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Abstract

The N-th root extraction problem for germs of diffeomorphisms f : (C,0) — (C,0)
is the problem of finding a germ of diffeomorphism g : (C,0) — (C,0) such that gV =
f, where gV is the N-th iterate of g under composition. Depending on f and on the
multiplier of g at the origin there can be formal and analytic obstructions to a solution
of the problem. By considering an unfolding of f we explain these obstructions. Indeed
each analytic obstruction corresponds to an accumulation of periodic points which, in
turn, are an obstruction to taking an N-th root of the unfolding. We apply this to the
problem of the section of a curvilinear angle in N equal parts in conformal geometry.

1 Introduction

We consider a germ of diffeomorphism f : (C,0) — (C,0) with f/(0) = A. The classical N-th
root extraction problem for f is the problem of finding a germ of analytic diffeomorphism
g : (C,0) — (C,0), such that g% = f, where ¢" = gogo---0og. When |\ # 1, the
—_—
problem is solvable as f is linearizable, i.e. there exists a germ o]fyholomorphic diffeomorphism
h: (C,0) — (C,0) such that ho foh '(z) = Az. Then we find N functions g; which are
N-th roots of f given by g;(z) = h™Y(vjh(2)), j = 0,...,N — 1, where vp,...,vy_; are
the N-th roots of A\. When |\| = 1 the same occurs as soon as f is linearizable. This is
always the case when A = exp(2mic) with « irrational diophantian, more precisely when
« satisfies the Brujno condition. When « is irrational Liouvillian, more precisely a does
not satisfy the Brujno condition, then a formal solution h exists, but, generically, small
denominators are an obstruction to convergence. This does not exclude a priori the existence
of an N-th root. Indeed it is shown in Pfeiffer [12] that there exists a non linearizable f with
1/(0) = exp(2mic) which has a square root. Such an example is simply constructed by taking
some non linearizable g with ¢'(0) = exp(7ia) and taking f? = g. In the same paper Pfeiffer
constructs examples of maps which have no square root, by showing the divergence of the
formal series of their square roots.

In this paper we consider the case where A is a root of unity: A = exp(2m’§). It is clear
that if a germ f admits an N-th root, then any germ f conjugate to f admits an N-th root,
so this is really a property of the equivalence class of f under conjugacy. Let us first recall
the known results (for instance [4], [3]). The map f is linearizable if and only if f7 = id,
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which occurs only exceptionally. In general f9(z) = z + CzFi+1 4 o(2%4+1) with C # 0. We
n . o pLiN .

first look for formal N-th roots g of f with ¢'(0) = pu; = exp(2mp—gjjv ), j=0,...,N —1.

Depending on j there may exist some formal obstructions to find §. Moreover, when § exists

it converges very exceptionally. The conditions for the convergence of § can be read on the

Ecalle-Voronin modulus of f. A natural question is to ask why the existence of an N-th root

is so exceptional.

In this paper we give a geometric explanation of this phenomenon for the codimension 1
case. This is done through unfolding the diffeomorphism f in a family f.. In the unfolding
we observe accumulation of periodic points for f.. Their presence is an obstruction to the
N-th root extraction problem.

We apply this to a problem in conformal geometry, namely the problem of the section
of a curvilinear angle in N equal parts. Curvilinear angles are given by two germs of arcs
of real analytic curves in C and we consider the conformal equivalence of curvilinear angles.
Each germ of curve determines a germ of Schwarz reflection. In the case of the real axis, its
associated Schwarz reflection is X(z) = Z. It preserves the size of angles and reverses their
sign. If (v, 20) is any germ of real algebraic curve at a point zp € C, let h be an analytic
map sending it to (R,0). Then its associated Schwarz reflection is 1 = h™' o X o h. (¥
is an involution reversing angles and with - as set of fixed points). The composition of the
two germs of Schwarz reflections associated to the two arcs of a curvilinear angle is a germ
of analytic diffeomorphism f with a fixed point which has a symmetry property with respect
to the Schwarz reflections: if ¥; is any of the Schwarz reflections associated to one of the two
curves we have fo¥; =3%;o fi

The symmetry property foX = Yo f~1, for ¥(z) = Z, is exactly the symmetry property
of the holonomy of a separatrix of a saddle point of a real vector field. Also the holonomy of
the strong separatrix of a saddle-node of a real vector field has this property, which is studied
in detail in [2].

The whole paper is limited to study the codimension 1 phenomenon. The paper is or-
ganized as follows. In Section 2 we recall the modulus of analytic classification of a family
unfolding a germ of resonant diffeomorphism and the condition for solving the root extraction
problem for f. In Section 3 we discuss the renormalized maps for f. and their link with the
localization of f. at its periodic points. In Section 4 we explain the obstruction to the root
extraction problem. In Section 5 we make the link with the problem of section of a curvilinear
angle in IV equal parts in the conformal geometry of germs of curvilinear angles.

2 Preliminaries

2.1 Modulus of the unfolding of a resonant diffeomorphism

We briefly recall the results of [14] to which the reader can refer for more details. We
consider a germ of one-parameter family of diffeomorphisms f. unfolding a germ of resonant
diffeomorphism fy : (C,0) — (C,0) of the form

fo(z) = exp <2m’§) z+ + o(2911). (2.1)

q
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In the case ¢ > 1 such a family will have the form

D 2a+1
fe(z) = exp (2m§ + n(e)) z+ e +o(291) + O(e). (2.2)
We will also use this form when p = ¢ = 1 and there is a constraint forcing z = 0 to remain
a fixed point. This is the case for instance when we consider the holonomy of a saddle point:
the separatrix remains a fixed point of the unfolding. Otherwise, when p = ¢ = 1 we consider
an unfolding

fe(z2) =z —n(e) + 22+ 0(22) + O(e). (2.3)

We consider generic families f. unfolding (2.1). For the family (2.2) (resp. (2.3)) the
genericity condition is given by gjgz # 0 (resp. %{ < #£0).

Case of a family (2.2). To describe the modulus of a family f, of the form (2.2) is equivalent
to describe the modulus of the family fZ. We now limit ourselves to the discussion of the
family f&. Modulo a “preparation” (i.e. an analytic change of coordinate and parameter) we
can always suppose that its fixed points are given by z(2? —€) = 0. To describe its modulus,
the point of view is to compare the family with the time-one map of the vector field

7— 0
=) 9 (2.4)
1+a(e)z? 0z
which we call the “model family” in the case of (2.2). The diffeomorphism can be conjugated
to the model family on some adequate sectorial domains in (z,e€)-space. For fixed € the
modulus measures the obstruction to a conjugacy over a full neighborhood of the origin in
z-space.

Using a change of coordinate and parameter it is possible to “prepare” the family f., i.e.
to bring it to the form:

fl(z) =2+ 2(z7 — ) (1 + A(e) + (27 — €)h(z,€)), (2.5)

so that the fixed points z; of f& (i.e. the fixed and periodic points of f.) coincide with the
singular points of (2.4) and that their multipliers A; be equal to exp(u;), where p; are the
eigenvalues of (2.4) at the z;.

In a prepared family the parameter e (called the canonical parameter) is an analytic
invariant. Hence a conjugacy between two prepared families must preserve their canonical
parameters. The meaning of the formal invariant a(e) is obtained through the following

property

1
ale) =y —. (2.6)
— My
J
This yields the following relation between A(e) and a(e)

_ q 1
) = M T el T A©)) T (i = e T A@)) (27)
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In general we consider all values of € in a neighborhood of the origin. For the phenomena
described below we will mostly limit ourselves to values of € for which at least one of the A;
satisfies |\;| = 1 (the Siegel domain).

To compare fd with the corresponding model diffeomorphism, we compare their orbit
spaces. The orbit space of f is obtained by taking 2q curves ljc, j=0,...,g—1, and
their images ff(lf) as in Figure 1. The curves l;t and their images determine crescents Sj;.

+ 0
Sz,s Wl € le
o~

~> .
Yoe So,s

I
SO,a

(c) Positive Siegel direction

(a) Negative Siegel direction

Figure 1: The maps wg’fo for ¢ = 3, a(e) € iR and € in Siegel direction

Passing to the orbit space, we identify lf and f2 (l]i) The corresponding space has the
conformal structure of a sphere (CP!): we will denote it by Sfe. The fixed points z; of f&
correspond to the distinguished points 0 and co on the spheres. The 2g spheres are necessary
to cover the orbit space of f§ but some orbits have representatives in different spheres. So it
is necessary to identify the points in different spheres corresponding to the same orbit. This
is done through the germs of holomorphic maps w;]’e (resp. w;‘;) defined respectively in the
neighborhood of 0 (resp. co) on the spheres. The coordinates on the spheres are given up to
linear maps (which are the only global holomorphic diffeomorphisms of CP! fixing 0 and co).
It is possible to choose the coordinates so that

7T2(I
(82.)/(0) = (455 (00) = exp (2 : ) . (2.8)

So far we have described the modulus space of f¢. But each orbit of f¢ represents g orbits
of f.. This is reflected in the fact that only two @Z)?”EOO are independent and the others are
related through:

1#2’(?; =Blo @Z)?’OO o B, (2.9)

where o is the permutation of {0,...,q — 1} given by
o(j) = j + p (mod q) (2.10)

" B(w) = exp <%> w. (2.11)
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Theorem 2.1 [1] The complete modulus of analytic classification of the family f& (and
hence f.) is given by a(0), together with the family of equivalent classes of 2-tuples

(40, V8N ~, (2.12)

where the equivalence relation is defined by :
00 —0 —o0 %« —0,00 _ ,00
(wg,ea wo,e) ~ (wO,eawO,e) <~ dceC wO,e (w) =c 1¢8,e (cw) (213>

Remark 2.2 It is not possible to define the 1/1?7’:0 depending continuously on € on a neigh-
borhood of the origin. It is however possible to cover a neighborhood of the origin in e-space
with two sectors V4, and to choose families (w?”zjc)lgevi depending analytically on € # 0 and
continuously on € near € = 0 (details in [14]), where

V_ = {e; |e| < p,arg(e) € (=3m/2 4 0,7/2 — 9). '
0 can be chosen arbitrarily small and p depends on . For the rest of the paper we drop the
lower indices =+.

Definition 2.3 We call the Siegel direction of the origin in parameter space € the direction
where |A\g| = 1. As A\g = exp(—¢) this yields € € iR. The Siegel direction of the periodic
orbit is the direction where [\;| = 1, i.e. I~ € iR. When a € iR both coincide. The
negative (resp. positive) Siegel direction of the origin is the half part of the Siegel direction
of the origin contained in V_ (resp. V4.). The negative (resp. positive) Siegel direction of the
periodic point is the half part of the Siegel direction of the periodic orbit contained in V_

(resp. V).

Although we do not want to reproduce the proof of Theorem 2.1 we will need later the
following tools introduced in the proof.
We use a change of coordinate

(2.15)

conjugating f¢ with Fd which is a small perturbation of the translation by 1. We consider
2q translation domains ije, j=0,...,9—1, in Z-space (see Figure 2) on which there exists
a change of coordinate W = <I>jjf6 conjugating F¢ with the translation by 1:

OE(FI(2)) = ¥4(2) + 1. (2.16)
The maps (13;%6 are called the Fatou coordinates. As F. commutes with F¢ they satisfy

(I)i

L oF. =Tiod* (2.17)
o(j).e !

]767

where T is the translation W — W + % and o is defined in (2.10).
q
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Figure 2: The Z-space. The shaded area is a translation domain.

The 2q coordinates on the 2q spheres S;EE discussed before are then obtained (as functions
of z) by means of E o CIJ;.—; opt, where E(W) = exp(—27miW). The lifting of the w?’fo in
W -space are obtained as

. +3-1
{‘1’3” = ®je 0 (250 (2.18)

\Il?,e = (b]_,e © (q);_—&-l,e)il?

j=0,...,9— 1, where indices are (mod ¢). The relation (2.17) yields (2.9).

Remark 2.4 Note on the choice of the indices 0 and oo in the functions wjo-fo

defining the modulus. The direction of the maps wgfo follow the dynamics of f¢. When

the parameter is in the Siegel direction then the map ¢?76 (resp. ¥377) goes clockwise (resp.
counterclockwise).

The case of family (2.3). The model family in that case is the time-one map of the vector
field

2—¢ 0
iy 2.19
1+a(e)z 0z (2.19)
It is possible to prepare the family to a form
fo(2) = 2+ (22 = €)(1 + A(e) + (22 — €)h(z,¢€)). (2.20)

As before we prepare the family so that the parameter becomes an analytic invariant. We
then introduce a change of coordinate analogous to (2.15)

1 2\/eZ
5= {\/El+22\/EZ 67&0

1 _
-7 6—0.

(2.21)

The rest of the analysis, including the construction of Fatou coordinates, is similar to the
previous case and we replace € by /€ in the definition of V4 in (2.14). All details appear in
[8]. The crescents and maps &> appear in Figure 3.
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Figure 3: The maps ¢ for (2.20), a(e) € iR and € € R~

2.2 The Martinet-Ramis point of view for the modulus

Although the paper [7] is primarily concerned with the modulus of a resonant saddle, the
authors also treat the modulus of a resonant diffeomorphism. Instead of using 2¢ spheres to
describe the modulus, and 2¢ germs of diffeomorphisms, of which only 2 are independent,
they use only two spheres and two germs of diffeomorphisms. We call this the Martinet-Ramis
point of view.

In the Martinet-Ramis point of view we can see the modulus as a pair of germs of maps
(w87€’ @/N)?O) from st to Sy . The map 1;30 identifies points belonging to the same orbit. As

wy € S;e and wy € S;m(j) . belong to the same orbit if wy = exp(#)wl = {(w1) we need
to take m such that mp = —1 (mod ¢). Then
P = Lol =Yool (2.22)
where o
(w) = exp (— mm) w, mp = —1 (mod q). (2.23)

If we let @Z)g,e = ¥ we will denote the modulus by (¢/2,°). When the context is clear
we will simply denote it by (12, 4>).

As (19,)'(0) = (452)'(00) = exp(*T:) this yields

472 2mi
T mm). (2.24)

70\/ T00\/ — ex =
(F0Y (0)(d2°) (c0) = p( AL

Note that (2.24) remains valid under global changes of coordinates on the spheres Sfﬁ and

Sp.e preserving 0 and oo.

2.3 The root extraction problem for f

Let us first discuss the case f'(0) = 1 and

f(2) =2+ 22 + 0(2?). (2.25)
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The following lemma, which looks trivial, contains the idea which will be used in the
further explanations of the analytic obstructions to the N-th root problem.

Lemma 2.5 Let f be as in (2.25) and

9(2) = exp <2m']{[> >+ o(2), (2.26)

for 5 = 0,...,N — 1. Then an N-th root g of f with N > 1 necessarily has the form
g(z) =z+o0(2), i.e. j=0.

PRrOOF: If ¢V = f then necessarily gV (z) = z + O(2V 1) as soon as j # 0. O

Remark 2.6 (1) The formal obstruction for solving ¢ = f when j # 0 can easily be
understood. Indeed f has a double fixed point at the origin, while g, if it exists, has a
single one. So any unfolding of f will have two fixed points. Let g. be any unfolding
of g with go = ¢ given in (2.26), yielding that g¥ = f. is an unfolding of f. Then g,
has a unique fixed point and the other fixed point of f. corresponds to a periodic point
z1 of ge of period N. The orbit of z; is given by z1,..., 2y, with zj41 = ge(2;). But
then all z; are fixed points of f., a contradiction. In the limit for € = 0, in order that
f =g", where g is as in (2.26) with j # 0, then the origin must be a fixed point of f of
multiplicity N + 1 as it should be the coallescence of a fixed point of f with a periodic
point of multiplicity N.

(2) The simple explanation of (1) is very important. We will see the same phenomenon
being reproduced in cascades. These cascades will explain the analytic obstructions to
the root extraction problem.

Theorem 2.7 ([3] and [}]) Let f be as in (2.25). Then f has an N-th root g with N > 1
of the form g(z) = z + o(z) if and only if the maps YY" of the Ecalle-Voronin modulus of f
satisfy

% (w) = we® (w™), (2.27)
for some germs of non vanishing analytic functions (£°,0) and (£, 00).

IDEA OF THE PROOF. (To complete to a full proof see corresponding proof for the unfolding
in Theorem 4.1 (2)). The orbit space of f is given by the two spheres identified in the
neighborhood of 0 and co via ¥ and 1> respectively. We want to describe the dynamics on
the orbit space. Then, on each sphere, the action of f can be viewed as the time-one map of
the vector fields w = —2miw, i.e. the identity w — w. On each sphere an N-th root of f is
given by the time 1/N of the same vector fields, namely w +— L(w) = exp(—2ni/N)w. The
N-th roots on the two spheres must be compatible with ¥%>, i.e. 1% must commute with
L. This is equivalent to (2.27). O

Corollary 2.8 Let f be as in (2.25) such that its modulus satisfies (2.27) for N > 1 and let
(40, 9>) be its Ecalle-Voronin modulus. Then the Ecalle-Voronin modulus of the N-th root
g tangent to the identity has a modulus of the form (¢°,>) with

0% = Royp"® o R71, (2.28)

where R(w) = w". Hence " (w) = w (£ (w))N.
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PROOF. Let &+ be the Fatou coordinates of g. Then the Fatou coordinates P+ of f are
given by &+ = %@i =Lyno ®*, where Lo(W) = aW (since the Fatou coordinates are
unique up to translation). Hence the modulus of g is given by

U=0"0(d") '=Lyod o(d") 1oLy (2.29)
Let E(W) = exp(—2miW). It follows that

p=EocVWoE '=RoEocWoE 'oR™ (2.30)

The theorem 2.7 can be generalized as follows.

Theorem 2.9 (/3] and [4]) Let

f(z) =exp (2m’§> 24 20T 4 oo(201) (2.31)

and let N|p, i.e. p= Np'. There exists a germ of map g(z) = exp (2m’%/> 2+ o(z) such that
gN = f if and only if the components of the modulus 1/);)’00, 7=0,...,q9—1, satisfy

w?’oo(w) = exp (—%) w;-)’oo <exp (%) w) , j=0,...,9—1, (2.32)

i.e. 1/1?’00(10) = wﬁ?’oo(wN) for some non vanishing germs of maps f?’oo.
Corollary 2.10 Let f be as in (2.31) which satisfies (2.32) for N|p and let [(¢,¥E)]/ ~
be its Ec/alle- Voronin modulus. Then the modulus of the N-th root g of f with multiplier
exp(2miL-) has the form (49, 98°)]/) ~ with

Yo (w) = Rogp™ o R, (2.33)

where R(w) = w”. Hence ﬁg’m(w) = w(gg’oo(w))".

PRrROOF. We have that f? = gN9. Let ~ji be the Fatou coordinates of g¢. Then the Fatou
coordinates q)]i of f are given by <I>;t = % ~j.[ =Lyyo &+, where Lo (W) = aW. Hence

VY =& o(®7) ' =Lyo®; o(®)) " oLy, (2.34)
and similarly for \11;’0 The rest of the proof follows as in Corollary 2.8. O

It is the conditions (2.27) and (2.32) which we will explain in Section 4 below.

There are other kinds of root extraction problems. Although we expect similar explana-
tions we will not consider them here, except for one, since the corresponding map f is not
of codimension 1. In all cases there can be formal obstructions due to improper multiplicity,
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as described above for the root extraction of f tangent to the identity when ¢'(0) # 1 (see
Lemma 2.5). The one exception we analyze now is the case of a map

f(2) = 2+ 291 4 o(2911) (2.35)

and the existence of a ¢-th root of the form g(z) = exp(27i/q)z + o(z). The Ecalle-Voronin
modulus of (2.35) is a 2¢-tuple of germs of analytic functions (13,95, . .. ,@bg_l,qﬁg‘jl) and
the condition for the existence of g is

¢J°.ff —Blo qp?m o B (2.36)

with B given in (2.11). We explain below in Theorem 4.3 the meaning of this condition.

2.4 The Lavaurs maps and the renormalized return maps

When € # 0 there are global maps Lj:S;; — S;; identifying points with the same orbits

(see Figure 1), called the Lavaurs maps. As these maps are global analytic diffeomorphisms of
the sphere preserving 0 and oo they are linear. With the choice of coordinates yielding (2.8)
all L;. are identical: we simply call them L.. The exact expression for L. can be calculated
explicitly under (2.8) but the result depends whether € € V. or € € V_, where Vi are given
in (2.14) ([14]). We do not give the exact value since it is not needed here. The Lavaurs
maps allow to define the renormalized return maps on S;fe in the neighborhood of 0 or co

by composing the zp?’fo with L. A renormalized return map is just a first return map for

the orbit of a point on the crescent Sjﬁ,

is the quotient of S]J-; under fZ). It is defined as follows: taking a point z in the crescent

Sjt we follow its orbit forward under f¢ until we come back for the first time to the crescent

but written in the spherical coordinate on S;re (S,

SJT;. The corresponding point is x(z) = f2%(z) for some M. Such a map & is defined in the
neighborhood of each end of the crescent. Its expression in the spherical coordinate on S;;
is the renormalized return map. While M may not depend continuously on z the expression
of the renormalized return map is analytic in the spherical coordinate, including at 0 or co.
Depending on €, the points 0 and oo represent either the fixed point 0 and one of the periodic
points z; of f, or the converse (see Figure 1).

Multipliers at the fixed points of the renormalized return maps. While the Lavaurs
maps depend on the parametrization of the spheres the multipliers of the renormalized return
maps are intrinsic. If ije is bounded by curves ¢ and fZ(¢) crossing at z,,, where (f&)'(zm) =

exp(2micr), then the renormalized return map at the corresponding point of S]J.fe has multiplier

exp(—22) (see for instance [15] or [8]).

3 The renormalized return map and parametric resurgence
phenomenon

The renormalized return maps are only really interesting in the Siegel directions.
The renormalized return maps of f¢ are defined in the neighborhoods of the representa-
tives of the fixed points z; of f¢ on the spheres Sf When ¢ > 1, the fixed points of fZ are of
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two types: zg = 0 is the fixed point of f., while z1,..., 2, are periodic points of f. of period
q. For ¢ = 1, f. has two fixed points ++/¢ and there are renormalized return maps in the
neighborhood of each of them.

The renormalized return maps are defined as germs of diffeomorphisms (S};, 0) — (S};, 0)
and (S;;, o00) — (ijg, o0) and identify points belonging to the same orbits of f&.

As the two discussions are completely identical we will limit ourselves to discuss the case
(Si’—,a 0) - (Si’—,w 0)

Theorem 3.1 (1) We consider a germ of generic family fe in prepared form

Jo(2) = 2+ (2% — (1 + A(e) + (2> — Oh(z, ). (3.1)

Let us suppose that for some value €y the renormalized return map for fe, at — /ey
(resp. \/€o) is resonant of order 1 (the first coefficient of the normal form is nonzero).
Then fe, is resonant at —\/€q (resp. \/€o) of order 1.

(2) We consider a germ of generic family f. in prepared form unfolding a resonant diffeo-
morphism with multiplier exp(27ri§) and its q-th iterate

fé(z) = 2+ 2(2" —e)(1 + A(e) + (27 — €)h(z,€)). (3.2)

Let us suppose that for some value €y the renormalized return map for f& at the origin
(resp. at one of the periodic points zj of fe,) is resonant of order 1. Then f, is resonant
at the origin (resp. at z;) of order 1.

PROOF. We only prove (2) as (1) is similar and a bit simpler. In (2), there are four cases to
consider, depending whether € is in the negative or positive Siegel direction of the origin and
of the periodic orbit. We discuss two of these as the two others are completely similar.

Case 1: The first case is when ¢y is in the negative Siegel direction for the periodic orbit
and we consider for instance the renormalized return map at z; which, in the spherical
coordinate w on Sie (see Figure 1), is the germ of map ki, at 0. We drop the first index
and simply write ke, and k for its unfolding. The map has the form ke, (w) = Le, 09 . (w) =
exp(2mir/m)w + o(w) = exp(2mwir/m — 2772a/q)1/1(1)7€0 (w). This means that

(J1Y (1) = exp (— Zmim ) (33)

r+mn

for some n € N (see for instance [8] or [14]). The only periodic orbits which can bifurcate
from the orbit (z1,...,2,) for € = €y have period ¢(r + mn) (r + mn points bifurcate from
each z;). The lifting K.(W) of k. to the Z-plane has the form

Ke=®f 0T 4q0(9f,)", (3.4)

(see [14]) where in general Tj3 is the translation

T5(Z)=Z + B (3.5)
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and

2mi ¢

We are interested in a neighborhood of €y. Since k. (0) = exp(2mir/m) with (r,m) = 1,
we have

li KM'(W)=W + M 3.7
L. (W) + M, (3.7)

with M € 7Z, while there exists R > 0 such that

KJ(W)#W+ M VW  such that Im(W) < —R. (3.8)

Moreover
li KE(W)—W ¢ Z 3.9
L W) ¢ (3.9)

if d is a strict divisor of m.
Let W = ®f_ (Z). Then K, (9], (Z)) = ®f

1,e0

0T _4ao(Z). From (3.7)

lim  K["(®F

Im(Z)——o0 Leo

(2)) = ¥

1eo(Z2) + M. (3.10)
Suppose now that kI (w) = w + bw™* ! 4 o(w™* 1) with b # 0. Hence, for € close to e,
the map k. has a unique periodic orbit (wi(e€),...,wm(€)) such that w;(ep) = 0. This yields
points Wj(e), j = 1,...,m, such that K"(W;(e)) = Wj(e) + M(e) with M (e) € Z and such
that lime_., Im(Wj(e)) = —oo. Moreover if Z;(e) are such that <I>1+’E(Zj(e)) = Wj(e), then

KM®1(Zj(6) = @ 0 T-gma(Z;(e)) = ®F (Z;(€)) + M(e) = & (FIMI(Z;(e)). (3.11)
Because of (3.7) we get M(e) = M. Moreover as @fe is a diffeomorphism we get
FIM(Zj(€)) = T-qma(Z;(e)). (3.12)

Hence if yj(€) = pe(Zj(€)), then f&(y;(€)) = y;(e), i.e. y;(e) is a periodic point of f¢ whose
period divides M. Let us show that the period is exactly M. Indeed suppose that the period
is d/M. Then M = dc. From (3.12) we need have c¢/m, i.e. m = c¢d’. Then ngd(Zj(e)) =
T_qara(Zo), which implies <I>1,€(F6qd(Zj(e))) = K% (®1(Zj(¢))) +d, a contradiction with (3.9).

Moreover lim¢_., yj(€) = z1. From (3.3) we have that M = r + mn. Note that we have
obtained only m points of a periodic orbit of f of period g(mn + r): it comes from the fact
that we have only obtained the points of the orbit which belong to the crescent SI . associated
to the sphere Sie. The remaining points of the orbit are obtained by taking the iterates of
the y;(e) under f..

We now look at the normal form of f{. It can either be linear or have nonzero resonant
terms. We start by the latter and suppose that the normal form for f be given by fd (z) =

exp(—2mi rfzm)(z—zl)+c(z—zl)é(r+m”)+1 +o(2rtmH) with ¢ # 0 and £ > 1. As % #0
in a neighborhood of (0,0) in (z,€) space, then the small perturbation f& of f& would have
¢ periodic orbits of period r 4+ mn bifurcating from z; (counting multiplicities). These would

produce ¢ small orbits of periodic points of period m of k. for e close to ¢y, a contradiction.
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If the normal form of fd has no nonzero resonant terms then f,, is analytically linearizable,

yielding that fé’j’"*mn) is the identity. This implies that FG%M =T_gma- It then follows that
O 0T gma = Tar o @7 . (3.13)

Hence
Tar = &, 0 T gma o (¥7,) " = K™ (3.14)

The last equality follows from (3.4), yielding that K™ is a translation, a contradiction with
(3.8).

Case 2: The second case is the case when ¢ is in the positive Siegel direction for the

origin and we consider values ¢ for which f/ (0) = exp (27T2' (g - W)) . Let k., be

the renormalized return map at the origin which is defined on Sie. As this case is very
similar to the previous case we only write the differences. The map has the form k., (w) =
exp(2mir/m)(w) + o(w).

From Figure 1, we see that ke,(w) = Loy oLo---oLoyd | oLog. (w). The
lifting K (W) of k. to the Z-plane has the form K, = (I)ie oT_ 240 (@ie)*l (see [14]).

We are interested in a neighborhood of 5. We have

lim  K™W)=W + M € Z. (3.15)
Im(W)——oo

Let W = &f_ (Z). Then K, (®] . (Z)) = ®f . 0T_s20,(Z). Hence limyy,z)——oo KNP (Z)) =
7 (Z)+ M.
Suppose now that k?ol(w) = w + bw™ ! + o(w™*!) with b # 0. Hence for € close to €
the map k. has a periodic orbit (wy(€),...,wpn(€)) such that w;(ep) = 0. This yields points
W;j(e) such that K™(Wj(e)) = Wj(e) + M and lim._.., Im(W;(e)) = —oo. Moreover if Z;(e)
are such that @iE(Zj(e)) = Wj(e), then

E™(@F(Z(€)) = f o T 2ra(Zi(€) = @1 (Zj(e) + M = F (FIM(Z;(e))).  (3.16)

We get FV(Z;(€)) = T goma(Z5(€)). Hence if y;() = pe(Z;(6)), then 2 (y;(0)) = y,(e).
i.e. yj(e) is a periodic point of fd whose period divides M. Let us show that the period is
exactly M. Indeed suppose that the period is d|M. Then M = dc and ¢|m, so that m = cd'.
Hence Feqd(Zj(e)) = T_,204(Zp), which implies @176(F6qd(Zj(e))) = K& (®1.(Z;(e))) + d,
a contradiction with the minimality of m satisfying (3.15). As before we conclude that
M =7r+mn.

Moreover lime_, y;(€) = 0.

Now suppose that the normal form for f., be given by f,(z) = exp(2m’(§ - m))z +

cztalrtmn)+l o o (ptalrtmn)+1) “with ¢ # 0 and ¢ > 1. Then as before, for € close to e, f.
would have ¢ periodic orbits of period M g bifurcating from the origin (counting multiplicities).
These would produce ¢ small orbits of periodic points of period m of k. for € close to €y, a
contradiction. Hence £ = 1. The case of a linear normal form also yields a contradiction as
in Case 1.

Cases 3 and 4: The last two cases are similar, the only difference being that we work in
regions which are neighborhoods of Im(W) = +c0. O
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4 The root extraction problem
We now explain the condition (2.27) of Theorem 2.7.

Theorem 4.1 We consider a generic germ of analytic diffeomorphism f as in (2.25).

(1) If f has an N-th root g tangent to the identity, then there exists a generic family fe
unfolding f (i.e. fo = f for e =0) such that, for all sufficiently small €, fc has an N-th
T00%.

(2) If fe has an N-th root g. which is tangent to the identity for e = 0, then the components

Py of its modulus all satisfy

Y92 (w) = wEi > (wh). (4.1)

Then the modulus of the N-th root g. has the form (1°,2°) with

Jo(w) = Royp2® o R, (4.2)

where R(w) = w'.

(8) If f has no N-th root tangent to the identity, then for any generic family f. unfolding
f, i.e. such that %{6 # 0, (hence fe has two distinct fized points z1 and ze for € # 0),
then there exists a meighborhood U of the origin such that, for sufficiently small €, f.
never has an N-th root over U.

The obstruction materializes in particular in the following way: there exists £ € {1,2}
and a sequence (€,) converging to the origin, so that the germ of fe, at z¢ has no N-th
root. For each n there exists a small neighborhood V,, of €5, a small neighborhood Uy, of
z¢ and an integer M (n) such that, for € € V,,, fc has a unique periodic orbit of period
M (n) in U,, which is an obstruction to finding an N -th root of fe over U,. The periodic
orbit coallesces with zp as € = €,. Moreover M(n) T 400 as n — 0.

Meaning of part (3) of Theorem 4.1: as it is the important part of our paper it is worth
taking some time to discuss what is the meaning of the conclusion. If f has no N-root, then
either ¥° or ¥> has a nonzero monomial whose exponent is not of the form kN + 1. Let us
take the lowest such monomial and call it our “obstruction”. The map 1° (resp. 1) controls
the dynamics near —y/e (resp. /€) (see Figure 3). We localize the diffeomorphism f, at —y/€
(resp. +/€) if the obstruction is a monomial of 1/? (resp. ). To study the dynamics of f,
near this point we rather study the dynamics of its renormalized return map as in Section 3.
We focus on special values of €, namely the sequence €,, where the renormalized return map
has a fixed multiplier. The multiplier is chosen so that the “obstruction” becomes a resonant
monomial of the renormalized return map of first order. Then, when we perturb ¢,, we get
a unique periodic orbit which is an obstruction to taking an N-th root. In the case of the
multiplier being equal to 1, this is the phenomenon described in Lemma 2.5.

PROOF OF THEOREM 4.1.

(1) Let f have an N-th root g tangent to the identity, and let g. be a generic family (i.e.
% # 0) unfolding g. Then f. = g/ is a family unfolding f and having an N-th root.
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(2) Let us derive the condition for f. to have an N-th root in terms of the Fatou coordinates:
it is the same as for the case € = 0. The Fatou coordinates ® for f, satisfy

O(F.(2)) = B(Z) + 1. (4.3)

Let us suppose that f. = gV with g. analytic and gy tangent to the identity. Let G, be
its lifting in the Z-coordinate. Let ®; be a Fatou coordinate for g.. Then

01(Ge(2)) = 21(2) + 1, (4.4)

yielding ®1(F.(Z)) = ®1(Z) + N. Then ®(Z) = ®1(Z) is a Fatou coordinate for F..
From (4.4) we get

G(Z)=®;'oTiod; =3 1o Ty 00, (4.5)
In order that g. exists we need that G, commutes with T,, i.e.
Taoq)*loT%o(I):(I)*loT%oCI)oTa. (4.6)
We can rewrite this
(@oT nod Yo Ty =Tio(®oT o0 o1 (4.7)

i.e. the map T1 commutes with the renormalized return map K = ® o T_, o &1,
The renormaliz]evd return map is the composition of the Lavaurs translation with a
map W (VU is either W0 or U satisfying W(W + 1) = W(W) +1). As U(W) = W +
Y nez bnexp(2minV) we need that b, = 0 as soon as N does not divide n. At the level
of the modulus () the condition is

920 (w) = exp (—%) Bieo <exp <%> w) . (4.8)

The last part is as in Corollary 2.8.

(3) The first part comes from the fact that it is possible to cover a neighborhood of the origin
in e-space with two sectors and on each sector to define ¢S " depending continuously
on € near € = 0.

We can always suppose (modulo a change of coordinate and parameter) that the family
fe is “prepared”, i.e. the fixed points are located at ++/e and let us suppose that
zg = —y/€. Then

T
YY(w) = cyw + Z cjwNIT 4 Cop™ T 4 o(w™ ) (4.9)
j=1

with ¢1,C # 0 and Nr < m < N(r + 1). The sequence ¢, is chosen such that the first
return map k? = Lo¢? has a multiplier exp(2mi/m), where L is the Lavaurs map and

£, (0) = exp(—2migt=). As b (w) = 1hg(w) 4 O(e), then, for n sufficiently large the
normal form of £ is of the form

exp(2mi/m)w + C'(e)w™ ™ + o(w™ ), (4.10)
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with C’(e) # 0. Indeed, when we remove the terms in w/N+1 this only creates higher
order terms of the same form, so the process can never annihilate the term in w™*!.
Hence at € = ¢, we have the birth of a unique periodic orbit of k. of period m. Then

the lifting K" is such that

lim K™ =W + M(n) (4.11)
Im(W)——co "

for some M(n) € Z. For e close to €, this yields to the birth of a periodic orbit of
fe of period M(n) =1+ mn for € close to €, (see Theorem 3.1). Let us now suppose
that fo = gV with g/ (—/€) = eXp(—Qﬂim). Then the periodic orbit of period
M (n) yields a periodic orbit of period exactly NM (n) for g, since N t m and the orbit
coallesces with z; for € — €,. This in turn yields N periodic orbits of period M (n) for
fe, a contradiction. |

Similarly we explain the condition (2.27) of Theorem 2.7.

Theorem 4.2 We consider a generic germ of analytic diffeomorphism f as in (2.31).

(1) If f has an N-th root then there exists a generic family f. unfolding f such that, for all
sufficiently small €, then f. has an N-th root.

(2) If fe has an N-th root then the components z/JJO-fO of its modulus satisfy

B0 (w) = we = (w™). (4.12)

(8) If f has no N-root then, for any generic family fe unfolding f, i.e. such that % #0,
then there exists a meighborhood U of the origin such that, for sufficiently small €, f.

never has an N -th root over U.

The obstruction materializes in particular in the following way:

(i) there exists a sequence (€,) converging to the origin, so that the germ of f., at the
origin has no N-th root. For each n there exists a small neighborhood V,, of €,, a
small neighborhood Uy, of the origin and an integer M(n) such that, for e € V,,
fe has a unique periodic orbit of period M(n) in U, which is an obstruction to
finding an N-th root of fc over U,. The periodic orbit coallesces with the origin
as € = €,. Moreover M(n) T 400 as n — oo;

(ii) there exists a second sequence (e,) so that the germ of f% localized at a fized point

z; (a periodic point of fo ) has no N-th root. For each n there exists a small
neighborhood V,, of €,,, a small neighborhood U}, of z; and an integer M'(n) such
that, for e € V!, f& has a unique periodic orbit of period M'(n) in U}, which is
an obstruction to finding an N-th root of f. over U],. The periodic orbit coallesces
with the fized point zj of f&, as € = €,,. Moreover M'(n) | +o0o as n — co.

PROOF. The proofs of (1) and (2) are similar to the ones in Theorem 4.1. We now consider
(3). Then one of ¢ (resp. ¥$°) does not satisfy (2.32). If it is 9 (resp. $°) then the
sequence of values ¢, will be chosen in the Siegel domain in the direction in which v? (resp.
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¥$°) controls the dynamics of the origin and the sequence of €/, also in the Siegel domain, in
the direction in which ¢y (resp. ¥$°) controls the dynamics of the periodic orbit.

Let us treat the case of ¥). For the sequence (¢},) we consider the renormalized return
map for fg/n which is given by ke = Lo @b?’e% for an appropriate L so that all ko be resonant
of order 1 with same multiplier exp(27i/m). Then as in Theorem 3.1 the €, are such that

(ff,n)’(zl) = exp (— 1217%1) The rest of the proof is as in Theorem 4.1.

The case of the sequence ¢, requires a little more work. Let m be defined as in (4.9).
The relation between the ¢?,e is given in (2.9). Let s be such that sp = —1 (mod ¢). Then
?—Le =B %o 1/;97 . © B®. The renormalized return map ke, of f& in the neighborhood of 0 is

given by:
k

€n

Loz/;%en oLo---ozﬁgiLen oLozﬁg’En

Lo(B 0 soyg oBU D )oLo---0(B*oyf, oB*)oLoyf,
B—(a—Ds 5T o 1/}8,;” olLjo---o0 qu’en oljo wg,en

(Lyo4g,, )

where L = Lo B*| since linear maps commute and B*? = id. The sequence (¢,) is chosen so

€n

(4.13)

that f! (0) = exp (2m’ (g - m)), which implies that the multiplier of L; o ) at the
21

origin is given by exp(m—q). Then it is easily checked that ke, also has the form (4.9) (since

composition of maps of this type yields a map of this type) with multiplier at the origin

2mi

exp(<2). The rest of the proof is as in Theorem 4.1. O
m

Theorem 4.3 We consider a germ of analytic diffeomorphism
f(z) = 2+ 27T+ o(291). (4.14)

(1) If f has a q-th root g with ¢'(0) = exp(2wi/q), then there exists a generic family f.
unfolding f such that, for all sufficiently small €, f. has a q-th root.

(2) If f has no q-th root g, with ¢'(0) = exp(2mi/q), then for any generic one-parameter
“prepared” family f. unfolding f, i.e. fe is of the form

fe2)=z4+2(z7—¢€)(1 4+ A(e) + (27 — €)h(z,¢)) (4.15)

and satisfies the properties described in Section 2.1, there exists a neighborhood U of
the origin such that, for sufficiently small €, f. never has a g-th root over U. Also:

(i) There exists a sequence (€,) converging to the origin, so that the germs of fe, at
zj have no q-th root. For each n and each z; there exists a small neighborhood V,,
of €n, a small neighborhood U, of z; and an integer M(n) such that, for e € V,,
fe has a unique periodic orbit of period M(n) in U, which is an obstruction to
finding a g-th root of fo over Uy,. The periodic orbit coallesces with z; as € = €.

Moreover M(n) T 400 as n — oo.

(i) There exists a sequence (e,) converging to the origin, so that the germ of fo at

the origin has no q-th root. For each n there exists a small neighborhood V,! of €.,
a small neighborhood U], of the origin and an integer M'(n) such that, for e € V.,
fe has a unique periodic orbit of period M'(n) in U}, which is an obstruction to
finding a q-th root of f. over U),. Moreover M'(n) 1 400 as n — oo.
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PrROOF. We only discuss (2). As f has no ¢-th root then there exists j such that ¢?+1 #*
B7lo 1/}? o B or ¢79, £ B 1o ¥3° o B. We only discuss the first case. Let m + 1 be the first
order where this is not true. Depending if € is in the positive or negative Siegel direction we
will consider the renormalized return map k;. near z; (case (i)) or the renormalized return
map ko at the origin (case(ii)).

(i) Because of the hypothesis there exists at least one j such that (ngo)(mﬂ)(O) # 0. We
consider the renormalized return map k;. near z; and we choose the sequence ¢, so that
K. (0) = (9 ) (0)LL, (0) = exp(2E) (z; is represented by 0 on S}fﬁ). This yields, for € close
to €y, the birth of a periodic orbit {w, ... wy,} of period m for k; .. We suppose that the germ
of fe at z; has a square root g. for € close to €,. The points w, belong to SIE. Their images
Wy € Sj_H . under the dynamics of g, are given by w, = B~ (w,) must be periodic points of
kjt1,e of period m. The points wy (resp. ) are fixed points of k7, (resp. k7, ). Because
P2y, # B~ o9 o B at the order m + 1 the equation B~' o & (w) — kJi; .o B™H(w) = 0
has exactly m + 1 small zeros which should be 0 and the wy. But 0 is a double root of
this equation, yielding a contradiction. An obstruction at the level of periodic points of the
renormalized return maps obviously yields one at the level of periodic points of f.. We do

not discuss the details.

(ii) The renormalized return map ko near 0 is given by
kove =Lo w?,e o---olLo wgfl,e oLo 1/}8,6 (416)

We let X?,e =Blo 1/;?76 o B~/ (in particular X876 = 1/’8,5)- Note that B and L commute and

BY=id and let M = Lo B~

koe = Lo(B'oxy oB)o---oLo(B W Voyx)  oBT!oLoyj,

)

4.17
= MOX%EO"'OMOXS_LEOMOXg,e- ( )

The hypothesis is that

Xie = Y cr(€)z + Cj(e)z™ ! + o(z™ ), (4.18)
/=1

where the ¢/(0) are independent of j and there exists j and j’ such that C; # Cj. We take

e, such that (M ox3 )/ (0) = exp(2mi>), for some s € {1,...,m — 1} to be chosen below.
Let h be a map which brings M o XS’E, to normal form up to order m + 1:

h™toMox), oh=exp (2w¢i> w + Dow™ . (4.19)
n mq
We apply the change of coordinate to M o X? » and get
h~toMo X?e’ o h =exp <2m’i> w + Dy_jw™ . (4.20)
»n mq

Moreover necessarily D; # D; for small €],. Let 7 = exp(%). Then

q—1
Wl okge oh(w) =71"(w) + roa—1) Z D™ | ™ 4 o(w™ ). (4.21)
§=0
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The system

D™ =0, s=1,...q—1 (4.22)

has a matrix of rank ¢ — 1, since it contains a Vandermonde submatrix. Hence the set of
solutions has dimension 1. As E?;é 75 = ( they are all multiple of (1,1,...,1). So there
. —1 ;
exists one s such that > 15 D;7%™ # 0.
This yields that

= w + C(e),)w™ ™ + o(w™ ) (4.23)

€n
with C(e],) # 0. Hence for € close to €, we have the birth of a unique periodic orbit of period
m for ko .. As before this orbit is an obstruction to the existence of a g-th root of f.. O

5 The problem of conformal equivalence of curvilinear angles
in conformal geometry

Conformal geometry is the study of properties of geometric configurations which are invariant
under all conformal transformations. We limit ourselves to germs of regular real analytic arcs
in the plane and regular conformal transformations in a region including the arcs. If the
region is identified to an open set of C then a regular conformal transformation is identified
to a holomorphic diffeomorphism on that region. Any germ of single curve can be transformed
into the germ of the real axis at the origin. So the first non trivial configuration is composed
of two germs of curves having a common point, i.e. a curvilinear angle. We will suppose that
the common point is the origin. The particular case where the two curves are straight lines
will be called the linear angle. The problem of conformal equivalence of two such curvilinear
angles has been studied by Kasner ([5], [6]), Pfeiffer ([10], [11]) and, more recently, by Nakai
[9] and Ahern & Gong [1] (none of these authors have considered the unfoldings.)

Definition 5.1 A curvilinear angle, (C7,C3) formed by two germs of real analytic curves
C1 and Cy intersecting at the origin is conformally equivalent to a second curvilinear angle
(C1,C%) if there exists a germ of holomorphic diffeomorphism h at the origin such that
h(C;)=Cl, i=1,2.

Obviously the angle 6 between the two curves is a conformal invariant. Kasner has proved
that there are no other formal conformal invariant if 3 = /7 ¢ Q and that there exists a
formal change of coordinate

%)
23 e (5.1)
n=1

sending the curvilinear angle to the linear angle. However divergence is the rule and con-
vergence the exception when § = 0/ is Liouvillian. Here we will discuss the case /7 € Q.
In the generic case there is a formal obstruction to bring the curvilinear angle to the linear
angle and one gets as formal invariants an integer k£ (to be thought of as the codimension)
and one real number a [6]. This yields for each odd k and a a unique “model”. For an even
k and given a there can be two models [1]: this comes from the fact that the transformation
sending one to the other does not preserve the “real” character of the problem. In all cases
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we have generic divergence of a transformation (5.1) sending a curvilinear angle to the model
curvilinear angle. The equivalence classes of curvilinear angles with same invariants k and
a have been first studied by Nakai [9]. Ahern & Gong [1] completed the construction of a
complete modulus of conformal classification.

Here we will explain the meaning of the invariants and of the modulus by studying a
deformation of the curvilinear angle.

We consider two germs of regular analytic curves C7 and C5 such that the curves Cy
and Cy cut at an angle § = 7r§ at the origin. We also consider the case of a zero angle
corresponding to p = 0, i.e. the two curves are tangent, which is called a horn. We can
of course suppose that C7 is the real axis. For each curve we consider the germ of Schwarz
reflection 3; with respect to the curve C;j. Then ¥1(2) = Z and C; = Fix(¥;). We consider
the map:

f = 22 o 21. (52)

Then f is a germ of resonant analytic diffeomorphism with

£(2) = exp (27ri§> 2+ 0(z). (5.3)

Moreover from the definition of f and the fact that the Schwarz reflections are involutions
we have that
Yiof=f"lto¥. (5.4)

Definition 5.2 The diffeomorphism f = Y5 o 31 is called the diffeomorphism associated to
the curvilinear angle (Cy,Cs).

Lemma 5.3 We consider two curvilinear angles (C1,C2) and (C{,C%) and let f and f' be
their respective associated diffeomorphisms. For each curve Cj (resp. CJ’) we consider the
germ of Schwarz reflection i (resp. X)) with respect to the curve. Then Cj = Fiz(%;) and
Cj = Fir(¥}). The two curvilinear angles (C1,C2) and (C1,C3) are conformally equivalent
under the conformal equivalence h if and only if

ho¥;=%}0h, (5.5)

which yields ho f = f'oh, i.e. h conjugates f and f.

Conversely given two germs of analytic diffeomorphisms f and [ and two germs of
Schwarz reflections ¥1 and ¥ such that Y10 f = f~1o %) and X o f = (f)"1 o X}
which are conjugate under h satisfying h o ¥1 = X} o h, then h is a conjugacy between the
curvilinear angles (C1,C2) and (C1,C%), where

Yo=fol
E/ ) E/
Cj = sz(Zj)

C} = Fiz(X)).

PROOF. If h is a conformal equivalence between (C1,Cs) and (C], C%) then (5.5) is satisfied.
Also
hof=hoYs0X=%,oho¥;=%,0%0h=foh. (5.7)
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Conversely we only need to show that h o 3y = ¥, o h. This follows from
hoYo=ho(X30%1)oY 1 =hofo¥y=foho¥;=foXjoh=%,0h. (5.8)
O

When we consider the problem of conformal equivalence of curvilinear angles (C1, Cy) and
(C1,CY%), we can of course suppose that we have applied conformal transformations sending
C7 and C] to the real axis. Then the problem of conformal equivalence between the two
angles is equivalent to the problem of conjugacy of the associated diffeomorphisms under a
conjugacy h satisfying h o ¥ = Y o h where

Y(z)=7z. (5.9)

5.1 The modulus of conformal classification

We limit our discussion to the generic case where, up to a change of coordinates, the map fj
can be written in one of the forms

fo(2) = 2z +i2? + o(2?) (5.10)
and
fo(z) = exp (27ri]—)> 2+ C27T 4 o(241h), (5.11)
q
with arg(C) = —27r§ + 5. In the latter case the only linear changes of coordinates which

commute with ¥ are the changes z — cz with ¢ € R. Depending whether ¢ is even or odd,
we can bring fy to:

exp(2mif)z + %exp(—2m’%7 + Z20+ 4 o(2771) g even

z) = . 5.12
folz) {exp(ng)z + %exp(—2m’§ + ZH20T 4 0(27T1) g odd. (5.12)

In the case of (5.10) the two curves have a contact of order 2. If we unfold the curves in
families C; . of curves depending analytically on €, then the two unfolded curves C; . can have
two intersection points or none. Note however that the unfolded map f. always has two fixed
points. The two fixed points are the intersection points of C} . and C  when the two curves
intersect. They are outside the curves when the two curves do not intersect, but they control
the geometry if we want to describe the conformal geometry over a fixed neighborhood of the
origin throughout the perturbation (Figure 4). If we call P; . and P2, the two fixed points
of fe, then, for € in the Poincaré region, we have that X; (Pi ) = Pa., j = 1,2.

The presence of P; . and P> when € is in the Poincaré region puts a limit on the size of
a neighborhood on which we can send two non intersecting arcs to two non intersecting arcs.
In general the neighborhood must not contain both P; . and P> .

In the case of (5.11), one easily sees that the obstruction to linearize the family (i.e. to
bring the curvilinear angle to the linear angle) comes from the fact that, in all unfoldings, f.
has a unique small periodic orbit of period ¢q. The uniqueness comes from the fact that the
diffeomorphism fj is generic (the codimension k is equal to 1).

Because of the fact that we consider unfoldings f. satisfying

feoX =%of ! (5.13)
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Figure 4: The points P; . and P,

we need to adapt the definition of “prepared family”. Indeed we need to compare f. with a
model family which satisfies (5.13). For a generic family f. unfolding (5.12) we prefer to give
a model family for its g-th iterate: such a model family is given by the time-one map of

 2(29—¢€) O

—_ = — 14
1+ Ae)z1 0z (5:14)
For a family unfolding (5.10) it is given by the time-one map of
2 0
S (5.15)

1 + Ae)z 0z

In both cases we limit ourselves to real values of € and to real A(e). A family f. is prepared
if the fixed points z; of fd coincide with the singular points of the vector field and if the
multipliers A; of f¢ at the fixed points z; of f& are of the form \; = exp(u;) where p; is
the eigenvalue of the singular point z; of the vector field. The fixed points z; are either
real or come in pairs z;,%;. The p; = p(z;) satisfy p(z;) + pu(z;) = 0, so p(z;) € iR when
zj € R. Equivalently A(z;)A(Z;) = 1. As the formal invariant is given by a(e) = “ij, then
a(e) = —iA(e) € iR. From this the following proposition follows easily.

Proposition 5.4 We consider a generic family fe unfolding (5.12) and satisfying (5.13)
where X is given in (5.9). The only admissible values of € are such that |f/(0)] = 1 and
[(f&) (z;)] = 1, where 21, ...,z are the periodic points of fe of period q. It is possible to find
a change of coordinate and parameter (z,€) — (Z,€) so as to bring the family to a prepared
family fe which still satisfies (5.13).

PROOF. We give few details as we do not want to recall the full details of how the preparation
is done in [14]. If a family is in normal form up to order ¢ then the equation for singular
points has the form

(14 0(€))z? — e+ 0o(2%) = 0. (5.16)

which we bring to 29 — é = 0 by means of a change of coordinate 2 = z(1 4 O(e€)) + o(2). We
then make a scaling in Z and a change of parameter to bring the family to the prepared form.
As the initial system satisfies (5.13) (so the singular points either satisfy ¥(z;) = z; or come
in symmetric pairs) and the condition to fulfill in the prepared form also satisfies (5.13) it is
easily to see that the change (z,€) — (Z, €) preserves (5.13). O

The unfolding of (5.10) also yields the geometric interpretation of the quantity A(e):
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Proposition 5.5 When the two curves intersect at ++/€ in the unfolding of a curvilinear
angle, the angles at the intersection points are given by

2V
1 E Ae)y/e

In particular when A(0) # 0 the angles can never be opposite in the unfolding. A(e) yields a
measure of the difference between the two angles through the relation:

0+ (5.17)

1 1
ot =A@ (5.18)

For the next theorem we use the Martinet-Ramis point of view for the modulus of analytic
classification of a resonant diffeomorphism. The case ¢ = 0 was done in [9] and [1].

Theorem 5.6 We consider a generic prepared family f. unfolding (5.12) satisfying (5.13).
Then for admissible values of € the formal invariant a(e) is pure imaginary. For an adequate
choice of coordinates on the spheres, the modulus of orbital analytic classification given by
the 2-tuple (~8, @Z)e‘x’) (in the Martinet-Ramis point of view) satisfies for admissible values of
€

{@:zw@r%z 519)

PP =FTo (@) o

PROOF. Because of the condition (5.13) we need to take the conjugate f& = r o f&or~1 of
fd by the rotation r(z) = z = exp(g;)z in order to apply directly the results of [14]. Let

s=roXor ! Then so fl = f.%0s We have s(z) = exp(%)?: it is the symmetry with

respect to the line making an angle ;—q with the horizontal axis. Geometrically this means

that, when embedding f¢ in a flow, the trajectories look symmetric with respect to this line
as in Figure 1.
In the original coordinate the map looks as in Figure 5 with a horizontal symmetry axis.
To construct the Fatou coordinates we make the change of parameter n = ie and of
variable

L2 0
Z=pip=]m T 7 (5.20)
—ﬁ n = 0

We let F)! be the map ff,’ in Z-coordinate. As n € iR this yields
SoFl=F 105, (5.21)

where the map S is an involution on the Z-space (see Figure 2) defined as follows: S is
the identity on the half-line | = {Z|ReZ = 0,ImZ < 0} located in the lower part of the
translation domain @), (which we can view as the image of the positive real axis in z-space).
Let Zy belong to this half-line and let a(t) and §(t), t € [0,1] be curves in Z-space with
a(0) = B(0) = Zp whose projections on Z-space (resp. z-space) are symmetric under s (resp.
Y). We define S(a(l)) = B(1). S is well defined and is a kind of generalized symmetry
with respect to the vertical direction on the g-sheeted Z-space. Moreover S is an involution:



24 C. Rousseau

(a) Negative Siegel direction = (c) Positive Siegel direction

Figure 5: The maps 1 for € in the Siegel direction

S~1 = S. In the lower part of the translation domains @, and Q7 it looks like Z — —Z.
Elsewhere there is an additional change of sheet.

Once we have identified the symmetry (5.21) on F)! we can follow what it means for the
modulus. We choose @fn and ¢, so that

Sod;, =&f, oS, (5.22)

where by abuse of notation we also define S(W) = —W. We still have freedom for one base
point Zy such that @fn(Zo) = 0. The base point is chosen so that the set of Fatou coordinates
is normalized (i.e. (2.8) is valid). This means in particular that the translation terms in \II?;O
are real.

All the other Fatou coordinates are then determined by the rule

+ _ +
5y © Fn = Tryq 0 T (5.23)

As \Ijg,n =®,0 (@fn)*l this yields
5o \118777 - (\118777)—1 oS (5.24)

Let us now consider \il;;o Let m be such that mp =1 (mod ¢). Then from (2.17)

D - — - —m
{(I)lﬁ - ®0.m(0)’,,7 o T% © ®0777 © F’] (5 25)
+ _ et _ + :
(1)0777 = (I)a*m(l),n = T_% o (I)l,n o Fy.

oo _ H— + \—-1
Hence, as U7 = q)j,n o ((I)jm) ,

UEo, =0y, 0 (B,) " =y, 0 F Mo (®F )7 o Tm, (5.26)
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and
qIOO

= TuoSo®f 0850k moS0(2;,) oS

— T%OSOQInoano(@an)floS

- SOTf%Oq)inOF#O((I’&n)*lOS
So(¥g,) oS

(5.27)

At the level of the small w%:;o =Fo \I/?;o o B~ with E(W) = exp(—27iW) this yields:

{w&nm) =Xo()f,) " oX (5.28)

UG5, (w) = T o (¥§5) T 0T
with ¥(w) = E o S o E~'(w) = w. Hence, using (2.22) we have
P =Lo =loXo(¥3e) T on =0l o () oS =0 () oN,  (5.29)
yielding (5.19). O

Corollary 5.7 We consider a generic family f. unfolding (5.12) and satisfying (5.13). Then
for admissible € € iR it is possible to construct Fatou coordinates satisfying

So®; = (I);H—j oS. (5.30)

(Indices are (mod q).)

Theorem 5.8 ([1] for the case € = 0) We consider two prepared families f. and f. unfolding
fo and fo, with same multiplier exp(27ri§), of the same type (5.12), and both satisfying (5.13).
Then they are conjugate under a conjugacy he commuting with 3 if and only if they have the
same formal invariant a and the same modulus (1/1?76,1#305).

PROOF. Tt is already known from [14] that the two families are conjugate. We only need to
prove that there exists a conjugacy between the associated diffeomorphisms which commutes
with . Let CID;; (resp. @fe) be the Fatou coordinates of f. (resp. f¢). As the conjugacy is
obtained by the compositions

peo (®7) o o(p) ! (5.31)

which glue together as a global map this follows from Corollary 5.7 and the fact that Y op. =
peoS. a

Theorem 5.9 We consider a generic prepared family f. unfolding (5.10) and satisfying
(5.13). Then, for admissible values of € € R, the formal invariant a(e) is pure imaginary. For
an adequate choice of coordinate on the spheres, the modulus of orbital analytic classification
given by (¥2,9>) satisfies for admissible values of €

{w? =%o () lox

PP =Xo (PpX) o, (5.32)

PRrROOF. The proof is identical to that of Theorem 5.9. O
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5.2 The problem of conformal bisection of a generic curvilinear rational
angle

Here we consider the problem of conformal bisection of a generic rational angle. A curvilinear
zero angle is called a “horn” in the terminology of [5].

Definition 5.10 (1) A curvilinear angle (C;,C2) can be bisected if there exists a germ of
analytic curve Cy such that X3(C1) = Cq, where X3 is the Schwarz reflection associated
to Cs. If the diffeomorphism f associated with (C, C2) has multiplier exp(27i2), then
(5 is an internal (resp. external) bisector if the diffeomorphism associated to ZCl, Cs)
has multiplier exp(mif) (resp. exp(m”%q)).

(2) A curvilinear angle (C4, C2) can be sected in N equal parts if there exists N — 1 curves
Cj,j=3,...,N +1, and their associated Schwarz reflections ¥, such that

¥3(Ch) =Cy
¥4(C3) = Cs

EN+1(Cn) =Cy

(5.33)

Proposition 5.11 A curvilinear angle can be sected in N equal parts if and only if its asso-
ciated diffeomorphism has an N-th root which satisfies (5.13).

PRrROOF. If the angle can be sected in N equal parts then
f=%20% =(E20XN41) 0 (Ent10XN) -0 (B3 0X). (5.34)
Moreover (5.33) implies that

24223021023,

25 = 24023024, (5 35)

Yo =XN410XNOXNY1

which yields
23021224023:"'22202N+1' (536)

Hence f = ¢"V with ¢ = ¥3 0 %;. Moreover g o Y =30 g~ ! for all j.

Conversely, let us suppose that f = ¢~ for some g satisfying g o 31 = ¥y o g~'. Let
Yg=goX,X4=g0%3 ..., XN+ =goXy and C; = Fix(X;). Then the C; satisfy (5.33).
O

As we have seen in Section 2.3 (for instance Lemma 2.5) the two problems of internal and
external bisection of the angle can be very different: in some cases there are formal obstruc-
tions which can be seen at the level of a finite jet, in addition to the analytic obstructions
which exist in all cases and can never be seen at the level of a finite germ.

We discuss the different cases: the first case will be discussed at length and the others
more briefly.
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(i) Internal section of the horn into N > 2 parts.

This case is covered by Theorem 4.1. Indeed if fj satisfies (5.13) and has an N-th root,
then an N-th root can be found which also satisfies (5.13). If fp has no N-th root, then
the Siegel direction is the direction in which the two curves C; . intersect. We consider the
renormalized return map of f, at one of the intersection points, for instance —,/€, and let
us take the case where the renormalized return map is calculated with ¢2n. The values ¢,
are chosen so that the curves intersect with an angle 57—, where m is as in (4.9). The
corresponding feln+m” has a fixed point of multiplicity 2+ mn. Let us now consider values of €
close to €,. Then, multiplying the angle by 1+mn, (the inverse of secting the angle in 1+mn
equal parts) yields to curves Cy ., and Cj = intersecting with an angle mm (see Figures 6-8).
The two curves C1 . and C’é,e intersect in one, two or three points in the 1-parameter family
for € close to €,: one is the intersection point —y/e of C; . and Cy., while the others are
periodic points of f. of an orbit of exact period 1 + mn. The exact number of intersection

points of C1 . and Cj . depends on the parity of 1+ mn and on € (see Figures 6-8).

So the interesting question is to give the meaning of the other periodic points of f.. For
that purpose we embed our curves Cj, j = 1,2, in a sequence of curves Qije)\jEz. The
curves Cj . are obtained by taking copies of the angle. They are given by Cp. = Fix(3,)
where

See=f"loxy, L€l (5.37)
From this definition we have

C~’l,e = Cl,e
Coe = O = Fix(Xa)
C~'3,E = Fix(Xg, 031 0Xa,)

Che =Fix(¥oc 0¥ 0¥y 0% 03,)
. (5.38)

éO,e = FiX(El o 2276 o) 21)
Co1e=Fix(Z10%9, 05105 0%))

L*

In particular C~’j+1,E is the bisector o~f C'j@ and C~’j+27€. We now prove that the periodic points
represent points where the curves Cj . are likely to intersect.

Theorem 5.12 We consider the family of curves é&e given by CN’g’e = Fz’w(f)g,e) where ig’e
is defined in (5.37). If fe has a unique orbit {z1,...,zn} of period N, then necessarily some
periodic point zs of the orbit lies either on Cy ¢ or on Coc. In the first case, if ¥1(zs) = 2s
then, for all 0 € Z, zp4s € F’Z‘T(igg_i_l’E), where the index for z is modulo N. In the second
case g ((z5) = zs then, for alll € Z, zp45 € Fi$(225+276).

PRrROOF. Let {z1,...,2n} be the unique orbit of period N and let us suppose that z; =
Iz I z; is a periodic point of period N, then Z; = 31(z;) and X3 ((z;) are also periodic

points of period N. Let us apply this to z;. As we have a unique orbit of period IV, then
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o 22
C'Z,s
I\_/O/
Zy Cl,s
() Z4
(b)

Figure 6: C1 ¢, Ca, Co,, C3,¢ and Cé,e for m =1, n =2 and € near e

2(2)
\ €
C 3) >
2. \ Z
~ ® ) Cz,s 3

|

|

\

é
\
\

(a) (b)

Figure 7: Cy ¢, Ca, C3¢, Cyc and Cé,e for m =1, n = 3 and € near €3

there exists j such that zZ1 = ¥1(z1) = 2; = fejfl(zl). We will distinguish the cases j odd

and j even. If j = 2/ + 1, then
foloBi(z1) = o fi(21) = fi(=0),
ie. X1(zp41) = ze41. If j = 24, then

JefeBac(z) = [ o(Tre a0 0 Ba(a)
= fFHl oS (21)
= fi=).

As we also have f=‘o Yoe=2%9c0 f¢ we finally get Yo.c(zo41) = 2o41.
In both cases let zp11 = 2. If 31(25) = 25, then

i%—&-l,e(ff(zs» = fe% oXjio0 ff(ZS) = ff oXi(zs) = ff(ZS)
If ¥5 (25) = 25, then

Sorroe(fizs)) = [P o(ZacoXi) oo fhzs) = fH 0%y, 0 fi(z)
= ff © 22,6(28) = ff(ZS)

(5.39)

(5.40)

(5.41)

(5.42)
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3 @)
sze) / Cz,s

2,e

l,e

Figure 8: Same as Figure 7 with other values of ¢

a

If the angle (Cy ¢, Ca) could be sected in N parts, (i.e. fo would have an N-th root g),
additional periodic points are needed (see Figure 9). For instance, in the case N = 2 as in

Figure 9: The need for new additional periodic points in case of a bisection of the angle

Figure 9, let 2] = X3.(z1). If 21 € C, then 2] € Ca. As ge = X3, 0 X5 then g (z1) = 2.
Hence f"+(2}) = 21, i.e. 2] is a point of an orbit of period mn + 1. The other points of
the orbit are z} = f! 71(21). We get a contradiction as in Theorem 4.1 since there are only
1+ mn periodic points, while N (1 + mn) periodic points would be needed if the section was
possible.

(ii) External bisection of the zero curvilinear angle. We need to find a function
go(z) = —z + o(2) such that g3(z) = fo(z), where fo(z) = 2 + 22 + 0(2?). There is a formal
obstruction to this as g3(z) = z+0(2?) (the first higher order coefficient of g is of odd order).
External bisection means for instance finding C3 o making an angle 7/2 with C o (and Cay).

The obstruction to an external section of the angle comes from the fact that the multi-
plicity of intersection of C'1 ¢ and U5 is only 2 while a multiplicity of order 3 is necessary for
an external section. Indeed suppose that gy exists and suppose that gg can be unfolded as
ge, which means that we have unfoldings C ¢ of the curves Cj o, j = 1,2, 3. Because (3 and
C1 are orthogonal, then necessarily C3 . and C1 . have a unique intersection point, yielding
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a unique fixed point of g.. So all other fixed points of f. come from periodic points of g. of
period 2, so there are an even number of them. Hence f. always has an odd number of fixed
points.

On the other hand, suppose now that, instead of considering a generic fy, we consider
fo(z) = z £i23 + 0(23) (i.e. fo of codimension 2) , then its modulus is given by 4 germs of
functions w?’w7 j =0,1. The condition fy = gg means that the four germs are related by the
following relations

o (w) =~ (—w), (5.43)

i.e. the modulus is given by the pair (¢/J,75°) [4]. This case has been discussed in Theo-
rem 4.3, where it was shown that when the condition (5.43) is violated there are periodic
points which are obstructions to the bissection problem. We do not discuss it any longer.

(iii) Bisection of a rational nonzero curvilinear angle. We consider a generic fj
as in (5.12). If p is odd or if p is even and we consider an external bisection hg(z) =
exp(2m’2% +mi)z+o0(z) then this case is completely similar to the previous one: The bisection

is formally impossible as we should have fd(z) = h2!(z) = z + O(224+1). Such a bisection
would be possible for fj of the form fy(z) = exp(2m’§)z + C’g)qu‘H + 0(z%4*1) provided the

modulus (¢?’°°), j=0,...2¢ — 1, would satisfy

(@) e

where o(j) = j+p (mod 2q) (resp. o(j) = j+p+q (mod 2q)) for the internal (resp. external)
bisection. The case of p even and an internal bisection ho(z) = exp(2m’2%)z + o(z) will be
considered in (iv) below.

(iv) The case of the internal section in N parts of an angle 27r§ when N|p. This
case is completely similar to (i) and covered by Theorem 4.2. The two curves C; . and Co ¢
always have a unique intersection point. Multiplying the angle by ¢ the curves C'y  and C’é’e
have one to three intersection points (the other solutions do not belong to Fix(X)). The
obstruction to the section in N equal parts can again be explained in terms of cascades or
periodic points.

6 The modulus of orbital analytic classification of generic 1-
parameter families of real vector fields unfolding a resonant
saddle or saddle-node

Here again we only discuss very briefly the codimension 1 case. It has been shown in [14]
for the resonant saddle case (resp. [13] for the saddle-node case) that a complete modulus
of orbital analytic classification for a generic 1-parameter family of vector fields unfolding a
resonant saddle (resp. saddle-node) is given by a complete modulus of analytic classification
for the family of holonomies of one separatrix (resp. the strong separatrix). Let f. be this
family. If we have a family of real analytic vector fields it is easy to verify that f. satisfies
(5.13). Hence Theorem 5.6 applies in this case and characterizes the moduli of orbital analytic
classification of generic 1-parameter families of real vector fields.
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7 Conclusion

Theorem 4.1, Theorem 4.2 and Theorem 4.3 only explain the obstructions to the existence
of an N-th root near some sequences of parameter values (€,). For these parameters values
some of the fixed or periodic points are resonant. For the other values of € (in particular the
values of € in the Poincaré domain) it occurs often that there exists an N-th root of f. near
each of the fixed or periodic points. The obstruction to a section over a fixed neighborhood
containing all the fixed points is then an incompatibility for the local N-th roots to glue in a
global N-th root. The particular sequences of parameters we have chosen are those where the
obstructions are carried by the fixed or periodic points themselves (the parametric resurgence
phenomenon).

The case of fixed points with non resonant multiplier on the unit circle is particularly
interesting. Indeed a germ of diffeomorphism f with a fixed point whose multiplier is of the
form exp(2mia) where « is Liouvillian, may not have an N-th root. Such diffeomorphisms
occur in the unfolding f. of a germ of diffeomorphism f with a fixed point whose multiplier is
a root of unity. Can we find conditions on the Ecalle-Voronin modulus of f guaranteeing that
in all unfoldings f. the map f. would have no N-th root in a neighborhood of a fixed point
whose multiplier is of the form exp(2miar) where « is Liouvillian? Of course “Liouvillian”
would need to be defined for this special problem. The author conjectures that the answer is
negative.
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