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Abstract

In this paper we describe the moduli space of germs of generic analytic families of
complex 1-dimensional resonant analytic diffeomorphisms of codimension 1. In [13], it
was shown that the Ecalle modulus can be unfolded to give a complete modulus for such
germs. As the function of the canonical parameter, the modulus is defined on two sectors
giving a covering of a neighborhood of the origin in the parameter space. As in the case
of the Ecalle modulus, the modulus is defined up to a linear scaling depending only on
the parameter.

The compatibility condition is obtained by considering the region of intersection of
the two sectors in parameter space, which we call the Glutsyuk sectors. There, both the
fixed point and the periodic orbit are hyperbolic and they are connected by the orbits of
the diffeomorphism. This yields an alternate description of the equivalence class by the
Glutsyuk modulus: near each of the fixed point and of the periodic orbit we construct a
change of coordinate to the normal form. The Glutsyuk modulus measures the obstruction
of having one being the analytic extension of the other. In the intersection of the two
sectors, we have two representatives of the modulus which describe the same dynamics.
A necessary compatibility condition is that they have the same Glutsyuk modulus. This
necessary condition becomes sufficient for realizability

The compatibility condition implies the existence of a linear scaling for which the mod-
ulus is 1-summable in ǫ, whose directions of non-summability coincide with the direction
of real multipliers at the fixed point and periodic orbit. Conversely, we show that the
compatibility condition (which implies the summability property) is sufficient to realize
the modulus as coming from an analytic unfolding, thus giving a complete description of
the space of moduli.

1 Introduction

The paper [13] presented a complete modulus of analytic classification for a germ of generic
1-parameter family unfolding of a codimension 1 resonant diffeomorphism and its application
to the orbital analytic classification of a germ of generic 1-parameter family unfolding of a
codimension 1 resonant saddle of a 2-dimensional vector field. It was shown that this modulus
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was an unfolding of the Ecalle modulus. At the time, the moduli space was out of reach. The
present paper fills this hole.

The problem studied here is part of a large class of problems trying to understand the
structure of the singularities of dynamical systems:

1. When are two germs of diffeomorphisms conjugate?

2. When are two germs of vectors fields orbitally equivalent?

3. When are two germs of families of diffeomorphisms conjugate?

4. When are two germs of families of vectors fields orbitally equivalent?

While these problems are simple to state, their solution is quite involved. The first two
problems were solved by Ecalle for 1-dimensional resonant diffeomorphisms (Voronin also
studied the case of multiplier 1), and Martinet-Ramis for the 2-dimensional resonant saddle.
In both cases, the “object” was classified by some formal invariants and a very complicated
analytic invariant of functional type. The paper [7] answered the third problem for the case
of a codimension 1 parabolic point with multiplier equal to 1: this shed a new light on the
first two problems: by studying the unfolding, it explained why the invariant was so complex:
the invariant encodes some of the dynamics of the unfolded object. The paper [13] treated
the third and fourth problem when the family unfolded a fixed point with resonant multiplier

exp
(
2πipq

)
, or a resonant saddle. More recently, the paper [1] describes the moduli space for

germs of families of diffeomorphisms unfolding a parabolic fixed point, thus ending the study
started in [7]. We address the same problem here for generic unfoldings of codimension 1

resonant diffeomorphisms or resonant saddles. The resonant multiplier exp
(
2πipq

)
expresses

that the fixed point is multiple: it has merged with a periodic orbit of period q. When
q > 1, this yields additional technical difficulties compared to the case q = 1. Indeed, in
[13], it is shown that two such families of diffeomorphisms are conjugate if and only if their
q-th powers are conjugate and we work with their q-th powers. Here fortunately, working
simultaneously on moduli spaces for germs of families of analytic vector fields will allow to
simplify the realization problem and to reduce it to the case q = 1.

To do this, we first prove that any germ of family unfolding a resonant diffeomorphism
can be realized as the holonomy map of a separatrix of a germ of family of vector fields.
The family of holonomies of the second separatrix is, in turn, a second germ of family of
diffeomorphisms. Iterating this trick a finite number of times allows to relate any family
unfolding a resonant diffeomorphism to a family unfolding a fixed point with multiplier equal
to 1.

The next step is to study the relationship between the invariants associated to the
holonomies of the two separatrices in a germ of family unfolding a resonant saddle. The
tool for this is the Dulac map. While the formal invariants and canonical parameters are not
the same, the “nonlinear analytic part” of the modulus is the same (as noticed by Martinet
and Ramis in the non-unfolded case). To do this, we work intensively with the Martinet-
Ramis point of view, which consists in describing the orbit space of the diffeomorphism by
two spheres with the neighborhoods of 0 and ∞ identified. We extend this point of view to
the unfolding. Exact formulae showing the relationship between the formal and analytic part
of the invariants of the holonomies of the two separatrices are given.
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Figure 1: The two small sectors Vl and Vr.

Finally, we identify the moduli space. As explained before, it suffices to consider the case
q = 1, and hence germs of families of diffeomorphisms in prepared form

fǫ(z) = z + z(z − ǫ)(1 +B(ǫ) +A(ǫ)z +O(z(z − ǫ)),

so that f ′ǫ(0) = exp(−ǫ), thus guaranteing that the (canonical) parameter ǫ be an analytic
invariant. The modulus of a germ of family of diffeomorphisms is given by

• the formal invariant a(ǫ) which depends analytically on ǫ,

• two families of germs of analytic diffeomorphisms (ψ0
ǫ,±,ψ

∞
ǫ,±)

∣∣
ǫ∈V±

, where V± are two

sectors whose union is a punctured neighborhood of the origin in ǫ-space and ψ0
ǫ,± ∈

(C, 0), ψ∞
ǫ,± ∈ (C,∞). These families of germs are defined up to linear changes of

coordinates on CP
1 depending analytically on ǫ.

The two sectors V± intersect in two smaller sectors (Figure 1): over these, we have two
different descriptions of the dynamics. Conversely, given two families (ψ0

ǫ,±,ψ
∞
ǫ,±)

∣∣
ǫ∈V±

, the

sufficient condition for realizability consists in expressing that they encode conjugate dynam-
ics over the intersection sectors. This, in turn, implies that for an adequate choice of linear
coordinates on CP

1, then ψ0
ǫ and ψ∞

ǫ are 1-summable in ǫ. The realization is then done in
two steps:

• the local realization in z, yielding two families, one for each sector V±;

• the global realization, where we correct to a uniform family in ǫ.

The paper is organized as follows. Section 2 contains preliminaries. Section 3 describes
the modulus of analytic classification. Section 4 gives the compatibility condition. Section 5
describes the link between the holonomies of the two separatrices of a resonant saddle. In
Section 6, it is proved that any generic unfolding of a codimension 1 diffeomorphism can be
realized as the holonomy of a separatrix of an unfolding of a resonant saddle. In Section 7,
the realization theorem is proved simultaneously for unfoldings of resonant diffeomorphisms
and of resonant saddles. Section 8 studies the particular case of an unfolding of a resonant
real vector field.

2 Preliminaries

2.1 Notations

The notations collected here are often referred to in the paper.
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• LC : the linear map
LC(w) = Cw; (2.1)

• TB : the translation
TB(W ) = W +B; (2.2)

• the q-root of unity

τ = exp

(
2πi

q

)
; (2.3)

• E: the map
E(W ) = exp(−2πiW ); (2.4)

with inverse E−1(w) = − 1
2πi ln(w);

• Σ: the map corresponding to complex conjugation

Σ(w) = w; (2.5)

• Ξ: the reflection with respect to the imaginary axis

Ξ(w) = −w. (2.6)

2.2 Preparation of the family

We recall briefly the results of [13]. We consider a germ of generic resonant diffeomorphism
of the form

f0(z) = e
2iπp

q z +
e

2iπp
q

q
zq+1 + o(zq+1). (2.7)

Then f q
0 has a fixed point at the origin of multiplicity q+1, which corresponds, for f0, to the

coalescence of a fixed point with a periodic orbit of period q: the fixed point and periodic
orbit bifurcate in a generic unfolding. Because we can always localize the fixed point at the
origin, bring the family in normal form up to order q + 1 and rescale, then a germ of generic
unfolding can be taken of the form

fǫ(z) =
(
e

2iπp
q − α

)
z +

e
2iπp

q

q
zq+1 + o(zq+1) (2.8)

with α a small parameter.
It is proved in [13] that we can limit ourselves to consider the conjugacy problem for the

q-th iterate gǫ = f q
ǫ of fǫ, which has the form

gǫ(z) = z(1 − ǫ) + (1 +O(ǫ))zq+1 + o(zq+1), (2.9)

where
(1 − ǫ) =

(
e

2πip
q − α

)q
. (2.10)

Because g0 has multiplier equal to 1 at the origin (and hence fixed points instead of
periodic points), it is easier to work with gǫ = f q

ǫ than with fǫ. The following proposition is
shown in [13].
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Proposition 2.1 For a family of the form (2.9), there exists an analytic reparameterization
of (z, ǫ) tangent to the identity and fibered over the parameter space allowing to reduce the
study to that of a family in prepared form

gǫ(z) = z + z(zq − ǫ)[1 +B(ǫ) +A(ǫ)zq + z(zq − ǫ)h(ǫ, z)], (2.11)

where B(ǫ) = (1 − ǫ− exp(−ǫ))/ǫ = O(ǫ), and h(0, 0) = 0. The diffeomorphism gǫ has fixed
points z0 = 0 and zj, j = 1, . . . , q with zq

j = ǫ. The multiplier λ0 of the fixed point z0 = 0
satisfies

λ0 = exp(−ǫ), (2.12)

and hence the parameter ǫ is an analytic invariant for gǫ, which is called the canonical
parameter. Let λ1, . . . λq, be the multipliers of the fixed points zj , where zq

j = ǫ. The formal
parameter

a(ǫ) =
1

lnλ0
+

q∑

j=1

1

lnλj
(2.13)

depends analytically on ǫ. It is a formal invariant of gǫ.

2.3 Strategy

Considering a prepared family (2.11), the strategy is to construct Fatou coordinates: these
are changes of coordinates which transform the family (2.11) to the associated “model family”
which is the time-one map of the vector field

z(zq − ǫ)

1 + a(ǫ)zq

∂

∂z
, (2.14)

obtained as follows:

• the fixed points z0, z1, . . . , zq of gǫ coincide with the singular points of (2.14);

• let µj be the eigenvalue of (2.14) at the singular point zj and λj be the multiplier of gǫ

at zj. Then λj = exp(µj);

• Since the eigenvalues at the singular points z1, . . . , zq of (2.14) have the form

µ0 = −ǫ, µj =
qǫ

1 + a(ǫ)ǫ
, j = 1, . . . , q, (2.15)

then λj = exp(µj) forces the choice of a(ǫ).

The construction of Fatou coordinates is given in [13] and we recall the essential step.

2.4 The two charts

We study the dynamics of the germ of family gǫ(z) on any sufficiently small neighborhood of
the origin in z-coordinate which we can choose of the form U = {z, |z| < r} with r ∈ (0, 1)
for all sufficiently small values of the parameter ǫ in a small ball V = {ǫ; |ǫ| < ρ}. We limit
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ourselves to values of ǫ sufficiently small so that the fixed points of gǫ remain inside U . For
this it suffices to take

ρ <
rq

2
, (2.16)

a condition which will be assumed throughout the paper.

We need to cover V with two sectors, each of opening π + 2δ with δ ∈ (0, π
2 ). The

parameter δ ∈ (0, π
2 ) is chosen at the beginning and kept fixed for all the treatment. We give

a uniform treatment of gǫ over the two following two sectors of V :

Vδ,+ = {ǫ ∈ V | arg ǫ ∈ (−δ, π + δ)},
Vδ,− = {ǫ ∈ V | arg ǫ ∈ (π − δ, 2π + δ)}. (2.17)

2.5 The lifted diffeomorphism

We first introduce a change of coordinate which nearly rectifies the family gǫ to the translation
by 1 and sends the fixed points to infinity. We will in particular consider the translation
Tα(ǫ)(Z) = Z + α(ǫ) with

α(ǫ) =

{
2πi
qǫ , ǫ 6= 0,

0, ǫ = 0.
(2.18)

We introduce the change of coordinate pǫ : Sǫ → CP
1 \ {0, z1, . . . , zq} given by

z = pǫ(Z) =





(
ǫ

1−eqǫZ

)1/q
, ǫ 6= 0,

(
− 1

qZ

)1/q
, ǫ = 0,

(2.19)

where Sǫ is the Riemann surface of the function





(
eqǫZ−1

ǫ

)1/q
, ǫ 6= 0,

Z1/q, ǫ = 0.
(2.20)

Figure 2: The domain of Z in the case q = 2

For ǫ 6= 0 it is univalued when the image is restricted to a strip of width α(ǫ). We can
lift the map Tα(ǫ) to Sǫ.

The image of U \ {0, z1, . . . , zq} under p−1
ǫ is

Ûǫ = Sǫ \ ∪j∈ZBj, (2.21)
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where B0 is the component of p−1
ǫ (C \ U) which contains the origin and Bi = T i

α(ǫ)(B0) =

Tiα(ǫ)(B0). B0 is called the fundamental hole. It is a q-covering of a neighborhood of the
origin.

We lift the function gǫ(z) to a function Gǫ(Z) commuting with Tqα(ǫ).

2.6 Translation domains

The Fatou coordinates are defined on maximal domains in Z-space called translation domains.

Definition 2.2 1. A line ℓ ⊂ Ûǫ is called an admissible line if ℓ and Gǫ(ℓ) are disjoint
and the strip Ĉǫ(ℓ) between ℓ and G(ℓ) is included in Ûǫ. The strip Ĉǫ(ℓ) is called an
admissible strip.

2. Let ℓ be an admissible line for Gǫ. The translation domain associated with ℓ is the set

Qǫ(ℓ) = {Z ∈ Ûǫ|∃n ∈ Z Gn
ǫ (Z) ∈ Ĉǫ(ℓ) and ∀j ∈ [0, n] ⊂ Z, Gj

ǫ(Z) ∈ Ûǫ}. (2.22)

(For n < 0, [0, n] = {j ∈ Z|n ≤ j ≤ 0.)

3. A Lavaurs translation domain (Figure 3(a)) is a domain associated with an admissible
line passing between the fundamental hole and one of its two adjacent holes (notation
QL

ǫ ).

4. A Glutsyuk translation domain (Figure 3(b)) is a domain associated with an admissible
line parallel to the line of holes (notation QG

ǫ ).

(a) Lavaurs translation domain (b) Glutsyuk translation domain

Figure 3: A fundamental domain Ĉǫ(ℓ) associated to an admissible line ℓ and the translation
domain it generates (the figure is drawn for q = 2)

2.7 Fatou coordinates

Theorem 2.3 Let Qǫ = Qǫ(ℓ) be any translation domain.

1. There exists a holomorphic diffeomorphism Φǫ : Qǫ → C, such that

Φǫ(Gǫ(Z)) = Φǫ(Z) + 1, (2.23)

for Z ∈ Qǫ ∩G−1
ǫ (Qǫ). Moreover,

lim
Im(Z)→±∞

Im(Φǫ(Z)) = ±∞. (2.24)
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2. If Φ1,ǫ and Φ2,ǫ are two solutions of (2.23), then there exists A ∈ C such that Φ2,ǫ(Z) =
A + Φ1,ǫ(Z). In particular, if Z0(ǫ) ∈ Qǫ(ℓ), there exists a unique holomorphic diffeo-
morphism Φǫ satisfying (2.23) together with Φǫ(Z0(ǫ)) = 0.

Moreover, let Z0(ǫ) ∈ Qǫ depend holomorphically on ǫ (including at ǫ = 0) and let Φǫ be the
Fatou coordinate defined on Qǫ for ǫ ∈ Vδ,± and normalized by Φǫ(Z0(ǫ)) = 0.

Let

Q± = ∪ǫ∈Vδ,±
({ǫ} ×Qǫ) ⊂ C

2 (2.25)

and let Φ± : Q± → C defined by Φ±(ǫ, Z) = Φǫ(Z). The function Φ± is holomorphic in
Int(Q±) (i.e. for ǫ 6= 0), and continuous in Q±.

Definition 2.4 A function Φǫ constructed in Theorem 2.3 is called a Fatou coordinate as-
sociated with the translation domain Qǫ. The base point of a Fatou coordinate is the point
Z0(ǫ) = Φ−1

ǫ (0).

3 The modulus of analytic classification

For ǫ = 0, Fatou coordinates are defined on translation domains which belong to the comple-
ment of a q-sheeted neighborhood of 0. If we consider an admissible line located in a sheet
on one side of the hole and the translation domain it generates, then, for q ≥ 2, this domain
intersects exactly two translation domains associated to admissible lines located on the other
side of the hole B0 (see Figure 4). Moreover, each of the two intersections is simply con-

B0

ℓ
j
+

ℓ
j
−

ℓ
j−1

ℓ
j−1
+

−

Figure 4: Four admissible lines and one translation domain (here q = 3)

nected, yielding that a comparison of the two Fatou coordinates is possible only in a domain
containing a half-plane. When ǫ 6= 0, we have a similar picture, but repeated at each of the
holes. Remember that the whole surface looks like Figure 2.

So, for the sector Vδ,+ (resp. Vδ,−), we consider 2q global Fatou coordinates Φ±
j,+ (resp.

Φ±
j,−) generated by admissible lines ℓ±j,+(ǫ) (resp. ℓ±j,−(ǫ)), j = 1, . . . q, located respectively

between B0 and either B1 or B−1 on the different sheets and generating admissible strips
Ĉ±

j,ǫ,+ (resp. Ĉ±
j,ǫ,−). The lines ℓ−j,− and ℓ+j,+ (resp. ℓ−j,+ and ℓ+j,−) pass through B0 and B−1

(resp. B0 and B1). (For the index j, we work (mod q).) They generate translation domains
Q±

j,ǫ,±. Their indices are chosen so that the translation domains of ℓ+j,±(ǫ) and ℓ−j,±(ǫ) (resp.
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ℓ+j+1,±(ǫ) and ℓ−j,±(ǫ)) intersect and contain an “upper domain” (resp. “lower domain”), i.e. a

domain whose intersection with Ĉ±
j,ǫ,± contains an upper end (resp. lower end) of the cylinder

Ĉ±
j,ǫ,±/Gǫ.

We define {
Ψ∞

j,ǫ,± = Φ−
j,ǫ,± ◦ (Φ+

j,ǫ,±)−1,

Ψ0
j,ǫ,± = Φ−

j,ǫ,± ◦ (Φ+
j+1,ǫ,±)−1,

(3.1)

j = 1, . . . , q, where we identify Φ+
q+1,ǫ,± = Φ+

1,ǫ,±.

Remark 3.1 Note that the Fatou coordinates are only defined up to composition on the left
with translations. (2q− 1) of these degrees of freedom will be used to “normalize” the Fatou
coordinates. The remaining degree of freedom will be used later to adjust the families Ψ0,∞

j,ǫ,±

so that they become 1-summable in ǫ.

Whenever possible, we will drop the lower indices ± referring to the sectors.

Lemma 3.2 [13] The maps Ψ0,∞
j,ǫ,±(W )−W can be expanded as Fourier series with constant

terms A0,∞
j,ǫ,±. It is possible to compose the Fatou coordinates with translations so that all

A0,∞
j,ǫ,± = A0,∞

ǫ for

A0
ǫ = −A∞

ǫ = πia/q.

Definition 3.3 A set of Fatou coordinates Φ±
j,ǫ, j = 1, . . . q, such that the corresponding

transition maps Ψ0,∞
j,ǫ , j = 1, . . . , q, have constant terms as in Lemma 3.2, is called a normal-

ized set of Fatou coordinates.

From now on, we will only consider normalized set of Fatou coordinates.

Proposition 3.4 Here we drop the lower indices ± in the Ψ0,∞
j,ǫ,±.

1. Each map Ψ0,∞
j,ǫ commutes with the translation by 1: Ψ0,∞

j,ǫ ◦T1 = T1 ◦Ψ0,∞
j,ǫ . Hence Ψ∞

j,ǫ

(resp. Ψ0
j,ǫ) induces a mapping Ψ̂∞

j,ǫ (resp. Ψ̂0
j,ǫ) defined on an open set of the cylinder

C/Z with values in C/Z.

2. Using the exponential function W 7→ w = E(W ) = exp(−2iπW ), we can identify C/Z
with the sphere minus two points : CP

1 \ {0,∞}. The upper end of the cylinder C/Z,
corresponds to ∞ ∈ CP

1 and the lower end to 0. Conjugating Ψ0,∞
j,ǫ with E yields

analytic diffeomorphisms ψ0,∞
j,ǫ = E ◦ Ψ0,∞

j,ǫ ◦ E−1. ψ0
j,ǫ (resp. ψ∞

j,ǫ) is defined in the

neighborhood of 0 and (resp. ∞) on CP
1 and such that ψ0

j,ǫ(0) = 0 (resp. ψ∞
j,ǫ(∞) = ∞).

3. The functions ψ0,∞
j,ǫ,± depend analytically on ǫ 6= 0 in Vδ,± and are continuous in ǫ at

ǫ = 0.

4. The derivatives of ψ0,∞
j,ǫ are given by

{
(ψ0

j,ǫ)
′(0) = exp(2π2a/q),

(ψ∞
j,ǫ)

′(∞) = exp(2π2a/q).
(3.2)
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ψ∞
1ψ∞

2

ψ∞
3

ψ0
2

ψ0
3

ψ0
1

S
1,0
+

S
1,0
-

S
2,0

+

+S
3,0

S
2,0
-

S
3,0

-

(a) ǫ = 0

ψ∞
1,ε,+

ψ∞
2,ε,+

ψ∞
3,ε,+

ψ0
1,ε,+

ψ0
2,ε,+

ψ0
3,ε,+

S
1,ε

+

S
2,ε S

1,ε

S
2,ε

S
3,ε

S
3,ε

+

+

-

-

-

(b) ǫ ∈ Vδ,+, arg ǫ = π/2

ψ∞
1,ε,−

ψ∞
2,ε,−

ψ∞
3,ε,−

ψ0
1,ε,−

ψ0
2,ε,−

ψ0
3,ε,−

S
1,ε

S
1,ε

S
2,ε

S
2,ε

S
3,ε

+

+

+ S
3,ε

-

-

-

(c) ǫ ∈ Vδ,−, arg ǫ = −π/2

Figure 5: The maps ψj,ǫ for different values of ǫ

Since gǫ = fn
ǫ , it happens that only Ψ0,∞

1,ǫ are independent, and the other Ψ0,∞
j,ǫ , j > 1 are

conjugate to them by translations.

Proposition 3.5 We consider a map gǫ as in (2.11), being the q-th iterate of a map fǫ as in
(2.8), the corresponding lifted diffeomorphism Gǫ, and a normalized set of Fatou coordinates
on either Vδ,+ or Vδ,−.

1. Let σ defined by σ(j) = j + p (mod q) be the shift which represents the iterates of
exp(2πi/q) under multiplication by exp(2πip/q). Then

Ψ0,∞
σ(j),ǫ = T 1

q
◦ Ψ0,∞

j,ǫ ◦ T− 1

q
. (3.3)

2. Let τ = exp
(

2πi
q

)
. Then,

ψ0,∞
σ(j),ǫ = Lτ−1 ◦ ψ0,∞

j,ǫ ◦ Lτ . (3.4)

3. Once Φ±
1,ǫ is chosen, the other Fatou coordinates can be taken such that

Φ±
σ(j),ǫ ◦ Fǫ = T 1

q
◦ Φ±

j,ǫ. (3.5)

Definition 3.6 Two germs of analytic families fǫ and f ǫ of diffeomorphisms with a fixed
point at the origin are conjugate if there exists a germ of analytic diffeomorphism H(ǫ, z) =
(k(ǫ), h(ǫ, z)) fibered over the parameter space such that

hǫ ◦ fǫ = fk(ǫ) ◦ hǫ, (3.6)

where hǫ(z) = h(ǫ, z).
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ψ∞
1,ε,+

ψ∞
2,ε,+

ψ∞
3,ε,+

ψ0
1,ε,+

ψ0
2,ε,+

ψ0
3,ε,+

ψ0
1,ε,+

ψ0
1,ε,+

ψ0
1,ε,+

ψ0
1,ε,+

ψ0
3,ε,+

ψ0
3,ε,+

ψ0
3,ε,+

ψ0
3,ε,+ ψ0

2,ε,+

ψ0
2,ε,+

ψ0
2,ε,+

ψ0
2,ε,+

ψ∞
3,ε,+

ψ∞
3,ε,+

ψ∞
3,ε,+ψ∞

3,ε,+

ψ∞
1,ε,+

ψ∞
1,ε,+

ψ∞
1,ε,+

ψ∞
1,ε,+

ψ∞
2,ε,+

ψ∞
2,ε,+ ψ∞

2,ε,+

ψ∞
2,ε,+

Figure 6: The crescents and maps ψ0,∞
j,ǫ,+ for ǫ ∈ Vδ,+

Theorem 3.7 We consider two germs of “prepared” families fǫ and f ǫ of the form (2.8),
i.e. so that the families of their q-th iterates gǫ and gǫ are prepared of the form (2.11). We
choose common sectors Vδ,± on which the previous analysis applies. Then the two families
are conjugate if and only if they have the same formal invariants a(ǫ) and there exist analytic
functions C±(ǫ) : Vδ,± → C

∗ bounded and bounded away from zero and an integer m ∈
{0, . . . , q − i}, such that for any ǫ ∈ Vδ,±

ψ0,∞
j,ǫ,± = L(C±(ǫ))−1 ◦ ψ0,∞

j+m,ǫ,± ◦ LC±(ǫ). (3.7)

Definition 3.8 The families
(
a(ǫ),

(
ψ0,∞

j,ǫ,±

)
/ ∼

)
, where ∼ is defined in (3.7) is called the

modulus of the germ of prepared family F . The germ of analytic map a(ǫ) is called the formal

part of the modulus, while
(
ψ0,∞

j,ǫ,±

)
/ ∼ is called the analytic part.

Remark 3.9 Note that with the notation we have chosen, the direction of the maps ψ0,∞
j,ǫ,±

corresponds to identification of orbits when following the dynamics of gǫ forward. The maps
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ψ∞
1,ε,−

ψ∞
2,ε,−

ψ∞
3,ε,−

ψ0
1,ε,−

ψ0
2,ε,−

ψ0
3,ε,−

ψ∞
1,ε,−

ψ∞
1,ε,−

ψ∞
1,ε,−

ψ∞
1,ε,−

ψ∞
2,ε,−

ψ∞
2,ε,−

ψ∞
2,ε,−

ψ∞
2,ε,−

ψ∞
3,ε,−

ψ∞
3,ε,−

ψ∞
3,ε,−

ψ∞
3,ε,−

ψ0
1,ε,−

ψ0
1,ε,− ψ0

1,ε,−

ψ0
1,ε,−

ψ0
3,ε,−

ψ0
2,ε,−

ψ0
3,ε,−

ψ0
2,ε,−

ψ0
3,ε,−ψ0

2,ε,−

ψ0
2,ε,−

ψ0
3,ε,−

Figure 7: The crescents and maps ψ0,∞
j,ǫ,− for ǫ ∈ Vδ,−

ψ∞
j,ǫ,± (resp. ψ0

j,ǫ,±) are defined in the regions where the dynamics of gǫ near the boundary of
U is in the positive (resp. negative) direction.

3.1 The Lavaurs phase

Proposition 3.10 1. For Vδ,+, the q Lavaurs translations are the maps

Tj,ǫ,+ = Φ+
j,ǫ,+ ◦ T−qα(ǫ) ◦ (Φ−

j,ǫ,+)−1 : Q−
j,+ → Q+

j,+. (3.8)

2. For Vδ,−, the q Lavaurs translations are the maps

Tj,ǫ,− = Φ+
j+1,ǫ,− ◦ T−qα(ǫ) ◦ (Φ−

j,ǫ,−)−1 : Q−
j,− → Q+

j+1,−. (3.9)

3. When the Fatou coordinates are normalized, the Lavaurs translations are given by

Tj,ǫ,±(W ) = W ∓
(

2πi

qǫ
+
πia

q

)
. (3.10)
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3.2 The Glutsyuk point of view

It is also possible to take admissible lines parallel to the lines of holes as in Figure 8 when
we limit ourselves to values of ǫ in Vr ∪ Vl, which we call the Glutsyuk domain. Then the

z
0 z

0

z
0

z
0

z
0

z
0

z
j

z
j

z
j

z
j

z
j

z
j

Figure 8: Continuous families of admissible lines and strips for ǫ in the Glutsyuk domain (for
the sake of simplicity we have not drawn the ramification of Sǫ at the holes)

fundamental domains are tori since Gǫ commutes with Tqα (details as in [7]). The Fatou
coordinates on the associated translation domains yield analytic changes of coordinates to
the model family in the neighborhood of each of the fixed points of gǫ: these are named ΦG

j,ǫ,r

and ΦG
j,ǫ,l for those covering a neighborhood of zj and ΦG,j

0,ǫ,r and ΦG,j
0,ǫ,l for those covering a

neighborhood of z0 (there are q of these, one in each sheet of the covering). The lower index
is r (resp. l) if ǫ ∈ Vr (resp. ǫ ∈ Vl). As in the proof of Proposition 3.5, we can show that
they can be chosen so as to satisfy (for ∗ ∈ {r, l})

ΦG
σ(j),ǫ,∗(Fǫ(Z)) = ΦG

j,ǫ,∗(Z) + 1
q ,

Φ
G,σ(j)
0,ǫ,∗ (Fǫ(Z)) = ΦG,j

0,ǫ,∗(Z) + 1
q .

(3.11)

From the shape of the Riemann surface as in Figure 2, it is clear that, for ∗ ∈ {r, l}, the
domain of any ΦG

j,ǫ,∗ intersects the domain of ΦG,j
0,ǫ,∗.

The transitions between the Fatou coordinates are given by (Figures 8 and 9)

ΨG
j,ǫ,r = ΦG,j

0,ǫ,r ◦ (ΦG
j,ǫ,r)

−1,

ΨG
j,ǫ,l = ΦG

j,ǫ,l ◦ (ΦG,j
0,ǫ,l)

−1.
(3.12)
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They depend continuously on ǫ as ǫ→ 0. At the limit the domain becomes disconnected and
the ΨG

j,ǫ,± tend to Ψ0
j on one half of the domain and Ψ∞

j on the other half.

ψψ
1

G
ψ

2
G

ψ
33

G

(a) ǫ ∈ Vl

ψ
11
G

ψψψ
2
G

ψ
3
G

(b) ǫ ∈ Vr

Figure 9: The Glutsyuk maps

Proposition 3.11 For ∗ ∈ {L,R},

ΨG
σ(j),ǫ,∗ = T 1

q
◦ ΨG

j,ǫ,∗ ◦ T− 1

q
. (3.13)

Remark 3.12 The projection by pǫ of a Glutsyuk translation domain on which we can bring
the family to the model yields a neighborhood of one fixed point of fǫ on which the family is
conjugate to the model.

3.3 The Martinet-Ramis point of view

In [8], Martinet and Ramis present the orbit space of f0 as the union of two spheres identified
in the neighborhoods of 0 and ∞ by two germs of diffeomorphisms (instead of our descriptions
with 2q-spheres and 2q germs of diffeomorphisms). Their description carries over to the
unfolding.

We consider a normalized set of (Lavaurs) Fatou coordinates generated by admissible lines
ℓ±j (ǫ). These lines together with their images Gǫ(ℓ

±
j (ǫ)) determine strips Ĉ±

j,ǫ. Their images

by pǫ are crescents C±
j,ǫ. Their quotient under gǫ are conformally equivalent to CP

1 \ {0,∞}
by Proposition 3.4. We call these quotient spaces S±

j,ǫ.

Proposition 3.13 [13] Over each sector Vδ,±, the orbit space of fǫ is described by the union
of the two spheres S+

1,ǫ ∪ S−
1,ǫ identified in the neighborhood of ∞ (resp. 0) by ψ∞

ǫ (resp. ψ0
ǫ)

where
ψ0,∞

ǫ : S+
1,ǫ → S−

1,ǫ,

are defined by {
ψ∞

ǫ = ψ∞
1,ǫ

ψ0
ǫ = ψ0

1,ǫ ◦ Lτm

(3.14)
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with

Lτm(w) = exp

(
2πim

q

)
w, where mp ≡ −1 (mod q). (3.15)

4 The compatibility condition

We decide to work in the Martinet-Ramis point of view described in Section 3.3.

4.1 The renormalized maps

Using normalized Fatou coordinates and conjugating the Lavaurs translations by E yields
Lavaurs linear maps, Lν±(ǫ),±, where

ν±(ǫ) = exp

(
∓

(
4π2

qǫ
+

2π2a

q

))
. (4.1)

We simply note them Lν± .

Proposition 4.1 1. For ǫ ∈ Vδ,+ \ {0}, there exist for the map gǫ:

i) renormalized return maps: k±1,ǫ,+ : S±
1,ǫ → S±

1,ǫ, defined by

k+
1,ǫ,+ = Lν+

◦ψ∞
ǫ,+, k−1,ǫ,+ = ψ∞

ǫ,+ ◦ Lν+
; (4.2)

ii) renormalized return maps: k±0,ǫ,+ : S±
1,ǫ → S±

1,ǫ defined by

k+
0,ǫ,+ = Lν+

◦ψ0
ǫ,+. k−0,ǫ,+ = ψ0

ǫ,+ ◦ Lν+
. (4.3)

2. For ǫ ∈ Vδ,− \ {0}, there exist for the map gǫ:

i) renormalized return maps: k±1,ǫ,− : S±
1,ǫ → S±

1,ǫ defined by

k+
1,ǫ,− = Lν− ◦ Lτ−m ◦ψ0

ǫ,−, k−1,ǫ,− = ψ0
ǫ,− ◦ L−1

τ−m ◦ Lν− ; (4.4)

ii) renormalized return maps: k±0,ǫ,− : S±
1,ǫ → S±

1,ǫ defined by

k+
0,ǫ,− = Lν− ◦ Lτ−m ◦ψ∞

ǫ,−, k−0,ǫ,− = ψ∞
ǫ,− ◦ Lτ−m ◦ Lν− . (4.5)

Proof. We calculate one case. The others are done in a similar way. To decide which maps
to compose, it is best to use Figure 5. The basic ingredients are the following:

ψ0,∞
j−1 = Lτ−m ◦ ψ0,∞

j ◦ Lτm, (4.6)

Lτm : S±
j−1 → S±

j . (4.7)

1. ii) We have ψ0
q−1,ǫ,+ : S+

1 → S−
q−1. Hence, for k+

0,ǫ,+, we compose it on the left with

Lν+
, thus having a map ψ0

q−1,ǫ,+ ◦Lν+
: S+

1 → S+
q−1.We finally compose on the left

with Lτm to get Lτm ◦ Lν+
◦ ψ0

q−1,ǫ,+ : S+
1 → S+

1 (using (4.7)).

k+
0,ǫ,+ = Lτm ◦ Lν+

◦ ψ0
q−1,ǫ,+

= Lν+
◦ ψ0

1,ǫ,+ ◦ Lτm = Lν+
◦ψ0

ǫ,+.
(4.8)

We finally use (4.6) and (3.14) to get the result.
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4.2 The compatibility condition

The two sectors Vδ,± intersect in two smaller sectors Vl and Vr (Figure 1). Over these sectors
we have two different moduli representing the same family. The compatibility condition
expresses that these two moduli encode the same dynamics. Note that, on Vl and Vr, all
maps k±j,ǫ,±, j ∈ {0, 1}, of Proposition 4.1 are linearizable.

It is possible to recover the Glutsyuk modulus (3.12) (or its conjugate by E) from the
renormalized return maps kj,ǫ,± of Proposition 4.1 in w-coordinate (or either W -coordinate
as in [1]). This is rather straightforward and could be written in all details as in [1]. We have
chosen to use the Martinet-Ramis point of view in order to avoid working on the q-sheeted
space where the details look messier than they really are.

Later in Section 5.1, we will give a geometric justification of this trick, when realizing
each germ of family of diffeomorphisms as a germ of a family of holonomies of a separatrix
of a family of saddles.

Theorem 4.2 We consider a germ of family of diffeomorphisms with modulus defined as
before. For ǫ ∈ Vl ∪Vr, let h±j,ǫ,±, j ∈ {0, 1}, the map tangent to the identity linearizing k±j,ǫ,±.
There exists constant D(l, ǫ), D(r, ǫ), D′(l, ǫ) and D′(r, ǫ) such that

h+
1,ǫ,+ ◦ (h+

0,ǫ,+)−1 = LD(l,ǫ) ◦ h−1,ǫ,− ◦ (h−0,ǫ,−)−1 ◦ LD′(l,ǫ), ǫ ∈ Vl, (4.9)

h+
0,ǫ,+ ◦ (h+

1,ǫ,+)−1 = LD(r,ǫ) ◦ h−0,ǫ,− ◦ (h−1,ǫ,−)−1 ◦ LD′(r,ǫ), ǫ ∈ Vr. (4.10)

Proof. The proof is similar to that of [1] made in the coordinate W = E−1(w), but here
we write it directly in the w-coordinate. Because the fixed points of gǫ are linearizable, a
fundamental domain is given by a torus (see Figure 9) of modulus 2πi

µj
. We look for a covering

map on a sphere minus two points. This sphere is identified to an infinite cylinder, infinitely
winding over the torus. If we choose to normalize the diameter of the cylinder to 1, then
points w and 2πi

µj
w are sent to the same torus point. So looking for this spherical coordinate

near a fixed point is equivalent to linearizing the renormalized return map. This linearizing
map is unique up to composition on the left with linear maps. Hence, the comparison of
these linearizing maps, an expression of the Glutsyuk modulus in these spherical coordinates,
is unique up to composition on the left and on the right with linear maps. In (4.9), a first
expression of the Gutsyuk modulus is given by h+

1,ǫ,+ ◦ (h+
0,ǫ,+)−1 using the description of the

dynamics on V+. A second expression is given by h−1,ǫ,−◦(h−0,ǫ,−)−1 using the description of the
dynamics on V−. Thus, the two must coincide up to composition with linear diffeomorphisms.
The same reasoning is done on Vr. 2

Remark 4.3 On Vl or Vr, the choice of h±j,ǫ,+ or h±j,ǫ,− comes from the fact that we must
compare in the same region of z-space. Indeed, the constants ν±(ǫ) defined in (4.1) are
exponentially small or large.

Theorem 4.4 It is possible to choose Fatou coordinates such that the constant D(l, ǫ) ≡
(ψ∞

ǫ,−)′(∞) (resp. D(r, ǫ) ≡ (ψ0
ǫ,−)′(0)). Under this condition, there exists A > 0 such that,

for ǫ ∈ Vl ∪ Vr: ∣∣∣ψ0,∞
ǫ,− −ψ0,∞

ǫ,+

∣∣∣ = O

(
exp

(
−A

|ǫ|

))
. (4.11)
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Proof. It follows the ideas of [13]. The equation (4.9) allows to compute the involved h±j,ǫ,±:





h+
0,ǫ,+ = id+O

(
exp

(
− A

|ǫ|

))
,

h−1,ǫ,− = id+O
(
exp

(
− A

|ǫ|

))
,

(h−0,ǫ,−)−1 = ψ∞
ǫ,− ◦ LB1(ǫ) +O

(
exp

(
− A

|ǫ|

))
,

h+
1,ǫ,+ = LB1(ǫ) ◦ψ∞

ǫ,+ +O
(
exp

(
− A

|ǫ|

))
,

(4.12)

where
B1(ǫ) = (ψ∞

ǫ,−)′(∞) = (ψ∞
ǫ,+)′(∞). (4.13)

There is one degree of freedom for each of the four Fatou coordinates Φ±
j,ǫ,±. Two are used

for normalizing the Fatou coordinates. One is used for adjusting D(l, ǫ) and the other for
adjusting D(r, ǫ). The details are written below. Suppose now that we have adjusted the
Fatou coordinates so as to get D(l, ǫ) ≡ (ψ∞

ǫ,−)′(∞).
This implies that

D′(ǫ, l) ≡ ((ψ∞
ǫ,−)′(∞))−1 +O

(
exp

(
−A

|ǫ|

))
.

This, together with (4.12), allows to conclude that

∣∣ψ∞
ǫ,− −ψ∞

ǫ,+

∣∣ = O

(
exp

(
−A

|ǫ|

))
. (4.14)

To get the other part, namely

∣∣ψ0
ǫ,− −ψ0

ǫ,+

∣∣ = O

(
exp

(
−A

|ǫ|

))
, (4.15)

we remark that we can obtain the h∓j,ǫ,± from the h±j,ǫ,± and then replace in (4.9). Indeed,





h−j,ǫ,+ = Lν−1

+

◦ h+
j,ǫ,+ ◦ Lν+

, j ∈ {0, 1},
h−j,ǫ,− = Lν−1

−
τm ◦ h+

j,ǫ,− ◦ Lν−τ−m , j ∈ {0, 1},
ν+ = ν−1

− ,

(ψ0
ǫ )′(0) = τm(ψ∞

ǫ )′(∞).

(4.16)

The substitution in (4.9) yields

h−1,ǫ,+ ◦ (h−0,ǫ,+)−1 = LD(l,ǫ)τm ◦ h+
1,ǫ,− ◦ (h+

0,ǫ,−)−1 ◦ LD′(l,ǫ)τ−m . (4.17)

Now, 



(h−0,ǫ,+)−1 = ψ0
ǫ,+ ◦ LB2(ǫ) +O

(
exp

(
− A

|ǫ|

))
,

h+
1,ǫ,− = LB2(ǫ) ◦ ψ0

ǫ,− +O
(
exp

(
− A

|ǫ|

))
,

(h+
0,ǫ,−)−1 = id+O

(
exp

(
− A

|ǫ|

))
,

h−1,ǫ,+ = id+O
(
exp

(
− A

|ǫ|

))
,

(4.18)
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with

B2(ǫ) = ((ψ0
ǫ,+)′(0))−1. (4.19)

Replacing in (4.17) yields (4.15).

The right side is done similarly, using (4.10). The calculations yield





h+
1,ǫ,+ = id+O

(
exp

(
− A

|ǫ|

))
,

h−0,ǫ,− = id+O
(
exp

(
− A

|ǫ|

))
,

(h−1,ǫ,−)−1 = ψ0
ǫ,− ◦ LB3(ǫ) +O

(
exp

(
− A

|ǫ|

))
,

h+
0,ǫ,+ = LB3(ǫ) ◦ψ0

ǫ,+ +O
(
exp

(
− A

|ǫ|

))
,

(4.20)

with

B3(ǫ) = ((ψ0
ǫ,−)′(0))−1. (4.21)

We use the last degree of freedom in the choice of Fatou coordinates (see details below) to
set

D(r, ǫ) ≡ ((ψ0
ǫ,−)′(0))−1,

yielding

D′(r, ǫ) ≡ (ψ0
ǫ,−)′(0) +O

(
exp

(
−A

|ǫ|

))
.

We also have 



h−0,ǫ,+ = id+O
(
exp

(
− A

|ǫ|

))
,

h+
1,ǫ,− = id+O

(
exp

(
− A

|ǫ|

))
,

h+
0,ǫ,− = LB4(ǫ) ◦ψ∞

ǫ,− +O
(
exp

(
− A

|ǫ|

))
,

(h−1,ǫ,+)−1 = ψ∞
ǫ,+ ◦ LB4(ǫ) +O

(
exp

(
− A

|ǫ|

))
,

(4.22)

with

B4(ǫ) = (ψ∞
ǫ,−)′(∞). (4.23)

We are now left to explain how we adjust the Fatou coordinates, so as to get the special
values of the constants D(l, ǫ) and D(r, ǫ). We look for functions D±(ǫ) defined respectively
on V± such that

D+(ǫ)(D−(ǫ))−1 =

{
B1(ǫ)(D(l, ǫ))−1, ǫ ∈ Vl,

B3(ǫ)(D(r, ǫ))−1, ǫ ∈ Vr.

Indeed, we have (4.9). The degree of freedom allows to change ψ0,∞
ǫ,± to LD±(ǫ) ◦ ψ0,∞

ǫ,± ◦
L(D±(ǫ))−1 . Then, this changes the functions h±j,ǫ,± to LD±(ǫ) ◦ h±j,ǫ,± ◦ L(D±(ǫ))−1 . The new
constant Dnew(l, ǫ) (resp. Dnew(r, ǫ)) in the compatibility condition becomes

{
Dnew(l, ǫ) = D(l, ǫ)D+(ǫ)(D−(ǫ))−1, ǫ ∈ Vl,

Dnew(r, ǫ) = D(r, ǫ)D+(ǫ)(D−(ǫ))−1, ǫ ∈ Vr.

The functions D±(ǫ) are just found as solutions of the second Cousin problem. 2
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5 Link between the holonomies of the two separatrices of a

saddle

We start by justifying why it is relevant to study the link between the holonomies of the two
separatrices of a saddle.

5.1 The geometric justification of the reduction to the case q = 1

Below, we will use the following trick to reduce to the case q = 1. Indeed, it is shown in [13]

that, for general multiplier exp
(
2πipq

)
, the modulus is given by

(i) the codimension 1,

(ii) the multiplier exp
(
2πipq

)
,

(iii) the canonical parameter,

(iv) the unfolding a(ǫ) of the formal invariant,

(v) the family of pairs (ψ0
ǫ,±,ψ

∞
ǫ,±)ǫ∈V±

.

Only (ii) depends on the multiplier. Moreover, (v) depends only of a (mod 1
2πi).

We will show below in Section 6 that, given any p1, q1 ∈ N
∗ such that (p1, q1) = 1 and

p1 ≤ q1, and any p′1 ∈ N
∗ such that p′1 ≡ −p1 (mod q1), for any unfolding fǫ of a germ of

resonant diffeormorphism with multiplier (for ǫ = 0) of the form exp
(
2πi

p′1
q1

)
there exists an

unfolding of germ of vector field Xǫ at a resonant saddle point with hyperbolicity ratio
p′
1

q1
for

ǫ = 0, such that fǫ is the holonomy of the x-separatrix of Xǫ. In practice, we can suppose
p′1 ≤ q1 (since otherwise we can multiply the vector field by q1

p′
1

to attain this case). We apply

this construction to find an unfolding of a vector field with eigenvalues 1 and −p′
1

q1
where

p′1 =

{
q1 − p1, p1 < q1,

1, q1 = 1.

The holonomy hx of the x-separatrix has multiplier exp
(
2πip1

q1

)
, while the holonomy hy of

the y-separatrix has multiplier exp
(
2πip2

q2

)
, with

exp

(
2πi

p2

q2

)
= exp

(
2πi

q1
p1

)
= exp

(
2πi

q1 − p1

p1

)

for ǫ = 0. We will derive the relation between the canonical parameter ǫ1 = ǫ of hx = h1 and
the canonical parameter ǫ2 of hy = h2. We also compute the relation between their formal
invariants. Moreover, we will show that for the analytic part of the modulus ψ0,∞

ǫ1,x of hx and

ψ0,∞
ǫ2,y of hy, we have the relation:

ψ0,∞
ǫ1,x = H ◦ (ψ∞,0

ǫ2,y )−1 ◦H,
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where

H(w) =
1

w
.

So our construction has produced a new map hy with a multiplier exp
(
2πip2

q2

)
with q2 < q1.

We can iterate the construction until qn = 1. Now, we can proceed backwards. We
start with a family hn which is realizable. Then we realize hn−1, etc., until we realize h1.
Hence, it suffices to derive the sufficient condition for realizability for a family of resonant
diffeomorphisms in the case of a multiplier equal to 1.

Before deriving this sufficient condition, we first write the details of the correspondence
between the moduli of the two separatrices of a saddle.

5.2 Link between the holonomies of the two separatrices of a saddle

If we consider a germ of generic family of analytic vector fields unfolding a codimension 1
resonant saddle with hyperbolicity ratio p′

q , it is possible, by an analytic change of coordinates
and scaling of time, to bring it to a prepared form Xǫ given by

Xǫ =

{
ẋ = x

ẏ = y[−(p′

q + η) + α(η)u +O(u2)],
(5.1)

with u = xp′yq, such that the holonomy of the x-separatrix on the section x = 1 is in prepared
form (modulo a rotation in y of angle π

2q ) with canonical parameter

ǫ = 2πip′η, (5.2)

and the invariant manifold has the equation u = ǫ.
If one looks at the holonomy of one separatrix for a germ of resonant saddle point, for

instance the holonomy of the x-separatrix, it is possible to scale the x-variable so that the
section x = 1 belongs to the domain of definition, U , of a representative of the germ and to
scale y and the parameter so that the holonomy of the x-separatrix be prepared. We then
have used all our degrees of freedom in scaling and it is not possible to simultaneously scale
x and y so that y = 1 is included in U and the holonomy of the y-axis be prepared. We will
prefer a different scaling: we rather choose to scale x and y so that x = 1 and y = 1 both are
included in U . Using a change of variable tangent to the identity and a change of parameter

η = Dǫ

we can suppose that the invariant manifold be given by

xp′qq = ǫ.

Then, on x = 1 (resp. y = 1) the periodic points have equation yq = ǫ (resp. xp′ = ǫ). Let
fx (resp. fy) be the holonomies of the x (resp. y) separatrix. Then the canonical parameters
ǫx and ǫy for fx (resp. fy) are defined through

{
(f q

x)′(0) = exp(−2πip′η) = exp(−2πip′Dǫ) = exp(−ǫx),

(fp′
y )′(0) = exp(2πiq η

1+η ) = exp(2πiq Dǫ
1+Dǫ) = exp(−ǫy).

(5.3)
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The formal parameters ax (resp. ay) of fx (resp. fy) are defined through




(f q
x)′(ǫx) = exp

(
qǫx

1+axǫx

)
,

(fp′
y )′(ǫy) = exp

(
p′ǫy

1+ayǫy

)
,

(5.4)

the latter definition yielding a well defined limit as ǫx → 0 (resp. ǫy → 0).

Proposition 5.1 The canonical parameters ǫx and ǫy associated to the respective holonomies
fx and fy of the x- and y- separatrices satisfy

ǫx = − 2πip′ǫy
ǫy + 2πiq

. (5.5)

In particular, the images of sectors V±,x(δ) contain sectors V±,y(δ
′) for some δ′ and conversely.

To prepare the family which is the unfolding of fx (resp. fy), an additional scaling x 7→ x̃

(resp. y 7→ ỹ) is needed so that the equation of fixed points of f q
x (resp fp′

y ) becomes x̃q = ǫx
(resp. ỹp′ = ǫy). Moreover,

ǫx ∈ iR ⇐⇒ ǫy ∈ iR.

Proof. To study the holonomy fx of the x-axis we consider the family in prepared form
with canonical parameter ǫx for fx. The family in prepared form is formally equivalent to a
family

ẋ = x(1 +Ax(ǫx)u),

ẏ = −p′

q y(1 + ηx)(1 +Bx(ǫx)u),
(5.6)

where ǫx = 2πip′ηx, in which u = ǫx is an invariant manifold, yielding

Bx(ǫx) =
Ax(ǫx)

1 + ηx
− 1

2πip′(1 + ηx)
. (5.7)

Then the formal parameter a(ǫx) for fx is simply ax(ǫx) = Ax(ǫ). 2

Remark 5.2 Even if a scaling in the variable is missing so that a family be in prepared form
we can still suppose that we have the same Fatou coordinates. We only need to compose the
map p−1

ǫ with the given scaling. We call the composition p−1
x (resp. p−1

y ) and drop the index
ǫ.

Theorem 5.3 We consider a family (5.1) of vector fields in prepared form. Then

(1) If ǫx (resp. ǫy) is the canonical parameter of the holonomy fx of the x-axis (resp. the
holonomy fy of the y-axis) and ax(ǫx) (resp. ay(ǫy)) is the formal parameter of fx

(resp. fy) then

ay(ǫy) = Ay(ǫy) = −p
′

q
ax(ǫx) +

1

2πiq
. (5.8)

(2) There exists appropriate representatives (ψ0
x,ǫx

,ψ∞
x,ǫx

) (resp. (ψ0
y,ǫy

,ψ∞
y,ǫy

)) of the mod-
ulus of fx (resp. fy) such that

{
ψ0

x,ǫx
= H ◦ (ψ∞

y,ǫy
)−1 ◦H−1

ψ∞
x,ǫx

= H ◦ (ψ0
y,ǫy

)−1 ◦H−1,
(5.9)

where H(w) = 1/w.
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(3) In particular, fx and f−1
y have the same analytic part of the modulus (but not the same

formal invariant!): if (ψ̂
0

y,ǫy
, ψ̂

∞

y,ǫy
)) is the analytic part of the modulus of f−1

y , then

(ψ0
x,ǫx

,ψ∞
x,ǫx

) = (ψ̂
0
y,ǫy

, ψ̂
∞
y,ǫy

). (5.10)

Proof.

(1) In order that the invariant manifold u = ǫx for (5.6) becomes u′ = ǫy when we prepare
(5.6) with x and y interchanged, we need to scale (x, y) 7→ (x′, y′) = (αx, βy) with

αp′βq = C = − q
p′(1+ηx) = − q(1+ηy)

p′ . This yields By(ǫy) = Ax(ǫx)
C and Ay(ǫy) = Bx(ǫx)

C .

From (5.7) we also get

By(ǫy) =
Ay(ǫy)

1 + ηy
− 1

2πiq(1 + ηy)
(5.11)

as expected. The formal invariant ay(ǫy) = Ay(ǫy) for the holonomy fy is then given
by (5.8).

(2) We now consider the Dulac map ∆ from a section {y = 1} to a section {x = 1} (see for
instance [6]). The Dulac map is defined as follows: let (x, 1) be a point of the section.
We define ∆(x) as the endpoint of the lifting inside the leaf starting from (x, 1) of the
path from x to x

|x| followed by the path from x
|x| to 1 along the circle of radius 1 in

the positive direction. Since both the map ∆ and its inverse are ramified, they must
be seen from the universal unfolding of a neighborhood of the origin in x-plane to the
universal unfolding of a neighborhood of the origin in y-plane. We call fx (resp. fy)
the holonomy of the x-axis (resp. y-axis). The map ∆ satisfies

{
∆ ◦Rx = f−1

x ◦ ∆,

∆−1 ◦Ry = f−1
y ◦ ∆−1,

(5.12)

where Rx (resp. Ry) is defined on the universal covering of a neighborhood of the origin
in x-space (resp. y-space) by Rx(x) = e2πix (resp. Ry(y) = e2πiy). By choosing an
adequate determination for ∆ we have that ∆ ◦ ∆−1 = id = ∆−1 ◦ ∆, from which it
follows that

(Ry)
−1 ◦ ∆ = ∆ ◦ fy. (5.13)

Noting that Rx (resp. Ry) commutes with fy (resp. fx), we finally get

∆ ◦ (Rx)−q ◦ (fy)
−p′ = Rp′

y ◦ f q
x ◦ ∆. (5.14)

Indeed, using (5.12) and (5.13), we have

∆ ◦ (Rx)−q ◦ (fy)
−p′ = (fx)q ◦ ∆ ◦ f−p′

y

= (fx)q ◦ (Ry)
p′ ◦ ∆

= Rp′
y ◦ f q

x ◦ ∆.

(5.15)

Let us now consider a crescent in {y = 1} for f−p′
y . It is limited by a curve ℓ (the

inverse image of a line in Z-space), and its image ℓ1 = f−p′
y ◦R−q

x (ℓ). It follows that its
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∆

y = 1

x = 1

(a) ǫ = 0

∆

y = 1

x = 1

(b) ǫ 6= 0

Figure 10: The image of two crescents by ∆

image by ∆ yields a crescent limited by ∆(ℓ) and ∆(ℓ1) (Figure 10). Indeed, the map

fy is approximated by a rotation of angle −2πq
p′ . Hence, f−p′

y behaves like a rotation of

angle 2πq. Let (ψ0
x,ǫx

,ψ∞
x,ǫx

) (resp. (ψ0
y,ǫy

,ψ∞
y,ǫy

)) represent the modulus of fx (resp.
fy). Then, if we pass to the orbit space by identifying ℓ and ℓ1 and introducing the
spherical coordinate on the orbit space provided by the Fatou coordinate for f−1

y , then
the spherical coordinate is transported by ∆ on the sphere produced by identifying ∆(ℓ)
and ∆(ℓ1). It is the same as the spherical coordinate induced by the Fatou coordinate
for fx, yielding (5.9). 2

Remark 5.4 (i) Since (ψ0
j,ǫ)

′(0) = (ψ∞
j,ǫ)

′(∞) = exp(2π2a
q ), we have

(ψ0
ǫ)

′(0)(ψ∞
ǫ )′(∞) = exp(

4π2a

q
+

2πim

q
). (5.16)

This is compatible with (5.8) and (5.9). Indeed, let n such that

mp′ − nq = −1, (5.17)

which implies nq ≡ 1 (mod p′). Then

(ψ0
x)

′(0)(ψ∞
x )′(∞) = exp(4π2ax

q + 2πim
q ) = exp(−4π2ay

p′ + 2πi
p′q + 2πim

q )

= exp(−4π2ay

p′ + 2πimp′+1
p′q ) = exp(−4π2ay

p′ + 2πi n
p′ )

= ((ψ0
y)

′(0))−1((ψ∞
y )′(∞))−1.

(5.18)

(ii) If we were to normalize the representative (ψ0
x,ψ

∞
x ) of the modulus of fx, then we would

replace it by

(ψ
0
x,ψ

∞
x ) =

(
ψ0

x ◦ Lexp(πim
q

),ψ
∞
x ◦ Lexp(πim

q
)

)
,

so that

(ψ
0
x)′(0) = ((ψ

∞
x )′(∞))−1, (5.19)
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and, similarly, for f−1
y . If (ψ̌

0
y, ψ̌

∞
y ) is the normalized modulus for f−1

y , then

{
(ψ

0
x)

′(0) = (ψ̌
0
y)

′(0),

(ψ
∞
x )′(∞) = (ψ̌

∞
y )′(∞).

As expected, the following theorem is true:

Theorem 5.5 We consider

• relatively prime positive integers p′ and q,

• a germ of analytic function ax(ǫx),

• two germs of family of pairs of analytic diffeomorphisms (ψ0
x,ǫx,±,ψ

∞
x,ǫx,±)ǫx∈Vx,±(δx),

where Vx,±(δx) are germs of sectors in ǫ as before,

• and we suppose that, for p ≡ −p′ (mod q), the compatibility condition of Theorem 4.2
is satisfied by (ψ0

x,ǫx,±,ψ
∞
x,ǫx,±)ǫx∈Vx,±(δx).

Let ǫy, ay(ǫy) and (ψ0
y,ǫy,±,ψ

∞
y,ǫy,±)ǫy∈Vy,±(δy) be defined respectively by





ǫy = − 2πiqǫx

ǫx+2πip ,
ay

p = −ax
q + 1

2πipq ,

(ψ0
y,ǫy

,ψ∞
y,ǫy

) = (H ◦ (ψ∞
x,ǫx

)−1 ◦H−1,H ◦ (ψ0
x,ǫx

)−1 ◦H−1).

(5.20)

Then, (ψ0
y,ǫy

,ψ∞
y,ǫy

) satisfies the compatibility condition of Theorem 4.2. Moreover, ax ∈ iR
if and only if ay ∈ iR.

6 Realization of the unfolding of a resonant diffeomorphism

as the unfolding of the holonomy map of a resonant saddle

We consider an unfolding fǫ of a codimension 1 resonant diffeomorphism f0 with multiplier

exp
(
2πipq

)
. We say that it is prepared if its q-th iterate is prepared. In fact, it is not difficult

to show that, if gǫ is prepared, then the family fǫ can be written as

fǫ(z) = exp

(
2πi

p

q

)(
z +

1

q
z(zq − ǫ)(1 + h1(ǫ, z))

)
. (6.1)

The “model” (or formal normal form) for such a family is given by

f ǫ = L
exp

“

2πi p
q

”v
1

q
ǫ , (6.2)

where vt
ǫ is the time t-map of the vector field (2.14). Indeed, it suffices to see that a q-th root

of this form exists and to use the uniqueness of a q-th root with a given mutliplier.
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Theorem 6.1 We consider a prepared germ of generic family fǫ unfolding a codimension

1 resonant diffeomorphism f0 with multiplier exp
(
2πipq

)
. There exists a germ of family

of vector fields unfolding a resonant saddle with quotient of eigenvalues −p′

q (−p′(1+η)
q in

the unfolding) where p′ ∈ {1, . . . , q} and p′ ≡ −p (mod q), such that the germ of family of
holonomies of the x-separatrix on the section {x = 1} is the family fǫ.

Before going into the proof itself, we first need to refine the preparation.

Theorem 6.2 We consider a family (6.1) and its normal form f ǫ with same canonical pa-
rameter. Then for any k ∈ N

∗ there exists a germ of family of diffeomorphisms hǫ tangent to
the identity such that

fǫ ◦ hǫ − hǫ ◦ f ǫ = O
(
xk+1(xq − ǫ)k+1

)
. (6.3)

Proof. We first consider a change of coordinate z 7→ m(z) such that

f0 ◦m−m ◦ f0 = O
(
xk+1

)
.

We conjugate fǫ by m and obtain a new family. It is of course sufficient to make the proof
for this new family, which, for simplicity, we still note by fǫ. Let z0 = 0 be the fixed point of
fǫ, and z1, . . . , zq its periodic points. This new family has the property that

f (ℓ)
ǫ (zj) − f

(ℓ)
ǫ (zj) = O(ǫ), j = 0, . . . , q, ℓ ∈ {0, . . . , k}. (6.4)

The proof is by induction on k. The case k = 1 is the preparation already made. We look
for (we drop the index ǫ in hǫ and fǫ)

h(z) = z + zk(zq − ǫ)kPk(z),

where Pk(z) is a polynomial in z of degree less than or equal to k. The polynomial Pk(z) will
be uniquely determined if we determine uniquely the h(k)(zj). These in turn will be found by
asking that the k-th derivative of (6.3) vanishes at all fixed points. The k-th derivative of a
composition of two functions usually contains many terms. Fortunately, here all derivatives
h(ℓ)(zj) = 0 for 1 < ℓ < k. Hence, we are left with simple equations. Let f(zj) = zσ(j). Then
(we drop the indices)





(f ◦ h)(k)(0) = f (k)(0)(h′(0))k + f ′(0)h(k)(0),

(f ◦ h)(k)(zj) = f (k)(zj)(h
′(zj))

k + f ′(zj)h
(k)(zj),

(h ◦ f)(k)(0) = h(k)(0)(f
′
(0))k + h′(0)f

(k)
(0),

(h ◦ f)(k)(zj) = h(k)(zσ(j))(f
′
(zj))

k + h′(zσ(j))f
(k)

(zj).

Note that 


f ′(0) = f

′
(0) = exp

(
− ǫ

q

)
,

f ′(zj) = f
′
(zj) = exp

(
2πipq + ǫ

1+aǫ

)
.



26 C. Rousseau

The set of equations (f ◦ h)(k)(zj) = (h ◦ f)(k)(zj) in the unknowns h(k)(zj) has a matrix of
the form (up to reordering of rows)




α 0 0 0 · · · 0 0
0 βk −β 0 · · · 0 0
0 0 βk −β · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · βk −β
0 −β 0 0 · · · 0 βk




for nonzero α, β. The determinant of this matrix is equal to α(βkq − βq). Hence it does not
vanish when βq 6= 1 which is the case for nonzero ǫ. Some quantities are small, for instance
α = C1ǫ(1 + O(ǫ)) and also βnq2 − βq = C2ǫ(1 + O(ǫ)) for nonzero C1, C2 when k = nq for
some n ∈ N. But this is no problem since the right hand sides are also small because of (6.4)
and it is possible to find a solution which has a limit for ǫ = 0. 2

Proof of Theorem 6.1. To construct the family of vector fields unfolding the resonant
saddle, we consider the model family (5.6) in which we forget the index x. For this family

the holonomy f ǫ is exactly the model described above, namely f ǫ = L
exp

“

2πi p
q

”v
1

q
ǫ . The proof

is standard and follows closely the corresponding proof in [5]: we first construct the family of
vector fields on an abstract manifold and then use the Newlander-Nirenberg (see for instance
[9] for the theorem in finite differentiability) to show that this abstract manifold is indeed an
open neighborhood of the origin in C

2.
Indeed, we consider x̂ in the universal covering of x-space punctured at the origin and a

sector
V̂ =

{
x̂; |x̂| < 2, arg x̂ ∈

(
−π, 2π +

π

4

)}
.

Let Dr′ be a disk in y-space. Over V̂ × Dr′ we consider the model family (5.6) (in which we
replace x by x̂). For x = 1, we make the gluing

χ(x̂, y) = (x̂e2πi, fǫ ◦ (f ǫ)
−1(y))

and we extend along the leaves in the obvious way to the domain
{
x̂; |x̂| < 2, arg x̂ ∈

(
−π, π

4

)}
×

Dr′ .
A natural almost complex structure can be introduced over this space and shown to be

integrable, exactly as in [5]. This allows to fill the hole created by the missing x-axis. The
only thing we need to check is that we have sufficient differentiability near x = 0. This follows
if we have previously applied Theorem 6.2. 2

7 Realization of a germ of family unfolding a codimension 1

resonant diffeomorphism

Theorem 7.1 Let p, q ∈ N
∗ with (p, q) = 1 and p ≤ q, let a(ǫ) be a germ of holomorphic

function at the origin, and let a pair of germs of families of analytic diffeomorphisms

(ψ0
ǫ,±,ψ

∞
ǫ,±)ǫ∈V±
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satisfying (5.16) and the compatibility condition of Theorem 4.2. Then there exists a germ of
prepared analytic family of diffeomorphisms fǫ depending on the canonical parameter ǫ with
the following properties

• for ǫ = 0, f0 has a fixed point with multiplier exp
(
2πipq

)
;

• the formal invariant is given by a(ǫ);

• the modulus is given by (ψ0
ǫ,±,ψ

∞
ǫ,±)ǫ∈V±

.

Proof. The proof contains three parts:

(i) The reduction to the case q = 1. Indeed, it follows from Section 5.1 and Theorem 5.5
that it suffices to prove the realization for a germ of family of diffeomorphisms tangent
to the identity for ǫ = 0.

(ii) The local realization. We first show that we can realize each family

(ψ0
ǫ,±,ψ

∞
ǫ,±)ǫ∈V±

in a family of diffeomorphism fǫ,±|ǫ∈V±
depending analytically on ǫ ∈ V±, with uniform

limit f0 when ǫ→ 0.

This part is completely analogous to the corresponding part of [1]. Instead of repeating
the details, we transform our case to the case studied in [1]. Indeed, suppose we have
a prepared family

fǫ(z) = z + z(z − ǫ)[1 +B(ǫ) +A(ǫ)z + z(z − ǫ)h(ǫ, z)]. (7.1)

The change of coordinate and parameter

{
ǫ′ = ǫ2

(2+aǫ)2
,

z′ = 2z−ǫ
2+aǫ ,

(7.2)

brings (7.1) to the form studied in [1]

f ǫ′(z
′) = z′ + (z′2 − ǫ′)[1 +B′(ǫ) +A′(ǫ)z′ + (z′2 − ǫ′)h′(ǫ, z′)], (7.3)

the only difference being that the functions depending analytically on ǫ now depend
analytically on

√
ǫ′. Hence, the two sectors V± in ǫ yield two sectors V ′

± in ǫ′ of opening
greater than 2π. Contrary to the case discussed in [1], the two families over V ′

− and V ′
+

need not be the same.

Each family (ψ0
ǫ,±,ψ

∞
ǫ,±)ǫ∈V±

can be transformed into a family depending on ǫ′ ∈ V ′
±.

Hence, it can be realized as the modulus of a family over V ′
± of the form (7.3) defined

over a fixed disk of radius r. Coming back to (z, ǫ), yields two families fǫ,± of the form
(7.1) over V±. We need to correct this to a uniform family fǫ. This part is what is
called the global realization.
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(iii) The global realization.

We have V+ ∩ V− = Vl ∪ Vr. The compatibility condition ensures that that the two
families are conjugate over the intersection sectors Vl and Vr, by means of analytic
diffeomorphisms hǫ,l and hǫ,r such that

hǫ,j ◦ fǫ,+ = fǫ,− ◦ hǫ,j, j ∈ {l, r}.

Moreover, as in [1], an appropriate construction of fǫ,± allows to have

hǫ,j = id+O

(
exp

(
−C

|ǫ|

))
,

uniformly over Vℓ ∪ Vr for some positive constant C.

To correct to a uniform fǫ, we construct a uniform fǫ over an abstract manifold and
we recognize that this manifold is holomorphically equivalent to a neighborhood of the
origin in C

2 minus a line corresponding to ǫ = 0. The details are as follows.

The maps fǫ,± are defined on some opens sets U± = D×V± where D is a disk of radius
r in z-space. The open sets {U+,U−} form an atlas. Let Uj = D × Vj , j ∈ {l, r}. Over
Uj , the transition maps are given by Jj : Uj ∩ U+ → U−, where

Jj = hǫ,j × id, (z, ǫ) 7→ (hǫ,j(z), ǫ) .

This is an analytic manifold. Because the limit exists for ǫ → 0, we can glue in
D×{0}. Because of the flatness of hǫ,j at ǫ = 0, this yields a C∞ manifold M. We will
endow it with an integrable almost structure and apply Newlander-Nirenberg theorem
to recognize that this manifold in an open set in C

2. The construction is completely
similar to that of [1], but we include it for purpose of completeness. We call (z±, ǫ) the
coordinates on U±.

We let (Θ+,Θ−) be a partition of unity associated to the covering {U+,U−}. We
can suppose that the derivatives of Θ± grow no faster than a negative power of the
variables. We can also suppose that the Θ± depend on ǫ alone. Let us first construct
a C∞-diffeomorphism

Ω : M → (C2, 0) \ {ǫ = 0}
defined by

Ω = Θ+ · (z+, ǫ) + Θ− · (z−, ǫ) = (Θ+z+ + Θ−z−, ǫ).

Its extension by the identity on ǫ = 0 is again C∞, because of the flatness of hǫ,j at
ǫ = 0. This endows Ω(M) of two complex coordinates (Z, ǫ) where

Z = Θ+z+ + Θ−z−. (7.4)

We now show that Ω induces an integrable almost complex structure on Ω(M). Such
an almost complex structure is given by two forms ω, ξ which are C-linear in the sense
of this structure.

The almost complex structure is integrable when there exist coordinates (w1, w2) such
that

〈dw1, dw2〉C = 〈ω, ξ〉C.
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In that case, there exists a 2× 2 invertible matrix A whose entries are C∞ functions in
(Z, ǫ) such that (

ω
ξ

)
= A

(
dw1

dw2

)
= Adw.

In particular, d

(
ω
ξ

)
= dA∧dw contains no (0, 2) component. The Newlander-Nirenberg

Theorem asserts that this necessary condition is also sufficient for integrability.

For the second form of the complex structure we take ξ = dǫ. The first form, ω, should
play the role of dZ. It will be given by

ω = (Ω−1)∗(ω̃) (7.5)

for some form ω̃ defined on M. The form ω̃ is given by ω̃± on the chart U±. On U−

we take ω̃− = dz−. So we want ω̃+ = dz− on U+ ∩ U−. There, we have

dz− =
∂Jj

∂ǫ dǫ+
∂Jj

∂z+
dz+

= τǫ,jdǫ+ (1 + Tǫ,j)dz+,

where the two functions τǫ,j and Tǫ,j are exponentially flat in |ǫ|−1 near ǫ = 0. The gluing
is done in the following way: we should remember that δ can been chosen sufficiently
small so that Jl (resp. Jr), and then τǫ,l (resp. τǫ,r) and Tǫ,l (resp. Tǫ,r) exist for
arg(ǫ) ∈ (−2δ,+2δ) and arg(ǫ) ∈ (π−2δ, π+2δ). We take a C∞ function ϕ : R → [0, 1]
such that

ϕ(x) ≡





1, −δ < x < δ,

0, 2δ < x < π − 2δ,

1, π − δ < x < π + δ,

and which is decreasing (resp. increasing) in the region (δ, 2δ) (resp. (π − 2δ, π − δ)).
Then,

ω̃+ =





dz+, arg(ǫ) ∈ (2δ, π − 2δ),

dz+ + ϕ(arg ǫ) (τǫ,rdǫ+ Tǫ,rdz−) , arg(ǫ) ∈ (−δ, 2δ),
dz+ + ϕ(arg ǫ) (τǫ,ldǫ+ Tǫ,ldz−) , arg(ǫ) ∈ (π − 2δ, π + δ).

From its construction, the form ω̃ = ω̃± on U± is well defined on M, C∞ and of type
(1, 0).

Let us now remark that the difference ω − dZ decreases exponentially fast as ǫ → 0.
This comes from the fact that τǫ,j and Tǫ,j, j ∈ {l, r}, are exponentially flat in |ǫ|−1

near ǫ = 0. This allows to extend the almost complex structure {ω, dǫ} to ǫ = 0, by
taking the two forms dz and dǫ. The resulting almost complex structure is C∞ in a
neighborhood of the origin in C

2.

To show that this complex structure satisfies the necessary condition for integrability
we need to show that {dω, d(dǫ)} contains no terms of type (0, 2). Obviously d(dǫ) = 0,
so we only need to study dω. From its construction dω̃ has no terms of type (0, 2). The
special domain where ϕ is non identically zero ensures that ω (which is obtained from
the pull-back of ω̃) also has no term of type (0, 2).
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Since the almost complex structure satisfies the necessary condition for integrability, we
can apply the Newlander-Nirenberg Theorem (for instance [9]) to the manifold Ω(M).
Then, the local charts, which are holomorphic in the sense of this complex structure,
are C∞. Hence, there exists a diffeomorphism Γ : Ω(M) ∩ U → C

2, where U is a
neighborhood of the origin in C

2, which is holomorphic with respect to this structure,
and whose image is a neighborhood of the origin in C

2. From the form of the complex
structure, it is clear that ǫ can be taken as one of the complex coordinates. So we
can suppose that Γ preserves ǫ. The composition Γ ◦ Ω is an analytic diffeomorphism
between an open set of M and a neighborhood of the origin in C

2. The map Γ is not
unique. We can always choose it in such a way that it sends the curve z(z − ǫ) = 0 to
the same curve.

We now conjugate the map (fǫ, ǫ) with Γ ◦ Ω yielding

(gǫ, ǫ) = (Γ ◦ Ω) ◦ (fǫ, ǫ) ◦ (Γ ◦ Ω)−1.

Since gǫ is bounded in the neighborhood of ǫ = 0, it is possible to extend it to ǫ = 0 in
an analytic way. For each fixed ǫ, the map gǫ is conjugated to fǫ defined on the slice
Mǫ. By continuity, it is clear that g0 is conjugated to f0 = limǫ→0 fǫ. 2

8 The particular form of the compatibility condition for a

resonant saddle of a real vector field

It is easy to verify that, for 2-dimensional vector fields on C
2 coming from the extension

of a real vector field on R
2 with a saddle point at the origin, the holonomy maps of the

separatrices are reversible, i.e. satisfy

Σ ◦ f = f−1 ◦ Σ, (8.1)

where
Σ(z) = z (8.2)

is the complex conjugation. For simplicity we only discuss the case of the unfolding of a
saddle point with eigenvalues ±1.

We consider the case of a germ of reversible family of diffeomorphisms satisfying (8.1). To
prepare the family to the form (7.1), we need to do a rotation z 7→ iz. Then the reversibility
condition becomes

Ξ ◦ fǫ = (fǫ)
−1 ◦ Ξ, (8.3)

where
Ξ(z) = −z. (8.4)

Lemma 8.1 The formal invariant a(ǫ) satisfies a(ǫ) = Ξ(a(ǫ)) = −a(ǫ). In particular a(ǫ) ∈
iR when ǫ ∈ R.

We compare such a family with the time-one map of the vector field

vǫ =
z(z − ǫ)

1 + a(ǫ)z
, (8.5)



Resonant diffeomorphisms 31

which satisfies
Ξ∗(vǫ) = −vǫ ◦ Ξ. (8.6)

Proposition 8.2 (i) It is possible to construct Fatou coordinates such that

Φ±
ǫ ◦ Ξ = Ξ ◦ Φ∓

ǫ .

(ii) The modulus is reversible, namely there exist representatives satisfying

Ψ0,∞
ǫ ◦ Ξ = Ξ ◦ (Ψ0,∞

ǫ )−1. (8.7)

(iii) The functions h±j,ǫ,±, j ∈ {0, 1}, satisfy

Σ ◦ h±0,ǫ,± = h∓1,ǫ,∓ ◦ Σ.

(iv) The compatibility condition becomes: for ǫ ∈ R,

ψG
ǫ = Σ ◦ (ψG

ǫ )−1 ◦ Σ.

Let us explain this in words. We know that if we have a family of real vector fields then,
in adequate coordinates, the Glutsyuk modulus is reversible. Hence, if we start with families
of germs of diffeomorphisms (Ψ0,∞

ǫ,± )ǫ∈Vδ,±
which are 1-summable in ǫ and reversible, it turns

out that the compatibility condition is exactly equivalent to the reversibility of the Glutsyuk
modulus for ǫ ∈ R when derived from (Ψ0,∞

ǫ,± )ǫ∈Vδ,±
.

Proof of Proposition 8.2.

(i) and (ii) are obvious.

(iii) This follows from the fact that E ◦ Ξ = Σ ◦ E.

(iv) We derive Glutsyuk moduli for ǫ ∈ V ±
l :

{
ψG

ǫ,+ = h+
1,ǫ,+ ◦ (h+

0,ǫ,+)−1,

ψG
ǫ,− = h−1,ǫ,− ◦ (h−0,ǫ,−)−1.

Hence,
ψG

ǫ,+ = Σ ◦ (ψG
ǫ,−)−1 ◦ Σ.

We also know, by the uniqueness of the Glutysuk modulus that, for ǫ ∈ R, there exists
a, b ∈ C

∗ such that ψG
ǫ,+ = La ◦ ψG

ǫ,− ◦ Lb.

We first prove that b = a. Indeed,

ψG
ǫ,+ = Σ ◦ Lb ◦ (ψG

ǫ,+)−1 ◦ La ◦ Σ. (8.8)

Also,
ψG

ǫ,+ = La ◦ ψG
ǫ,− ◦ Lb

= La ◦ Σ ◦ (ψG
ǫ,+)−1 ◦ Σ ◦ Lb

= Σ ◦ La ◦ (ψG
ǫ,+)−1 ◦ Lb ◦ Σ.

(8.9)
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Comparing (8.8) and (8.9) yields b = a when ψG
ǫ,+ 6= id. (Note that when ψG

ǫ,+ = id,

then ψG
ǫ,+ is symmetric and we are finished.)

So, for ǫ ∈ R, we let ψG
ǫ = La1/2 ◦ ψG

ǫ,− ◦ La1/2 . Then ψG
ǫ = Σ ◦ (ψG

ǫ )−1 ◦ Σ. Indeed,

Σ ◦ (ψG
ǫ )−1 ◦ Σ = Σ ◦ La−1/2 ◦ (ψG

ǫ,−)−1 ◦ La−1/2 ◦ Σ

= La−1/2 ◦ Σ ◦ (ψG
ǫ,−)−1 ◦ Σ ◦ La−1/2

= La−1/2 ◦ ψG
ǫ,+ ◦ La−1/2

= ψG
ǫ .

2
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prescrite, Astérisque, 222 (1994), 345–371.

[12] C. Rousseau, Normal forms, bifurcations and finiteness properties of vector fields, in
Normal forms, bifurcations and finiteness properties of vector fields, NATO Sci. Ser.
II Math. Phys. Chem., 137, Kluwer Acad. Publ., Dordrecht, 2004, 431–470.

[13] C. Rousseau and C. Christopher, Modulus of analytic classification for the generic
unfolding of a codimension one resonant diffeomorphism or resonant saddle, Annales
de l’Institut Fourier, 57 (2007), 301–360.

[14] M. Shishikura, Bifurcations of parabolic fixed points, in The Mandelbrot set, theme
and variations, Tan Lei Editor, London Math. Soc. Lecture Note Ser., 274, Cam-
bridge Univ. Press, Cambridge, 2000, 325–363.

[15] S. M. Voronin, A. A. Grintchy, An analytic classification of saddle resonant singular
points of holomorphic vector fields in the complex plane, J. Dynam. Control Syst., 2

(1996), 21–53.


