known and its real character is straightforward. �

From now on, we will limit ourselves to prepared families Qε such that
Pε = Q◦2

ε has the form

Pε(x) = x+ x(ε+sx2)(1 + b(ε) + a(ε)x2 + x(ε+sx2)h(x, ε)), (2.5)
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where s = ±1. We will mostly discuss the case s = +1. In particular, all
the figures will be drawn only for this case. The case s = −1 is obtained
through

x 7→ ix.

This non-real change of coordinates exchanges the real and imaginary axes.

Strategy. The formal normal form of Pε (also called “model family”) is the
time-one map τ1ε of the vector field

vε(x) =
x(ε+sx2)

1 +A(ε)x2
∂

∂x
, (2.6)

where A(ε) is defined in (2.4). Notice that the real axis is invariant for real
ε . In order to compute the modulus of analytic classification of the Poincaré
map, we compare it with τ1ε over specific sectorial domains of the parameter
space.

3 The modulus of analytic classification.

In order to solve the conjugacy problem for germs of families of analytic
diffeomorphisms (2.5), a complete modulus of analytic classification must
be identified, so that two germs of families of analytic diffeomorphisms are
analytically conjugate if and only they have the same modulus (Theorem
7.3). We shall see that this modulus is an unfolding of the Ecalle modulus
for the germ of diffeomorphism at ε = 0, and so we recall the Ecalle modulus.

3.1 The Ecalle modulus of Q0.

Two germs of analytic diffeomorphisms of the form (2.1) with same sign
before the cubic coefficient are real analytically conjugate if and only if they
have the same formal invariant A(ε) and the same orbit space. The Ecalle
modulus is one way to describe the orbit space. To explain its construction
we first remark that the diffeomorphism Q0 is topologically like the compo-
sition of x 7→ −x with the time-1/2 map of the vector field (2.6), whose flow
lines appear in Figure 1, while the diffeomorphism P0 is topologically like
the time-1 map of (2.6). So, we take a first fundamental domain (for P0)
C+
1 limited by a curve ℓ1 and its image P0(ℓ1). If we identify x ∈ ℓ1 with its

image P0(x), the fundamental domain is conformally equivalent to a sphere
S
+
1 . The ends of the crescent C

+
1 limited by ℓ1 and P0(ℓ1) correspond to the
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P0(x)

C−
1

C−
1

s = +1 s = −1

C+
2

C+
2

C−
2

C−
2

C+
1

C+
1

∞∞

∞∞

00

0 0

ψ∞
1,0

ψ0
2,0

ψ∞
2,0

ψ0
1,0

S
+
1 S

−
1

S
+
2S

−
2

Figure 1: The flow of (2.6) in the cases s = ±1 and the Ecalle modulus of Q0.

points 0 and ∞ on the sphere. All orbits of P0 (except that of 0) are rep-
resented by a most one point of the sphere S+1 . However, there exists points
in the neighborhood of 0 whose orbits have no representative on the sphere
S
+
1 . To cover the whole orbit space we need to take three other fundamental

neighborhoods C−
1 , C

+
2 , C

−
2 limited by curves ℓj and their images P0(ℓj),

j = 2, 3, 4, respectively. As before, we identify x ∈ ℓj with its image P0(x)
and the union of these fundamental domains is also conformally equivalent
to a union of spheres S−1 ,S

+
2 ,S

−
2 . But there are points in the neighborhood

of 0 (resp. ∞) which lie in different spheres but belong to the same orbit. So
we need to identify a neighborhood of 0 (resp. ∞) with a neighborhood of 0
(resp. ∞) in two different spheres. This is done via a collection of analytic
diffeomorphisms ψ0

1 , ψ
0
2 (resp. ψ∞

1 , ψ
∞
2 ) sending 0 to 0 (resp. ∞ to ∞), so

that we get a non-Hausdorff topological manifold endowed with a system of
analytic charts given by the collection of spheres glued at the poles by the
maps ψ0

j and ψ∞
j . The size of the neighborhoods of 0 and ∞ depends on the

size of the neighborhood of the origin where P0 is defined, but the germs of
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analytic diffeomorphims:

ψ0
1 , ψ

0
2 : (C, 0) → (C, 0)

ψ∞
1 , ψ

∞
2 : (C,∞) → (C,∞)

are almost intrinsic as maps in the sphere w-coordinate. Indeed, the only
analytic changes of coordinates on the spheres S±j preserving 0 and∞ are the

linear maps. If we choose different coordinates on S
±
j we get different germs

(ψ̂0
j , ψ̂

∞
j ). The equivalence relation corresponding to changes of coordinates

on S
±
j and preserving 0 and ∞ is given by

(ψ0
1 , ψ

0
2 , ψ

∞
1 , ψ

∞
2 ) ∼ (ψ̂0

1 , ψ̂
0
2 , ψ̂

∞
1 , ψ̂

∞
2 ) ⇐⇒ ∃ C±

1 , C
±
2 ∈ C :

{
ψ̂0
1(w) = (C−

2 )−1 · ψ0
1(C

+
1 · w),

ψ̂0
2(w) = (C−

1 )−1 · ψ0
2(C

+
2 · w),

{
ψ̂∞
1 (w) = (C−

1 )−1 · ψ∞
1 (C+

1 · w),
ψ̂∞
2 (w) = (C−

2 )−1 · ψ∞
2 (C+

2 · w).

The identity P0 = Q◦2
0 is reflected by the fact that it is possible to choose

representatives of the modulus such that
{
ψ0
2(−w) = −ψ0

1(w),
ψ∞
2 (w) = −ψ∞

2 (w)

(see Lemma 6.2 for a proof in the unfolded case).

Definition 3.1 The Ecalle-modulus of the diffeomorphism P0 is given by
the tuple (ψ0

1 , ψ
0
2 , ψ

∞
1 , ψ

∞
2 ), modulo the equivalence relation ∼ .

Over a small neighborhood Dr of the origin (where Dr is the standard radius-
r open disk of the complex plane), the dynamics of P0 is given along the
flow curves of the field (2.6). All the study of the family Pε will be done
over that fixed neighborhood U = Dr for sufficiently small values of ε .

3.2 Glutsyuk point of view in the spherical coordinate.

If δ ∈ (0, π/2), we define sectorial domains in the universal covering of
the the parameter space, see Figure 2:

Vδ,l = {ε ∈ C : | ε | < ρ, arg(ε) ∈ (
π

2
+ δ,

3π

2
− δ)}

Vδ,r = {ε ∈ C : | ε | < ρ, arg(ε) ∈ (−π
2
+ δ,

3π

2
− δ)}

(3.1)

and ρ is a small real number depending on δ. We assume that 0 ∈ Vδ,lr and
denote

V ∗
δ,lr = Vδ,lr\{0}.
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The number ρ is chosen so that for values ε ∈ Vδ,lr, there exist orbits connect-
ing the fixed points in U. In this case, we say that we work in the Glutsyuk
point of view (Figure 3). When s = +1, it is clear that:

– If ε ∈ V ∗
δ,l, the origin is an attractor and the two real singular points

x± = ±
√
− ε are repellers in U.

– If ε = 0, the origin is the only (non-hyperbolic) fixed point.
– If ε ∈ V ∗

δ,r, the origin is a repeller and two additional imaginary at-
tracting singular points are created in U.

Vδ,l Vδ,r

Figure 2: Sectorial domains for the parameter.

For ε ∈ V ∗
δ,lr, the family of diffeomorphisms Pε can be conjugated to the

time-one map τ1ε of the field (2.6) in the neighborhoods of each singular
point, whose union is Dr. The modulus measures the obstruction to get a
conjugacy on the full neighborhood Dr in the x-space. The vector field (2.6)
has singular points x0 = 0, with eigenvalue µ0(ε) = ε, and x± = ±

√
−s ε

with eigenvalues:

µ±(ε) =
−2 ε

1− sA(ε) ε
. (3.2)

Notice that µ0 and µ± are analytic invariants of (2.6), which also depend
analytically on ε . It follows that ε and A(ε) are analytic invariants of the
field (2.6). The multipliers of the time-one map τ1ε of vε are λj = eµj ,
i.e. they are precisely the multipliers of the fixed points of Pε. For ε ∈
V ∗
δ,lr, in order to compare Pε with the model diffeomorphism τ1ε we compare

their orbit space. The orbit space of Pε is obtained by taking 3 closed
curves {ℓ0, ℓ+, ℓ−} around the fixed points, and their images {Pε(ℓ#)} where
# ∈ {0,+,−}. Since the fixed points are hyperbolic, the closed regions
{C#} between the curves and their images are isomorphic to three closed
annuli. We identify ℓ# ∼ Pε(ℓ#). Then the quotient C#/ ∼ will be shown
to be a conformal torus. Hence, the orbit space turns out to be a non-
Hausdorff space conformally equivalent to a quotient of the union of three
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S
−
1

S
+
1

S
−
2

S
+
2

ε = 0

ψ02 ψ∞1

ψ∞2 ψ01

ε < 0

T0
ε

T∞
1,ε

ψG2,ε ψG1,ε

ψG2,ε ψG1,ε

ε > 0

ψG1,ε ψG1,ε

ψG2,ε ψG2,ε

T∞
2,ε

T∞
2,ε

T∞
1,ε

T0
ε

Figure 3: The orbit space of the Poincaré map.

tori T0
ε,T

∞
1,ε,T

∞
2,ε plus the three singular points (which represent the orbit

space of the hyperbolic fixed points), such that
– each orbit has at most one point in each torus,
– each orbit is either a fixed point or is represented in a torus,
– some orbits may have representatives in two different tori.

The Glutsyuk modulus consists in this identification of orbits. For this, we
need to introduce (almost) intrinsic coordinates on the tori. One way to in-
troduce coordinates on a torus T is to consider the latter as a quotient T =
C
∗/LC (where LC(x) = Cx is the linear map) for some C ∈ C

∗. Then a nat-
ural coordinate on T is the projection of a coordinate on C

∗ = CP
1\{0,∞},

i.e. a “spherical” coordinate. In toric coordinates, the identification of orbits
in two tori induce germs of families of analytic diffeomorphisms

ψG
j,ε : C

∗ 7→ C
∗

for j ∈ {1, 2}, see Figure 3, such that ψj,ε◦LC1 = LC2 ◦ψj,ε if ψj,ε represents
a map from T1 = C

∗/LC1 to T2 = C
∗/LC2 .

4 Lifting of the dynamics.

Fatou coordinates were introduced in 1920 by former P. Fatou ([6]). They
are changes of coordinates which allow to transform the prepared family Pε

into the “model family” τ1ε over the sectorial domains (3.1). We construct a
special kind of Fatou coordinates: we show that it is possible to choose them
respecting the real character of Pε. This choice yields a symmetry property
on the Glutsyuk invariant in the unfolding.
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Although we want to compare the map Pε with its normal form, which is
the time-one map of the vector field (2.6), it has been shown (cf. Shishikura
[18]) that it is natural to change to the time coordinate of the simpler vector
field

ẋ = x(ε+sx2),

which is a “small deformation” of (2.6) over Dr.

4.1 The unwrapping coordinate.

From now on, the parameter belongs to either of the Glutsyuk sec-
tors (3.1). Consider the “unwrapping” change of coordinates pε : Rε →
U\{x0, x±} defined by:

x = pε(Z) =





( s ε

se−2 εZ − 1

) 1
2
, for ε 6= 0,

(
− s

2Z

) 1
2
, for ε = 0,

(4.1)

where Rε is the 2-sheeted Riemann surface of the function (see Figure 4)





(1− se−2 ε Z

s ε

) 1
2
, for ε 6= 0,

(
sZ

2
)
1
2 , for ε = 0,

and s = ±1 is the sign of the third order coefficient of the family (2.5).
Notice that for all ε ∈ Vδ,lr, the map pε is periodic with period

α(ε) := − iπ
ε
, (4.2)

that is,

pε(Z) = pε(Z − k
iπ

ε
), k ∈ Z. (4.3)

By (4.3), the image p◦−1
ε (U = Dr) consists in the Riemann surface Rε minus

a countable number of holes. The smaller the radius of U, the larger the

radius of such holes (of order
1

2r2
). Notice that the distance between two

consecutive holes, for ε 6= 0, is equal to (4.2). Define the liftings:

Pε := p−1
ε ◦ Pε ◦ pε,

Qε := p−1
ε ◦ Qε ◦ pε.

(4.4)
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P±

P 0

Pε

Bε

Figure 4: The surface Rε, domain of the lifting Pε.

By (4.3), the families Pε,Qε are defined on Rε minus the countable collec-
tion of holes. The dynamics of the lifting goes always from left to right on
Rε. We denote P 0 and P± the points at infinity located in the direction
orthogonal to the line of holes, in such a way that their images by pε be
equal to x0 = 0 and x± = ±

√
−s ε, respectively:

P 0 = p◦−1
ε (x0),

P± = p◦−1
ε (x±).

(4.5)

In a neighborhood of the points P± (there are two such points, in correspon-
dence with the leaves of Rε) the two sheets go to different singular points
in the x-coordinate, while on the side of P 0 both sheets go to the origin, see
Figure 4.

Definition 4.1 For any complex number Z∞ ∈ C whose imaginary part is
of order ∼ |α| in a neighborhood of P±, we define the translation in TZ∞ :

TZ∞(·) = Z∞ + ·. (4.6)

By (4.3), the sequence of equidistant holes can be denoted as:

{T ◦k
α(ε)(Bε)}k∈Z, (4.7)

where T 0
α(ε)(Bε) = Bε corresponds to the integer k = 0. It will be called the

principal hole, and we will write:

Ûε := p◦−1
ε (U) = Rε\

⋃

k∈Z

T ◦k
α(ε)(Bε) (4.8)

the domain for the dynamics of Pε,Qε. By connexity, the translation (4.6)
can be analytically extended along the leaves of Rε to all Z in a neighbor-
hood of the point P 0, see Figure 5. The extension is noted TZ∞ as well.
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P±

P 0
Z0

Figure 5: Analytic extension of Tα to a neighborhood of P 0, when ε > 0.

We shall use specific values for Z∞, the first one being α, defined in (4.2).
Indeed, the families Pε and Qε commute with Tα :

Pε ◦ Tα = Tα ◦Pε,
Qε ◦ Tα = Tα ◦Qε

(4.9)

along the leaves of Rε. Indeed, they do so near P±. Since Tα is globally
defined in Rε by analytic continuation, they do so everywhere. Moreover,
for small ε, Pε is close to T1 :

Proposition 4.2 [10] There exist K > 0 and B > 0, such that for Z and ε
small, one has

|Pε(Z)− Z − 1| < KB,

|P′
ε(Z)− 1| < KB2,

(4.10)

where B depends on the size of the neighborhood Dr of the point x = 0.

Notice that the inverse p◦−1
ε of the change (4.1) is the multivalued function:

Z = p◦−1
ε (x) =





1

2 ε
log

( x2

ε+sx2

)
, for ε 6= 0,

− s

2x2
, for ε = 0,

(4.11)

where log(·) is the principal branch of the logarithm.

4.2 Glutsyuk point of view and translation domains.

We discuss the case s = +1. We will denote

ℜ± = p◦−1
ε (R±),

ℑ± = p◦−1
ε (iR±).

(4.12)
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By (4.3), there is a countable number of such semi-infinite segments on Rε,
and by (4.11), ℜ+ and ℜ− lie on the same side of Rε, but in different leaves.
The same holds for ℑ+ and ℑ−, see Figure 6. The half-lines (4.12) are
organized differently in the cases ε ≤ 0 and ε > 0.

ε < 0 ε = 0 ε > 0

ℜ−

ℑ∞
±ℑ±

ℑs−
ℜ−

ℜ+ℜ− ℜ−ℜ∞
−

ℑ∞
±

ℑ∞
±

P 0

P 0 P±

P±

ℜ∞
+

P 0 = P±

ℑs+
ℜ+ ℑ±Bε BεBε

ℜ∞
+

ℜ∞
+ ℑ±

ℑ±

ℜs+

ℜs+

Figure 6: The choice of the cuts on Rε for real values of the parameter.

Should the parameter be negative, the location of the fixed points in the
x coordinate yields the decomposition

ℜ± = ℜs
± ∪ ℜ∞

±

on Rε, where ℜs
± is the image by p◦−1

ε of the straight real segment joining
0 and x±, and ℜ∞

± is the image by p◦−1
ε of the straight real segment joining

x± and the boundary of the neighborhood U in the x coordinate. Again,
one has a countable number of such segments ℜs,∞

± at distance α(ε) from
each other in the Z coordinate. The cuts are located along the half-lines
ℑ±. The half-lines ℜ∞

± ,ℑ± intersecting the principal hole Bε will be noted

ℜ̂± and ℑ̂±, respectively.
In the case ε = 0, there are four half-lines ℜ± and ℑ± in the Z coordinate.

They will be noted ℜ̂± and ℑ̂±, respectively. The “hat” means that they
intersect the hole B0. The cuts are located along ℑ̂±.

For positive values of the parameter, on the contrary, the image of the
imaginary axis by the map p◦−1

ε consists in the union

ℑ± = ℑs
± ∪ ℑ∞

±

on Rε, where ℑs
± is a countable collection consisting of the image of the

straight imaginary segment joining 0 with x±, and ℑ∞
± is an infinite collec-

tion consisting of the image of the straight imaginary segment joining x±

15



and the boundary of the neighborhood U in the x coordinate. The cuts of
Rε are located along the half-lines ℑ∞

± . The half-lines ℜ±,ℑ∞
± intersecting

the principal hole Bε will be noted ℜ̂± and ℑ̂±, respectively.

Definition 4.3 The distinguished line ℜ̂± is called the symmetry axis in
the Z coordinate.

Translation domains. Given any δ > 0, there exists ρ > 0 such that
for | ε | < ρ, there exists an orbit of the lifting Pε connecting P 0 with P±.
In such a case, we say that we are in the “Glutsyuk point of view” of the
dynamics.

A slanted line ℓ ⊂ Rε, such that the image Pε(ℓ) is placed on the right
of ℓ and the strip Ĉε(ℓ) between ℓ and Pε(ℓ) belongs to p◦−1

ε (U), is called
an admissible line.

Ĉε(ℓ) P±

P 0

Q0
+,ε

ℓ Pε(ℓ)

Figure 7: A translation domain Q0
+,ε

and an admissible strip on it.

Let ℓ be an admissible line for Pε. The translation domain associated to
ℓ is the set

Qε(ℓ) = {Z ∈ Ûε : ∃n ∈ Z,P◦n
ε (Z) ∈ Ĉε(ℓ),∀i ∈ {0, 1, ..., n},P◦i

ε (Z) ∈ Ûε}.

In the Glutsyuk point of view, the admissible strips are placed parallel to
the line of holes, i.e. according to the α(ε) direction of the covering transfor-
mation Tα(ε). The induced translation domains, called Glutsyuk translation

domains, are noted Q∞
ε and Q0

ε according to whether they contain a neigh-
borhood of P± or P 0, respectively, see Figure 7. Among other properties,
Qε(ℓ) is a simply connected open subset of Ûε; the region Ĉε(ℓ)\{ℓ} is a fun-
damental domain for the restriction of Pε to Qε(ℓ) : each Pε-orbit in Qε(ℓ)
has one and only one point in this set. For values of ε in Vδ,lr, there exist
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four different Glutsyuk translation domains Q0,∞
±,ε in the Z-space, which are

defined, depending on the sign of ε ∈ R, as follows, see Figure 8.

a) If ε < 0, then Q∞
±,ε is a simply connected neighborhood of P± con-

taining all the segments ℜs
±, while Q

0
±,ε is a simply connected neigh-

borhood of P 0 containing the distinguished half-line ℑ̂±.

b) If ε > 0, then Q∞
±,ε is a simply connected neighborhood of P± con-

taining all the segments ℑs
±, while Q

0
±,ε is a simply connected neigh-

borhood of P 0 containing the distinguished half-line ℜ̂±.

Q0
+,ε

Q0
+,ε Q∞

+,ε

Q∞
+,ε

ℑs+

ℑs+

P 0

P 0 P+

P+

ℜ̂+

ε > 0ε < 0

ℑ̂+
ℜs+

ℜs+

Figure 8: The translation domains Q0,∞

+,ε
.

Lemma 4.4 The translation Tα satisfies:

Tα(Q
0
±,ε) = Q0

∓,ε,

Tα(Q
∞
±,ε) = Q∞

±,ε.
(4.13)

Proof. The second is clear, by definition: Tα is formerly defined in a
neighborhood of the point P± along the leaves of Rε, thus leaving invariant
the translation domains Q∞

±,ε. On the other hand, the first equality is cer-
tainly true because all the possible paths defining the analytic extension of
Tα to a neighborhood of P 0 must be contained in Q∞

±,ε. Let us consider for

instance Q0
+,ε above the principal hole. It intersects Q

∞
+,ε and because of the

definition of Tα, when we apply Tα (resp. T−α) we are below the principal
hole if ε > 0 (resp. ε < 0). In that region Q∞

+,ε intersects Q0
−,ε. Thus, each

translation domain Q∞
±,ε shares a common region with a translation domain

of the kind Q0
±,ε. The conclusion follows. �
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4.3 Conjugation in the Z coordinate.

Choose Z on Rε and fix any simple arc Γ joining Z with the axis of
symmetry ℜ̂, and let γ be its image under the map pε : γ = pε(Γ). Consider
the reflection γ of the path γ with respect the real axis R in the x coordinate.
Then define

Γ := p◦−1
ε (γ).

Definition 4.5 The path Γ is well defined and is called the reflection of the
arc Γ with respect to the axis of symmetry ℜ̂ in the Z coordinate, see Figure
9. The starting point of Γ is called the conjugate of Z, and is noted ∁(Z).

The conjugation Z 7→ ∁(Z) is well defined: its definition is independent of
the arc Γ. Indeed, if Γ+ is any simple path joining Z with the semi-axis of
symmetry ℜ̂+ in the Z coordinate, then the reflection of the arc Γ+ with
respect to ℜ̂+ induces a map

Z 7→ ∁+(Z)

along the leaves of ℜ, which is independent of the free homotopy class with
endpoint on ℜ̂+. Choose now any simple arc Γ− joining the point Z with
the semi-axis of symmetry ℜ̂−. The reflection of the arc Γ− with respect to
ℜ̂− induces in turn a map

Z 7→ ∁−(Z).

Then, it is easily seen that ∁+(Z) = ∁−(Z). Indeed, the arc Γ+ induces a
path γ+ in the x coordinate whose reflection γ+ with respect the real axis
starts at the same starting point as the reflection γ− of the path γ− induced
by the arc Γ− in the x coordinate, see Figure 9.

γ+

γ+

w

w

γ−

γ−

w− w+ℜ̂+ Rℜ̂−
∁(Z)

Z

Figure 9: The conjugation in the Z coordinate.
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It becomes clear by definition that:

∁ ◦ ∁ = id (4.14)

for real values of the parameter. Moreover, the families Pε and Qε are
invariant under the conjugation in the Z coordinate when ε ∈ R :

Pε = ∁ ◦Pε ◦ ∁,
Qε = ∁ ◦Qε ◦ ∁ .

(4.15)

5 Real Fatou Glutsyuk coordinates.

5.1 Construction of Fatou coordinates.

Theorem 5.1 For values of the parameter in Vδ,lr it is possible to construct

four different changes of coordinates W = Φ0,∞
±,ε,lr(Z) defined on Rε and

called Fatou coordinates, conjugating Pε with the translation by one:

Φ0,∞
±,ε,lr(Pε(Z)) = Φ0,∞

±,ε,lr(Z) + 1, (5.1)

for every Z ∈ Q0,∞
±,ε,lr∩P◦−1

ε (Q0,∞
±,ε,lr). These change of coordinates (see Figure

12) are associated with translation domains Q0,∞
±,ε,lr whose admissible strips

in Rε lie in a direction parallel to the line of the holes T ◦k
α(ε)(Bε). Moreover,

if we let W 7→ C(W ) :=W be the complex conjugation in the W coordinate,
then it is possible to construct these maps so that:

– For (real) negative values of the parameter they are related through:

Φ0
±,ε,l = C ◦Φ0

∓,ε,l ◦ ∁,
Φ∞
±,ε,l = C ◦Φ∞

±,ε,l ◦ ∁ .
(5.2)

– For (real) positive values of ε they satisfy:

Φ0
±,ε,r = C ◦Φ0

±,ε,r ◦ ∁,
Φ∞
±,ε,r = C ◦Φ∞

∓,ε,r ◦ ∁ .
(5.3)

Proof. The construction of the coordinates exists in the literature ([16])
but we wish to show additionally (5.2) and (5.3). So we will describe the
construction when the parameter is real. Let Qε(ℓ) be a translation do-
main generated by an admissible line ℓ on the left side of the holes (real
parameter). Thus, ℓ and the axis of symmetry ℜ̂ are perpendicular. This
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ℓ

ℜ̂
Qb

Qa

Z∗

Figure 10: The distinguished curve ℜ̂ separates the translation domain.

distinguished line ℜ̂ separates the translation domains Qε(ℓ) in two con-
nected symmetric regions Qa (the one above ℜ̂) and Qb (the one below ℜ̂),
see Figure 10.

Then Equation (4.15) yields:

Pε(ℜ̂) ⊂ ℜ̂. (5.4)

Let us write Z∗ = ℓ ∩ ℜ̂. Notice that points of ℓ can be written as Z∗ + iY
for Y ∈ R. Put C0 := {(X,Y ) ∈ R

2 : 0 ≤ X ≤ 1} and define fε : C0 → Ĉ(ℓ)
as the convex combination

fε(X + iY ) = (1−X)(Z∗ + iY ) +XPε(Z
∗ + iY ),

which can be extended to all of C by asking that it commutes with T1. It is
shown ([16]) that for Z = X + iY,

∣∣∣∣
∂fε

∂Z

/∂fε
∂Z

∣∣∣∣ < 1,

so fε is a quasi-conformal map onto the strip Ĉ(ℓ) and it satisfies f−1
ε (Pε(Z)) =

f−1
ε (Z) + 1 for every Z ∈ ℓ. If we identify ℜ̂± with R±, then fε sends the
interval [0, 1] into a real interval [Z∗,Pε(Z

∗)] and then the function defined
as

µ := f∗ε µ̂0

(the pullback of the standard conformal structure µ̂0 of C on the strip C0,
defined by the 0 function) is a real measurable function which verifies (due
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to (5.4)):

µ(Z) = µ(Z)

because of the symmetry of its domain (Schwarz reflection principle). The
field µ is defined on C0 and it is extended to all of C by µ = (T ◦n

1 )∗µ
on {Z = X + iY : −n ≤ X ≤ −n + 1}, so the extended µ has norm
||µ||L∞(C) < 1 and it is periodic of period 1. Thus, it is a Beltrami field on

C still verifying µ(Z) = µ(Z) for all Z ∈ C. The Ahlfors-Bers Theorem ([1])
yields the existence of a unique quasi-conformal map gµ : C → C normalized
to gµ(0) = 0, with complex dilatation µ, i.e. satisfying the Beltrami equation

gµ
Z

/
gµZ = µ,

that leaves 0, 1,∞ fixed, and such that µ = (gµ)∗µ̂0. In addition, gµ com-
mutes with the translation T1 ([16]). Indeed, the homeomorphism G :=
gµ◦T1◦gµ◦−1 induces the identity on the sphere S2 and must thus, be a power
of the deck transformation T1 of the universal covering map E(·) = e−2iπ(·),
namely: G = T ◦m

1 for some m ∈ Z. But G(0) = gµ ◦ T1(0) = gµ(1) = 1,
which implies m = 1 and then G = T1. Since

C ◦ (gµ)Z
(gµ)Z

◦ C = C ◦ µ ◦ C = µ

and as C ◦ (gµ)Z ◦ C = (C ◦ gµ ◦ C)Z and C ◦ (gµ)Z ◦ C = (C ◦ gµ ◦ C)Z , the
map C ◦ gµ ◦ C is another solution to the Beltrami equation, leaving the

same points 0, 1,∞ fixed. By unicity of the solution, gµ(Z) = gµ(Z) for all
Z ∈ C. We define then φ : Ĉ(ℓ) → C by

φ = gµ ◦ f◦−1
ε .

If Z ∈ ℓ one has T1 ◦ φ(Z) = φ ◦ Pε(Z) (because both gµ and fε commute
with T1) whence follows that φ can be extended in a map Φε : Q → C by

Φε(Z) = φ ◦P◦n(Z)
ε − n(Z) (5.5)

where n(Z) ∈ Z is such that P◦n(Z)
ε (Z) ∈ Ĉ(ℓ). The map Φε is a holo-

morphic diffeomorphism which depends analytically on the parameter and
which verifies Φε ◦Pε = T1 ◦Φε. Since φ(ℜ̂) ⊂ R, we get

Φε(ℜ̂) ⊂ R (5.6)

when the parameter is real. In addition, Z ∈ dom(Φε) yields ∁(Z) ∈
dom(Φε), by definition of ∁ . Notice that in the case ε < 0 we have ℜ̂± ⊂
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Q∞
±,ε, while if ε > 0, ℜ̂± ⊂ Q0

±,ε (i.e. translations domains “on the right” do

not contain the symmetry axis ℜ̂, see Figure 8). Accordingly, if ε < 0 the
diffeomorphism (5.5) is noted Φ∞

±,ε : Q
∞
±,ε → C, and (5.6) yields

Φ∞
±,ε,l = C ◦ Φ∞

±,ε,l ◦ ∁ .

On the other hand, if ε > 0 the diffeomorphism (5.5) is noted Φ0
±,ε : Q

0
±,ε →

C and the invariance (5.6) implies

Φ0
±,ε,r = C ◦ Φ0

±,ε,r ◦ ∁ .

For the case of a translation domain on the right, we first construct Φ0
+,ε,l

(when ε < 0) or Φ∞
+,ε,r (when ε > 0), and note that C ◦ Φ0

+,ε,l ◦ ∁ (resp.
C ◦ Φ∞

+,ε,r ◦ ∁) is again a Fatou coordinate when ε < 0 (resp. when ε > 0).
Then we define

Φ0
−,ε,l = C ◦Φ0

+,ε,l ◦ ∁
for ε < 0, and

Φ∞
−,ε,l = C ◦Φ∞

+,ε,r ◦ ∁
if ε > 0 and the construction is done. �

Q∞
+,ε ∩Q0

+,ε

Q∞
+,ε ∩Q0

+,ε

Q∞
+,ε ∩Q0

−,ε

Q∞
+,ε ∩Q0

−,ε

P 0

P 0 P±

P±

Q0
+,ε ∩Q∞

−,ε

Q0
+,ε ∩Q∞

−,ε

Q0
+,ε ∩Q∞

+,ε

Q0
+,ε ∩Q∞

+,ε

ε > 0

BεBε

ε < 0

Figure 11: The non-connected intersection of the translation domains.

Definition 5.2 Fatou coordinates in Theorem 5.1 are called admissible Real
Fatou Glutsyuk coordinates. Theorem 5.1 shows that the symmetry axis ℜ̂
is invariant under Real Fatou coordinates when the parameter is real.
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Remarks.

1. Although Real Fatou Glutsyuk changes of coordinates always exist for
ε ∈ Vδ,lr, the curve ℜ̂ is not invariant if ε /∈ R.

2. The subscripts l, r will be dropped when the context allows no confu-
sion.

3. As we will see, the modulus compares the Fatou coordinates on the left
and on the right over the intersection of the left and right translations
domains. If ε 6= 0, the geometry of Rε yields that the intersection of
right and left translations domains is composed of a countable alter-
nating sequence of horizontal strips, see Figure 11.

Φ∞
+,ε

Φ∞
−,ε

Φ0
+,ε

Φ0
−,ε

Φ0
−,ε

Φ0
+,ε

Φ0
+,ε

Φ0
−,ε

Φ∞
+,ε

Φ∞
−,εℜ̂+ℜ̂+

Φ∞
−,ε

Φ∞
+,ε

ε > 0

BεBε

ε < 0

Figure 12: The Real Glutsyuk coordinates around the principal hole.

The remark above yields the organization of the domains of definition for
the different Real Glutsyuk coordinates. Due to periodicity, it suffices to
describe only these domains around the fundamental hole Bε, see Figure 12.

Proposition 5.3 If Φ1
ε and Φ2

ε are two Fatou Glutsyuk coordinates solving
(5.1) on the same translation domain, then there exists Cε ∈ C, such that

Φ2
ε(Z) = Cε +Φ1

ε(Z).

In particular, for every Z0(ε) ∈ Rε there is a unique Fatou coordinate Φε

satisfying Φε(Z0(ε)) = 0. Also, it is possible to construct admissible Real
Fatou Glutsyuk coordinates in Theorem 5.1 so that they depend analytically
on ε ∈ Vδ,lr and so that they have the same limit at ε = 0.

Proof. Since Φ1
ε,Φ

2
ε satisfy (5.1) they are related by Φ2

ε ◦(Φ1
ε)

◦−1(Z+1) =
Φ2
ε ◦ (Φ1

ε)
◦−1(Z) + 1, whence the composition Φ2

ε ◦ (Φ1
ε)

◦−1 is a translation
TCε . Besides, it suffices to take the base point Z0(ε) depending analytically
on ε and with continous limit at ε = 0. �
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The choice of the base point Z0(ε) provides a degree of freedom in the
choice of the Fatou Glutsyuk coordinate. Since there are four Fatou Glut-
syuk coordinates we have four degrees of freedom. Later, we shall use 3 of
these degrees of freedom to “normalize” these Fatou coordinates. We will
take the normalizations on Vδ,l and Vδ,r in such a way that we will get the
same limit at ε = 0.

5.2 Normalization of Real Fatou Glutsyuk coordinates.

The family Pε is, by definition, the second iterate of a family of germs
of diffeomorphisms Qε unfolding the map Q0, which is tangent to −id. This
implies that the orbits of the family Qε form a 180◦-degrees alternating
sequence along the orbits of the prepared family of fields at each iteration
(i.e. the points w and Qε(w) stand on opposite sides of the origin, see Figure
13). In other words, the lifting Qε exchanges the two leaves.

w

Q(w)

Figure 13: The “jumps” of the orbits of Q in the case ε = 0.

The fact that the family of diffeomorphisms Pε is a square (namely, Pε =
Q◦2

ε ) is now exploited. For every W = Φε(Z), the map:

TW (·) =W + · (5.7)

is called the translation in W ∈ C.

Lemma 5.4 For each ε ∈ V G
δ , it is possible to construct admissible Real Fa-

tou Glutsyuk coordinates depending analytically on ε ∈ Vδ,lr, with continuous
limit at ε = 0 and such that they are related through:

Φ0
±,ε ◦Qε = T 1

2
◦Φ0

∓,ε,

Φ∞
±,ε ◦Qε = T 1

2
◦Φ∞

∓,ε.
(5.8)
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Proof. For each ε, the map Qε commutes with Pε. Hence Qε = p−1
ε ◦Qε ◦

pε commutes with Pε. Let the pairs of Real Fatou Glutsyuk coordinates
Φ0,∞
+,ε ,Φ

0,∞
−,ε be constructed as in the proof of Theorem 5.1. Then:

Φ0,∞
±,ε (Pε(Qε(Z))) = Φ0,∞

±,ε (Qε(Z)) + 1 = (Φ0,∞
±,ε ◦Qε)(Pε(Z)), (5.9)

the first equality being consequence of the fact that Φ0,∞
±,ε is a solution to

(5.1), and the second is true because Pε and Qε commute. Equation (5.9)
says that Φ0,∞

±,ε ◦Qε is a Fatou Glutsyuk coordinate. By the remark above, the

latter is defined on the same translation domain as Φ0,∞
∓,ε . Hence, according

to Proposition 5.3, there exists C0,∞
±,ε ∈ C with the following property:

Φ0,∞
±,ε ◦Qε = T

C
0,∞
±,ε

◦ Φ0,∞
∓,ε . (5.10)

We will drop the subscript ε in the constants. Using Q◦2
ε = Pε and iterating

(5.10) yields:

Φ0,∞
±,ε (Z) + 1 ≡ Φ0,∞

±,ε ◦Pε(Z)

= (Φ0,∞
±,ε ◦Qε) ◦Qε(Z)

= T
C

0,∞
±

◦ (Φ0,∞
∓,ε ◦Qε)(Z)

= T
C

0,∞
±

◦ T
C

0,∞
∓

◦Φ0,∞
±,ε (Z)

= Φ0,∞
±,ε (Z) + C0,∞

± + C0,∞
∓ ,

(5.11)

which means

C0,∞
+ + C0,∞

− = 1. (5.12)

We want to prove that it is possible to choose the Fatou coordinates so that
C0,∞
+ = C0,∞

− = 1/2. That is consequence of Qε = ∁ ◦Qε ◦ ∁ when ε ∈ R.
Indeed, in the case ε < 0, Equation (5.10) and Theorem 5.1 yield

TC0
±
◦ Φ0

∓,ε = (C ◦ Φ0
∓,ε ◦ ∁) ◦Qε

= C ◦ (Φ0
∓,ε ◦Qε) ◦ ∁

= C ◦ (TC0
∓
◦ Φ0

±,ε) ◦ ∁
= C ◦ TC0

∓
◦ C ◦ Φ0

∓,ε.

(5.13)

Hence C0
∓ = C0

±, and then Re(C0
+) = Re(C0

−). We show now that a “cor-
rection” is possible by using the degree of freedom, so that C0

± can be taken
real (for every ε), while, at the same time, respecting (5.2). If we change
the coordinates by

Φ0
+,ε 7→ TK ◦ Φ0

+,ε

Φ0
−,ε 7→ TK ◦ Φ0

−,ε
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in (5.10), for K ∈ iR to be chosen, then (5.2) remains valid and we get the
equations:

(TK ◦ Φ0
+,ε) ◦Qε = TK+C0

+−K ◦ (TK ◦ Φ0
−,ε)

(TK ◦ Φ0
−,ε) ◦Qε = TK+C0

−−K ◦ (TK ◦Φ0
+,ε).

Put Ĉ0
+ = K + C0

+ −K and Ĉ0
− = K + C0

− −K. The choice

K = −iIm(C0
+)

2
= i

Im(C0
−)

2
∈ iR

ensures that Ĉ0
+ = Ĉ0

− = Re(C0
+) = Re(C0

−) = 1/2.
As for the coordinate Φ∞

± , the proof is straightforward. Indeed, (5.10)
and Theorem 5.1 yield this time:

TC∞
±

◦ Φ∞
∓,ε = (C ◦ Φ∞

±,ε ◦ ∁) ◦Qε

= C ◦ (Φ∞
±,ε ◦Qε) ◦ ∁

= C ◦ (TC∞
±

◦Φ∞
∓,ε) ◦ ∁

= C ◦ TC∞
±

◦ C ◦Φ∞
∓,ε

(compare to (5.13)), thus C∞
± = C∞

± and C∞
± ∈ R. So we can perform

a change Φ∞
±,ε 7→ TK± ◦ Φ∞

±,ε, where K± = −C
∞
±

2
∈ R, in order to bring

C∞
+ = C∞

− = 1/2, respecting (5.2).

The case ε > 0 is completely analogous, using (5.3). �

Definition 5.5 When Real Fatou Glutsyuk coordinates satisfy (5.8), we
shall say that they are normalized.

5.3 Real Fatou Glutsyuk coordinates and translations.

Consider the numbers:

α0(ε) =
2πi

µ0(ε)
=

2πi

ε

α∞(ε) =
2πi

µ±(ε)
= −πi(1− sA(ε) ε)

ε
,

(5.14)

where µ0(ε) = logP ′
ε(0) = ε, and µ±(ε) = logP ′

ε(x±) =
−2 ε

1− sA(ε) ε
are

the eigenvalues of vε at the singular points x0 = 0 and x± = ±
√
−s ε,
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respectively. As usual, we will only describe the case s = +1. In the case
s = −1, each picture in the Figure 3 must be rotated by 90◦ degrees in the
clockwise direction and, moreover, the family P−1

ε is of the form (2.3).

Definition 5.6 The Glutsyuk normalization domains are

U0,∞
ε := pε(Q

0,∞
±,ε ).

Lemma 5.7 The quotients U0
ε /Pε and U∞

ε /Pε are conformally equivalent
to non-separated spaces

T0
ε ∪ {x0}, T∞

±,ε ∪ {x±}

which are the union of a point with complex tori T0
ε and T∞

±,ε, of modulus
α0(ε) and α∞(ε), respectively.

Proof. Indeed take, for instance, the fixed point x+ =
√
− ε. Since we are

in the Glutsyuk point of view of the dynamics, on U∞
ε the map Pε admits x+

as a global hyperbolic point. Consider any loop γ around x+ and consider
its image Pε(γ) as well. The region J of the complex plane between these
two curves is a fundamental domain (i.e. a domain where each orbit of Pε is
represented by at most one point) for the dynamics around x+. It is easily
seen that

U∞
ε /Pε ≃ J/Pε ∪ {x+}

(they are conformally equivalent). Moreover, we can change J by any iterate
P◦n
ε (J) in the quotient, and the resulting space remains the same. By the

Poincaré Theorem, the map Pε is linearizable around x+. As n → ∞, the
modulus of the quotient complex torus P◦n

ε (J)/Pε converges towards the

modulus of the torus C
∗/Lµ+(ε) which is given by α∞ =

2iπ

µ+(ε)
. Inasmuch

as the space P◦n
ε (J)/Pε ∪ {x+} is conformally equivalent to U∞

ε /Pε, the
latter is the union of a complex torus T∞

+,ε of modulus α∞, and the singular
point {x+}. This space is non-separated because the point {x+} belongs to
the adherence of any orbit of Pε. The proofs for x− and x = 0 are analogous.

�

Proposition 5.8 For all ε ∈ Vδ,lr, it is possible to choose nomalized Real

Fatou Glutsyuk coordinates Φ0,∞
±,ε : Q0,∞

±,ε → C satisfying (in addition to
(5.2),(5.3) and(5.8)) the equations:

Φ0
±,ε ◦ Tα = T−α0

2
◦Φ0

∓,ε,

Φ∞
±,ε ◦ Tα = Tα∞ ◦ Φ∞

±,ε.
(5.15)

In particular, they have the same limit at ε = 0.
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Proof. Consider the translation Tα and a Real Fatou Glutsyuk coordinate
Φ∞
±,ε : Q

∞
±,ε → C. By (4.9):

Φ∞
±,ε ◦ Tα ◦Pε = Φ∞

±,ε ◦Pε ◦ Tα
= T1 ◦ Φ∞

±,ε ◦ Tα,

which implies that Φ∞
±,ε ◦ Tα is a Fatou coordinate. By Lemma 4.4, the

latter preserves the translation domains Q∞
±,ε and then, Φ∞

±,ε ◦ Tα and Φ∞
±,ε

are defined on the same translation domain. By Proposition 5.3, there exist
constants C±,ε such that:

Φ∞
±,ε ◦ Tα = TC±,ε

◦ Φ∞
±,ε. (5.16)

Thus, the Fatou coordinate conjugates the pair of commuting diffeomor-
phisms {Pε, Tα} with the pair of translations {T1,TC±,ε

}. Moreover, the
Fatou Glutsyuk coordinate induces a holomorphic diffeomorphism:

Q∞
±,ε/{Pε, Tα} ∼= C/{T1,TC±,ε

}

between complex surfaces. The latter is, of course, the canonical torus
C/(C×C±,εC). Notice that the quotient Q∞

±,ε/Tα coincides with the neigh-
borhood U∞

ε with coordinate x, where the map Pε is induced by Pε. Hence,
the quotient Q∞

±,ε/{Pε, Tα} is conformally equivalent to U∞
± /Pε. On the

other hand, the translation Tα has been formerly defined on a neighborhood
of the points P±, thus the positive orientation of the translation Tα∞ in
the W (Fatou) coordinate coincides with the positive orientation of Tα, by
definition. By (5.16) and Lemma 5.7, the modulus of the torus C/{T1,TCε},
i.e. the constants C±,ε, coincide and must be equal to α∞ on Q∞

±,ε :

Φ∞
±,ε ◦ Tα = Tα∞ ◦ Φ∞

±,ε. (5.17)

The behavior of the Fatou coordinate Φ0
±,ε : Q0

±,ε → C with respect the
translation Tα is more involved. Indeed, by Lemma 4.4, Tα sends the trans-
lation domains Q0

±,ε into Q0
∓,ε and then, reasoning as above, Φ0

±,ε ◦ Tα and

Φ0
∓,ε are two Fatou Glutsyuk coordinates defined on the same translation

domain. Proposition 5.3 shows then that there exist two constants C1
ε , C

2
ε

such that:
Φ0
+,ε ◦ Tα = TC1

ε
◦Φ0

−,ε

Φ0
−,ε ◦ Tα = TC2

ε
◦Φ0

+,ε,
(5.18)

thus yielding:
Φ0
±,ε ◦ T2α = TC1

ε+C2
ε
◦ Φ0

±,ε. (5.19)

28



The quotients Q0
±,ε/{Pε, T2α} are conformally equivalent to U0

ε /Pε, i.e. the
union of a complex torus of modulus α0 with the singular point x0.Moreover,
in the W (Fatou) coordinate, positive orientation of the translation Tα0

corresponds to negative orientation of Tα∞ . Since the positive orientation of
the translation Tα∞ coincides with that of Tα, we get Φ

0
±,ε◦T2α = T−α0◦Φ0

±,ε,

or, in terms of the constants, C1
ε + C2

ε = −α0. Let us show that C1
ε = C2

ε .
Since the Fatou coordinates Φ0

± are normalized, using (5.8) we have:

Φ0
+,ε ◦ Tα = (T− 1

2
◦Φ0

−,ε ◦Qε) ◦ Tα
= T− 1

2
◦ (TC2

ε
◦Φ0

+ ◦ T−α) ◦Qε ◦ Tα (by (5.18))

= TC2
ε
◦ T− 1

2
◦ Φ0

+ ◦Qε (because Qε = T−α ◦Qε ◦ Tα)
= TC2

ε
◦Φ0

−.

Comparing with the first equation in (5.18), we get C1
ε = C2

ε = −α0

2
. �

Grosso modo, (5.15) says that, in order to make a full turn around the origin
in x coordinate, it is necessary to iterate twice the translation around the
origin in the unwrapping coordinate. On the contrary, an iteration of the
translation around infinity in the Z coordinate yields a full turn around x±.

Lemma 5.9 When the parameter is (real) positive, the normalized Real Fa-
tou Glutsyuk coordinates of Theorem 5.1, Lemma 5.4 and Proposition 5.8,
satisfy as well:

Φ0
ε

{
Im(Z) = ± α

2i

}
⊂

{
Im(W ) = ∓α0

4i

}
,

Φ∞
ε

{
Im(Z) = ± α

2i

}
⊂

{
Im(W ) = ±α∞

2i

}
.

Proof. Both (5.3) and (5.15) imply:

T∓α0
2
◦ C ◦ Φ0

ε = Φ0
ε ◦ T±α ◦ ∁,

T∓α∞ ◦ C ◦ Φ∞
ε = Φ∞

ε ◦ ∁ ◦T±α.
(5.20)

Put Im(Z) = ± α

2i
. Thus, Z = ∁(Z) ± α = T±α ◦ ∁(Z) and if we write

Φ0
ε(Z) = A+ iB, for A,B ∈ R, then (5.20) yields:

A+ iB = Φ0
ε(Z)

= Φ0
ε(T±α ◦ ∁(Z))

= Φ0
ε(Z)∓

α0

2
= A− iB ∓ α0

2
,
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whence B = ∓α0

4i
. The second inclusion follows along similar steps. �

6 Real and Symmetric Glutsyuk invariants.

Fix four Fatou Glutsyuk coordinates Φ0,∞
±,ε,lr on the leaves of Rε, whose

base points depend analytically on the parameter, see Figure 12 and define:

a) For ε ∈ Vδ,l :

Ψ++
ε,l = Φ0

+,ε,l ◦ (Φ∞
+,ε,l)

◦−1,

Ψ+−
ε,l = Φ0

−,ε,l ◦ (Φ∞
+,ε,l)

◦−1,

Ψ−+
ε,l = Φ0

+,ε,l ◦ (Φ∞
−,ε,l)

◦−1,

Ψ−−
ε,l = Φ0

−,ε,l ◦ (Φ∞
−,ε,l)

◦−1.

(6.1)

b) For ε ∈ Vδ,r :

Ψ++
ε,r = Φ∞

+,ε,r ◦ (Φ0
+,ε,r)

◦−1,

Ψ+−
ε,r = Φ∞

−,ε,r ◦ (Φ0
+,ε,r)

◦−1,

Ψ−+
ε,r = Φ∞

+,ε,r ◦ (Φ0
−,ε,r)

◦−1,

Ψ−−
ε,r = Φ∞

−,ε,r ◦ (Φ0
−,ε,r)

◦−1.

(6.2)

In either case, this collection will be noted ΨG
ε . By periodicity, it suffices

to describe the dynamics around the principal hole. Since Pε = Q◦2
ε , it is

possible to reduce these four components to two independent ones.

Definition 6.1 The Glutsyuk invariant is the family of equivalence classes
of ΨG

ε with respect to composition with translations TC(ε) in the source and
target spaces where the constant C(ε) is real on real ε and it depends holo-
morphically on the parameter over Vδ,l∪Vδ,r with a continuous limit at ε = 0,
such that C(0) 6= 0.

Lemma 6.2 By choosing normalized Real Fatou Glutsyuk coordinates, it
is possible in turn to choose components Ψ±,±

ε of a representative of the
Glutsyuk invariant ΨG

ε which are related through:

Ψ++
ε = T− 1

2
◦Ψ−−

ε ◦ T 1
2
,

Ψ−+
ε = T− 1

2
◦Ψ+−

ε ◦ T 1
2

(6.3)

for every ε ∈ V G
δ .

Proof. It suffices to take normalized Fatou Glutsyuk coordinates, so that
(6.3) is satisfied by definition. �
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6.1 Real Glutsyuk invariant: First Presentation.

When the Glutsyuk invariant is defined using Real Fatou Glutsyuk coor-
dinates, we get a natural property of symmetry under the Schwarz reflection,
respecting the real normalization of the Glutsyuk coordinates.

Theorem 6.3 There exists a representative ΨG
ε = (Ψ±±

ε ) of the Glutsyuk
modulus associated with the family of diffeomorphisms Pε satisfying, in ad-
dition to (6.3), the identities:

– If ε ∈ Vδ,l :

Ψ++
ε,l = T−α0

2
◦Ψ+−

ε,l ◦ T−α∞ ,

Ψ−−
ε,l = T−α0

2
◦Ψ−+

ε,l ◦ T−α∞ .
(6.4)

– If ε ∈ Vδ,r :

Ψ++
ε,r = Tα∞ ◦Ψ−+

ε,r ◦ Tα0
2
,

Ψ−−
ε,r = Tα∞ ◦Ψ+−

ε,r ◦ Tα0
2
.

(6.5)

– Moreover, for every ε ∈ Vδ,lr :

Ψ++
ε = C ◦Ψ+−

C(ε) ◦ C,
Ψ−−

ε = C ◦Ψ−+
C(ε) ◦ C.

(6.6)

Such a representative can be constructed so as to have a limit at ε = 0, which
is the Ecalle modulus.

Proof. It suffices to take normalized Real Fatou Glutsyuk coordinates
depending analytically on the parameter with continuous limit at ε = 0,
(this is the same limit for the two cases ε ∈ Vδ,l and ε ∈ Vδ,r). Then (6.4)
and (6.5) are immediate consequences of (6.1), (6.2) and Proposition 5.8. On
the other hand, (6.6) comes after Theorem 5.1 and the idempotency (4.14)
on the conjugation in the Z coordinate, when the parameter is real. Since
the dependence of the modulus is analytic in the parameter, the equality
extends to values ε ∈ Vδ,lr. Notice that the symmetry axis still exists in the
limit ε = 0, and the invariance exists in the limit as well. �

Definition 6.4 The equivalence class of a representative ΨG
ε of the Glutsyuk

invariant chosen as in Lemma 6.2 and Theorem 6.3 for values ε ∈ Vδ,lr will
be called the Real Glutsyuk modulus.

Corollary 6.5 For every ε ∈ Vδ,lr, a representative of the Real Glutsyuk
modulus is completely determined by one of the maps Ψ±±

ε .
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In this first presentation, the symmetry (conjugation ∁ in the time Z co-
ordinate) is taken with respect the symmetry axis ℜ̂. Since the Real Fatou
Glutsyuk coordinates send the symmetry axis ℜ̂ into R, the real line is in-
variant under the Real Glutsyuk invariant when the parameter is real. This
means that in the x-coordinate the symmetry has been taken with respect
the real segment I+ ∪ I− joining the singular points x± with the boundary
of U, see Figure 14. Moreover, in the limit ε→ 0 the segment I+ ∪ I− tends
to R ∩ U. Thus, in the Fatou coordinate, the conjugation C is still defined
when ε = 0 and the Ecalle invariant inherits the symmetry (6.6).

ℜ̂+

ww

w∗
w∗

Z

∁(Z)

Figure 14: The symmetry in the First Presentation.

The Ecalle modulus. Since α(ε) = −πi
ε
, the distance between two consec-

utive holes becomes infinite in the limit ε→ 0, and then each diffeomorphism
Ψ±±

ε , for ε ∈ Vδ,lr, gives rise to a component of the Ecalle invariant, with
preimage in a region around the principal hole. Notice that (6.3) and (5.2)
or (5.3) remain valid during the limit process, so in the limit there is only
one independent component. Figure 15 shows the domains around the prin-
cipal hole (connected strips) on the surface Rε whose image by the Fatou
Glutsyuk coordinates and subsequent quotient by the translation T1, corre-
spond to annuli-like domains for the different components of the Glutsyuk
invariant. However, we can choose the representative of the Real Glutsyuk
modulus so as to give rise to the same invariant in the limit ε→ 0, no matter
whether ε ∈ Vδ,l or ε ∈ Vδ,r.

Proposition 6.6 The Ecalle modulus can be deduced from the Real Glut-
syuk invariant. It is given by:

Ψ∞
1 = lim

ε→0
Ψ++

ε,lr , Ψ0
1 = lim

ε→0
Ψ+−

ε,lr,

Ψ∞
2 = lim

ε→0
Ψ−−

ε,lr , Ψ0
2 = lim

ε→0
Ψ−+

ε,lr,
(6.7)
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Ψ++
ε,l

Ψ+−
ε,l

Ψ∞
1

Ψ0
1

Ψ++
ε,r

Ψ+−
ε,r

ε ∈ Vδ,l ε = 0 ε ∈ Vδ,r

Figure 15: The Glutsyuk invariant in the limit ε→ 0.

see Figure 15. Moreover, its components may be chosen conjugate as well:

Ψ∞
1 = C ◦Ψ0

1 ◦ C
Ψ∞

2 = C ◦Ψ0
2 ◦ C,

(6.8)

and, in addition,
Ψ∞

1 = T− 1
2
◦Ψ∞

2 ◦ T 1
2

Ψ0
1 = T− 1

2
◦Ψ0

2 ◦ T 1
2
.

(6.9)

Proof. Each component of the modulus at ε = 0 is the limit of two
representatives in the two cases ε ∈ Vδ,l and ε ∈ Vδ,r. More specifically, we
have:

Ψ∞
1 = lim

ε→0l
Φ0
+,ε,l ◦ (Φ∞

+,ε,l)
◦−1 = lim

ε→0r
Φ∞
+,ε,r ◦ (Φ0

+,ε,r)
◦−1,

Ψ0
1 = lim

ε→0l
Φ0
−,ε,l ◦ (Φ∞

+,ε,l)
◦−1 = lim

ε→0r
Φ∞
−,ε,r ◦ (Φ0

+,ε,r)
◦−1,

Ψ∞
2 = lim

ε→0l
Φ0
−,ε,l ◦ (Φ∞

−,ε,l)
◦−1 = lim

ε→0r
Φ∞
−,ε,r ◦ (Φ0

−,ε,r)
◦−1

Ψ0
2 = lim

ε→0l
Φ0
+,ε,l ◦ (Φ∞

−,ε,l)
◦−1 = lim

ε→0r
Φ∞
+,ε,r ◦ (Φ0

−,ε,r)
◦−1,

(6.10)

where ε→ 0l (resp. ε→ 0r) means ε→ 0 and ε ∈ Vδ,l (resp. ε ∈ Vδ,r). The
symmetries on the Ecalle modulus follow from Theorem 6.3. �

6.2 Symmetric Glutsyuk invariant: Second Presentation.

When we use Real Fatou Glutsyuk coordinates and allow a subsequent
imaginary translation on them, we break the symmetries (6.6). However, if
the translations are well chosen, we get a different form of symmetry cor-
responding to a symmetry in the x-coordinate under the Schwarz reflection
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with respect to the line segment joining the points x±. This presentation is
also very interesting and deserves a detailed discussion.

Theorem 6.7 There exists a representative ΨG
ε = (Ψ±±

ε ) of the Glutsyuk
modulus satisfying (6.3), (6.4) and (6.5), that carries the real character of
the family of vector fields as follows. Let # ∈ {++,+−,−+,−−} be a
shortcut for the superscripts.

– If ε ∈ Vδ,l\{0} then:

Ψ#
ε,l = C ◦Ψ#

C(ε),l ◦ C, (6.11)

i.e. the representative is “symmetric” with respect to the image of the
line ℜs

±.
– If ε ∈ Vδ,r\{0} then:

Ψ#
ε,r = T− 1

2
◦ C ◦Ψ#

C(ε),r ◦ C ◦ T 1
2
, (6.12)

i.e. the representative is “symmetric” with respect to the image of the
line ℑs

±.

Proof. We start taking Real Fatou Glutsyuk coordinates Φ0,∞
±,ε . By ana-

lytic dependence of the Glutsyuk coordinates in ε ∈ Vδ,lr\{0}, it suffices to
show the theorem for real values of the parameter.

– The case ε < 0. The induced Real Glutsyuk invariant already verifies
(6.6), so we must show that a correction is possible so that (6.11) be
satisfied. Theorem 6.3 yields:

Ψ++
ε,l = T−α0

2
◦Ψ+−

ε,l ◦ T−α∞

= T−α0
2
◦ C ◦Ψ++

ε,l ◦ C ◦ T−α∞ .

Consider the translations Td(ε),Td′(ε), where the constants d(ε), d′(ε)

are to be chosen later. Replacing Ψ++
ε,l 7→ Td(ε) ◦ Ψ++

ε,l ◦ Td′(ε) in the
equation above, we get:

Td(ε) ◦Ψ++
ε,l ◦ Td′(ε) = T−α0

2
◦ C ◦ Td(ε) ◦Ψ++

ε,l ◦ Td′(ε) ◦ C ◦ T−α∞

= T
−

α0
2
+d(ε)

◦ C ◦Ψ++
ε,l ◦ C ◦ T

−α∞+d′(ε)
.

If d(ε) = −α0

4
= − iπ

2 ε
and d′(ε) = −α∞

2
=

iπ(1−A(ε) ε)

2 ε
(where

A(ε) is the real formal invariant), then we get

Ψ++
ε,l = C ◦Ψ++

ε,l ◦ C.

The same procedure shows Ψ#
ε,l = C ◦Ψ#

ε,l ◦C, for # ∈ {+−,−+,−−}.
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– The case ε > 0. By (6.5) and (6.6) we have:

Ψ++
ε,r = Tα∞ ◦Ψ−+

ε,r ◦ Tα0
2

= Tα∞ ◦ C ◦Ψ−−
ε,r ◦ C ◦ Tα0

2
.

The procedure used above shows that the corrections Ψ++
ε,r 7→ Td(ε) ◦

Ψ++
ε,r ◦ Td′(ε) and Ψ−−

ε,r 7→ Td(ε) ◦ Ψ−−
ε,r ◦ Td′(ε), for d(ε) =

α∞

2
=

− iπ(1−A(ε) ε)

2 ε
and d′(ε) =

α0

4
=
iπ

2 ε
yield

Ψ++
ε,r = C ◦Ψ−−

ε,r ◦ C. (6.13)

In the same spirit, we show:

Ψ−+
ε,r = C ◦Ψ+−

ε,r ◦ C. (6.14)

Then (6.13), (6.14) and Lemma 6.2 yield the conclusion:

Ψ#
ε,r = T− 1

2
◦ C ◦Ψ#

ε,r ◦ C ◦ T 1
2
.

Notice that this new “renormalized” representative still respects (6.3), (6.4)
and (6.5). �

The composition with translations Td(ε),Td′(ε) in the proof above has
destroyed the real normalization of the Real Fatou Glutsyuk coordinates
Φ0,∞
±,ε , and also the continuity at ε = 0. However, this non-real normalization

is very interesting, even if it does not pass to the limit when ε→ 0. Indeed,
in the Z coordinate the imaginary translations Td(ε),Td′(ε) have displaced the
symmetry axis to the line ℜs

± if ε < 0, and to the line ℑs
± if ε > 0, right above

the principal hole. In the Fatou coordinate, the two imaginary translations

have displaced the real axis to the lines Im(W ) =
α0

4i
and Im(W ) =

α∞

2i
,

according to Lemma 5.9, thus breaking the real normalization of the Fatou
Glutsyuk coordinates. The three real cases deserve explanation.

The parameter is (real) negative. The normalization reflects the natural
symmetry of the invariant with respect the image (by p−1

ε ) of the real seg-
ment joining x+ to x− in the x-coordinate, see Figure 16. Inasmuch as the
symmetry is taken with respect a “real” line in the Fatou coordinate, the
invariant still carries the real character of the foliation, as can be seen from
formula (6.11).
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ℜ̂+

w

w∗

Z

∁(Z)

ℜs±

Figure 16: The symmetry when the parameter is negative.

The parameter is (real) positive. The imaginary translations have brought
the symmetry axis to the image (by p−1

ε ) of the imaginary segment I joining
the singular points x0, x±, see Figure 17. Thus, the non-real normalization
yields an invariant in the x-coordinate which is symmetric with respect to
I. That is exactly the meaning of the formula (6.12). This “imaginary”
symmetry is explained by:

– the real symmetry carried by the former Real Fatou Glustyuk coordi-
nates, so that the components of ΨG are 2-by-2 symmetric images one
of another (this is (6.13) and (6.14));

– the fact that the Poincaré map of the family is a square: Pε = Q◦2
ε .

In the x-plane this can be viewed as a sort of “symmetry with respect
to the origin”. Composing this symmetry with the symmetry with
respect the real axis, yields a symmetry with respect to the imaginary
axis.

ℜ̂+

w∗
w Z

∁(Z)

ℑs±

Figure 17: The symmetry when the parameter is positive.

The parameter is null. As the lines ℜs
±,ℑs

± no longer exist when ε = 0,
this presentation does not pass to the limit when ε→ 0. The Ecalle modulus
cannot be deduced from this presentation. Indeed, the real (resp. imaginary)
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segment in the x-coordinate joining the fixed points disappears when ε→ 0−

(resp. ε→ 0+).

Definition 6.8 Any representative ΨG
ε of the Glutsyuk invariant chosen as

in Theorem 6.7 will be called Symmetric Glutsyuk modulus.

Corollary 6.9 A representative of the Symmetric Glutsyuk modulus is com-
pletely determined by one of its components Ψ±±

ε .

7 Invariants under weak conjugacy.

We take Fatou Glutsyuk coordinates depending continuously on ε ∈ Vδ,lr.
The domain of ΨG

ε contains a union of four horizontal strips S±±
ε located

right above (resp. below) the principal hole Bε. As the Glutsyuk invariant
satisfies ΨG

ε (W + 1) = ΨG
ε (W ) + 1 we can expand the difference ΨG

ε − id in
Fourier series on S±±

ε :

(Ψ++
ε (W )−W )

∣∣∣
S++
ε

=
∑

n∈Z

c++
n (ε) exp(2iπnW ),

(Ψ+−
ε (W )−W )

∣∣∣
S+−
ε

=
∑

n∈Z

c+−
n (ε) exp(2iπnW ),

(Ψ−+
ε (W )−W )

∣∣∣
S−+
ε

=
∑

n∈Z

c−+
n (ε) exp(2iπnW ),

(Ψ−−
ε (W )−W )

∣∣∣
S−−
ε

=
∑

n∈Z

c−−
n (ε) exp(2iπnW ).

(7.1)

Then, using (6.4) in the case ε ∈ Vδ,l we deduce:





c++
0 (ε)− c+−

0 (ε) = c−−
0 (ε)− c−+

0 (ε) = −iπsA(ε),
c++
n (ε) = c+−

n (ε)e−
2nπ2(1−sA(ε) ε)

ε , for n 6= 0,

c−−
n (ε) = c−+

n (ε)e−
2nπ2(1−sA(ε) ε)

ε , for n 6= 0,

and using (6.5) in the case ε ∈ Vδ,r we get:





c++
0 (ε)− c−+

0 (ε) = c−−
0 (ε)− c+−

0 (ε) = iπsA(ε),

c++
n (ε) = c−+

n (ε)e−
2nπ2

ε , for n 6= 0,

c−−
n (ε) = c+−

n (ε)e−
2nπ2

ε , for n 6= 0.
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Corollary 7.1 The differences c++
0 (ε)− c+−

0 (ε) and c−−
0 (ε)− c−+

0 (ε) when
ε ∈ Vδ,l (resp. c++

0 (ε) − c−+
0 (ε) and c−−

0 (ε) − c+−
0 (ε) when ε ∈ Vδ,r) are

analytic invariants of the system. Moreover, if the Glutsyuk modulus is
prescribed on ε ∈ Vδ,lr, then the formal parameter A(ε) is known for values
of the parameter in Vδ,lr.

Definition 7.2 Two germs {Pε1}ε1∈Vδ,lr
, {P̂ε2}ε2∈Vδ,lr

of analytic families
of diffeomorphisms are “weakly conjugate” as real families if there exists a
germ of bijective map H(ε1, x) = (k(ε1),h(ε1, x)) fibered over the parameter
space, where:

i) k : ε1 → ε2 = k(ε1) is a germ of real analytic diffeomorphism preserv-
ing the origin.

ii) There exists ρ > 0 and r > 0, such that for each ε1 ∈ Vδ,l(ρ) ∪ Vδ,r(ρ),
there is a representative hε1(x) = h(ε1, x) of the germ depending an-
alytically on x ∈ Dr and real for real ε1, x such that hε1 conjugates
Pε1 , P̂k(ε1) :

hε1 ◦ Pε1 = P̂k(ε1) ◦ hε1 . (7.2)

The representative hε1 depends analytically on ε1 6= 0 and it is con-
tinuous at ε1 = 0.

Theorem 7.3 Two families {Pε1}ε1∈Vδ,lr
and {P̂ε2}ε2∈Vδ,lr

(with the same
sign s before the cubic coefficient) are weakly conjugate by a real conjugacy
that depends analytically on the parameter ε ∈ Vδ,lr\{0} and continuously at
ε = 0, if and only if the Glutsyuk moduli of their associated prepared families
coincide.

Proof. Since two families are conjugate if and only if the associated pre-
pared families are conjugate, it suffices to work with prepared families. The
preparation shows that the parameters ε1 and ε2, the canonical parameters
of the families, are analytic invariants, thus we can consider the conjugacy
over the identity (ε1 = ε2 := ε), and then it suffices to compare the two
families for a given ε ∈ Vδ,lr.

We can of course suppose that we have equal representatives of the Glut-
syuk modulus for the two families. Since for values ε ∈ Vδ,lr the singu-
lar points x0, x± are hyperbolic, they are linearizable. Hence, there ex-
ists in the neighborhood of each fixed point two sectorial diffeomorphisms
ϕ0,±
ε = ΦG,0,∞

ε,± ◦ p−1
ε and ϕ̂0,±

ε = Φ̂G,0,∞
ε,± ◦ p−1

ε conjugating, respectively, the

Poincaré maps Pε and P̂ε with τ1ε . The diffeomorphisms ΦG,0,∞
ε , Φ̂G,0,∞

ε are
Real Fatou Glutsyuk coordinates (see Definition 5.2). The neighborhoods of
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the singular points in the x coordinate where the normalization is possible
are noted, respectively, U−

ε , U
0
ε and U+

ε . The map:





f−ε = (ϕ̂−
ε )

−1 ◦ ϕ−
ε = pε ◦ (Φ̂G,∞

ε,− )−1 ◦ ΦG,∞
ε,− ◦ p−1

ε ,

f0ε = (ϕ̂0
ε)

−1 ◦ ϕ0
ε = pε ◦ (Φ̂G,0

ε )−1 ◦ ΦG,0
ε ◦ p−1

ε ,

f+ε = (ϕ̂+
ε )

−1 ◦ ϕ+
ε = pε ◦ (Φ̂G,∞

ε,+ )−1 ◦ ΦG,∞
ε,+ ◦ p−1

ε ,

is clearly a well defined change of coordinates conjugating the two families
of diffeomorphisms, since the local changes of coordinates are extensions of
each other over the neighborhood U when ε ∈ Vδ,lr : f0ε ≡ f−ε on U−

ε ∩ U0
ε ,

and f0ε ≡ f+ε on U0
ε ∩ U+

ε . The conclusion follows. �

8 Application to the Hopf bifurcation.

A germ of one-parameter family of analytic planar vector fields unfolding
a weak focus in a neighborhood of the origin, is linearly equivalent to a germ
of family of differential equations:

ẋ = α(ε)x− β(ε)y +
∑

j+k≥2

bjk(ε)x
jyk,

ẏ = β(ε)x+ α(ε)y +
∑

j+k≥2

cjk(ε)x
jyk,

(8.1)

with α(0) = 0 and β(0) 6= 0. After rescaling the time (t 7→ β(ε)t) we can
suppose β(ε) ≡ 1.

Definition 8.1 The family (8.1) is called “generic” if α′(0) 6= 0. The weak
focus is of order one if L1(0) 6= 0, where L1 is the first Lyapounov constant:

L1 = 3b30+b12+c21+3c03+
1

β
[b11(b20+b02)−c11(c20+c02)−2b20c20+2b02c02].

It is well known that the Poincaré first return map Pε : R
+ → R

+ is analytic
and can be extended to an analytic diffeomorphism

Pε : (R, 0) → (R, 0)

which is the square of a diffeomorphism Qε exchanging R
+ with R

− and
such that Q′

0(0) = −1. The following theorem was proved in [2]
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Theorem 8.2 [2] Two germs of generic families of real analytic vector
fields unfolding a vector field with a weak focus of order one at the origin
are real analytically orbitally equivalent if and only if the germs of families
unfolding the Poincaré maps of the germs of vector fields are analytically
conjugate by a real conjugacy.

Along with Theorem 7.3, this result yields:

Theorem 8.3 Two germs of generic families of real analytic vector fields
unfolding a vector field with a weak focus of order one at the origin are weakly
real analytically orbitally equivalent if and only if the germs of families un-
folding the Poincaré maps of the germs of vector fields have the same sign
s and the Glutsyuk modulus of their associated prepared families coincide.

9 Directions for future research.

The present paper opens interesting perspectives which we hope to work
on in the future. In particular, let us mention

1. We have described the Glutsyuk modulus on two sectors which do not
cover a full neighborhood of the origin. From this modulus, we could
recover the Lavaurs modulus which has been studied in the other works
on the subject ([16], [10], [14] and [15]). Since the modulus depends
analytically on ε, in practice, the Glutsyuk modulus, defined only on
a union of two sectors in the parameter space, determines the Lavaurs
modulus for parameter values in a full neighborhood of the origin. So
we should be able to replace weak equivalence by equivalence in the
Theorems 7.3 and 8.3. We hope to address this question in near future.
The challenge is of course to show that the equivalence is real. Another
interesting question is to determine the dependence of the Glutsyuk
modulus on ε at ε = 0, in order to identify the “realizable” moduli.

2. In this paper we have classified the germs of generic analytic fami-
lies of vector fields undergoing a Hopf bifurcation of order 1, under
orbital equivalence. We hope in the future to address the same prob-
lem under conjugacy of vector fields. For this purpose, in [3] we have
decomposed each vector field as a vector field with angular velocity
equal to 1 (called the orbital part) times a “time part” given by a
non vanishing function. For a given orbital part, the time part of the
modulus identifies the equivalence classes of time parts. The problem
is then reduced to identify the time part of the modulus in the case
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of the Hopf bifurcation, and also to identify the “realizable” moduli
under conjugacy.

3. Isochronous weak foci of vector fields have been studied in the liter-
ature ([3],[7],[17]). Since the property of being isochronous depends
only on the conjugacy class of the vector fields, it should be read on
the modulus (orbital and time parts) of the weak focus for ε = 0. It
is known that there are formal obstructions to isochronicity ([7]) but
the analytic obstructions are still unknown.

4. Finally, a natural problem is to generalize to higher codimension (this
is done for the saddle-node in [17]). In particular, are there obstruc-
tions at the orbital level? Is the triviality of the orbital modulus a
necessary condition?
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