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Abstract

The N -th root extraction problem for germs of diffeomorphisms f : (C, 0) → (C, 0)
is the problem of finding a germ of diffeomorphism g : (C, 0) → (C, 0) such that gN =
f , where gN is the N -th iterate of g under composition. Depending on f and on the
multiplier of g at the origin there can be formal and analytic obstructions to a solution
of the problem. By considering an unfolding of f we explain these obstructions. Indeed
each analytic obstruction corresponds to an accumulation of periodic points which, in
turn, are an obstruction to taking an N -th root of the unfolding. We apply this to the
problem of the section of a curvilinear angle in N equal parts in conformal geometry.

1 Introduction

We consider a germ of diffeomorphism f : (C, 0) → (C, 0) with f ′(0) = λ. The classical N -th
root extraction problem for f is the problem of finding a germ of analytic diffeomorphism
g : (C, 0) → (C, 0), such that gN = f , where gN = g ◦ g ◦ · · · ◦ g

︸ ︷︷ ︸

N

. When |λ| 6= 1, the

problem is solvable as f is linearizable, i.e. there exists a germ of holomorphic diffeomorphism
h : (C, 0) → (C, 0) such that h ◦ f ◦ h−1(z) = λz. Then we find N functions gj which are
N -th roots of f given by gj(z) = h−1(νjh(z)), j = 0, . . . , N − 1, where ν0, . . . , νN−1 are
the N -th roots of λ. When |λ| = 1 the same occurs as soon as f is linearizable. This is
always the case when λ = exp(2πiα) with α irrational diophantian, more precisely when
α satisfies the Brujno condition. When α is irrational Liouvillian, more precisely α does
not satisfy the Brujno condition, then a formal solution h exists, but, generically, small
denominators are an obstruction to convergence. This does not exclude a priori the existence
of an N -th root. Indeed it is shown in Pfeiffer [12] that there exists a non linearizable f with
f ′(0) = exp(2πiα) which has a square root. Such an example is simply constructed by taking
some non linearizable g with g′(0) = exp(πiα) and taking f2 = g. In the same paper Pfeiffer
constructs examples of maps which have no square root, by showing the divergence of the
formal series of their square roots.

In this paper we consider the case where λ is a root of unity: λ = exp(2πip
q ). It is clear

that if a germ f admits an N -th root, then any germ f̃ conjugate to f admits an N -th root,
so this is really a property of the equivalence class of f under conjugacy. Let us first recall
the known results (for instance [4], [3]). The map f is linearizable if and only if f q = id,
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which occurs only exceptionally. In general f q(z) = z + Czkq+1 + o(zkq+1) with C 6= 0. We
first look for formal N -th roots ĝ of f with ĝ′(0) = µj = exp(2πip+jN

qN ), j = 0, . . . , N − 1.
Depending on j there may exist some formal obstructions to find ĝ. Moreover, when ĝ exists
it converges very exceptionally. The conditions for the convergence of ĝ can be read on the
Ecalle-Voronin modulus of f . A natural question is to ask why the existence of an N -th root
is so exceptional.

In this paper we give a geometric explanation of this phenomenon for the codimension 1
case. This is done through unfolding the diffeomorphism f in a family fε. In the unfolding
we observe accumulation of periodic points for fε. Their presence is an obstruction to the
N -th root extraction problem.

We apply this to a problem in conformal geometry, namely the problem of the section
of a curvilinear angle in N equal parts. Curvilinear angles are given by two germs of arcs
of real analytic curves in C and we consider the conformal equivalence of curvilinear angles.
Each germ of curve determines a germ of Schwarz reflection. In the case of the real axis, its
associated Schwarz reflection is Σ(z) = z. It preserves the size of angles and reverses their
sign. If (γ, z0) is any germ of real algebraic curve at a point z0 ∈ C, let h be an analytic
map sending it to (R, 0). Then its associated Schwarz reflection is Σ1 = h−1 ◦ Σ ◦ h. (Σ1

is an involution reversing angles and with γ as set of fixed points). The composition of the
two germs of Schwarz reflections associated to the two arcs of a curvilinear angle is a germ
of analytic diffeomorphism f with a fixed point which has a symmetry property with respect
to the Schwarz reflections: if Σj is any of the Schwarz reflections associated to one of the two
curves we have f ◦ Σj = Σj ◦ f−1.

The symmetry property f ◦Σ = Σ ◦ f−1, for Σ(z) = z, is exactly the symmetry property
of the holonomy of a separatrix of a saddle point of a real vector field. Also the holonomy of
the strong separatrix of a saddle-node of a real vector field has this property, which is studied
in detail in [2].

The whole paper is limited to study the codimension 1 phenomenon. The paper is or-
ganized as follows. In Section 2 we recall the modulus of analytic classification of a family
unfolding a germ of resonant diffeomorphism and the condition for solving the root extraction
problem for f . In Section 3 we discuss the renormalized maps for fε and their link with the
localization of fε at its periodic points. In Section 4 we explain the obstruction to the root
extraction problem. In Section 5 we make the link with the problem of section of a curvilinear
angle in N equal parts in the conformal geometry of germs of curvilinear angles.

2 Preliminaries

2.1 Modulus of the unfolding of a resonant diffeomorphism

We briefly recall the results of [14] to which the reader can refer for more details. We
consider a germ of one-parameter family of diffeomorphisms fε unfolding a germ of resonant
diffeomorphism f0 : (C, 0) → (C, 0) of the form

f0(z) = exp

(

2πi
p

q

)

z +
zq+1

q
+ o(zq+1). (2.1)
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In the case q > 1 such a family will have the form

fε(z) = exp

(

2πi
p

q
+ η(ε)

)

z +
zq+1

q
+ o(zq+1) + O(ε). (2.2)

We will also use this form when p = q = 1 and there is a constraint forcing z = 0 to remain
a fixed point. This is the case for instance when we consider the holonomy of a saddle point:
the separatrix remains a fixed point of the unfolding. Otherwise, when p = q = 1 we consider
an unfolding

fε(z) = z − η(ε) + z2 + o(z2) + O(ε). (2.3)

We consider generic families fε unfolding (2.1). For the family (2.2) (resp. (2.3)) the

genericity condition is given by ∂2fε

∂z∂ε 6= 0 (resp. ∂fε

∂ε 6= 0).

Case of a family (2.2). To describe the modulus of a family fε of the form (2.2) is equivalent
to describe the modulus of the family f q

ε . We now limit ourselves to the discussion of the
family f q

ε . Modulo a “preparation” (i.e. an analytic change of coordinate and parameter) we
can always suppose that its fixed points are given by z(zq − ε) = 0. To describe its modulus,
the point of view is to compare the family with the time-one map of the vector field

z(zq − ε)

1 + a(ε)zq

∂

∂z
, (2.4)

which we call the “model family” in the case of (2.2). The diffeomorphism can be conjugated
to the model family on some adequate sectorial domains in (z, ε)-space. For fixed ε the
modulus measures the obstruction to a conjugacy over a full neighborhood of the origin in
z-space.

Using a change of coordinate and parameter it is possible to “prepare” the family fε, i.e.
to bring it to the form:

f q
ε (z) = z + z(zq − ε)(1 + A(ε) + (zq − ε)h(z, ε)), (2.5)

so that the fixed points zj of f q
ε (i.e. the fixed and periodic points of fε) coincide with the

singular points of (2.4) and that their multipliers λj be equal to exp(µj), where µj are the
eigenvalues of (2.4) at the zj .

In a prepared family the parameter ε (called the canonical parameter) is an analytic
invariant. Hence a conjugacy between two prepared families must preserve their canonical
parameters. The meaning of the formal invariant a(ε) is obtained through the following
property

a(ε) =
∑

j

1

µj
. (2.6)

This yields the following relation between A(ε) and a(ε)

a(ε) =
q

ln(1 + qε(1 + A(ε)))
+

1

ln(1 − ε(1 + A(ε)))
. (2.7)
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In general we consider all values of ε in a neighborhood of the origin. For the phenomena
described below we will mostly limit ourselves to values of ε for which at least one of the λj

satisfies |λj | = 1 (the Siegel domain).
To compare f q

ε with the corresponding model diffeomorphism, we compare their orbit
spaces. The orbit space of f q

ε is obtained by taking 2q curves l±j , j = 0, . . . , q − 1, and

their images f q
ε (l±j ) as in Figure 1. The curves l±j and their images determine crescents S±

j,ε.
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Figure 1: The maps ψ0,∞
j,ε for q = 3, a(ε) ∈ iR and ε in Siegel direction

Passing to the orbit space, we identify l±j and f q
ε (l±j ). The corresponding space has the

conformal structure of a sphere (CP1): we will denote it by S±

j,ε. The fixed points zj of f q
ε

correspond to the distinguished points 0 and ∞ on the spheres. The 2q spheres are necessary
to cover the orbit space of f q

0 but some orbits have representatives in different spheres. So it
is necessary to identify the points in different spheres corresponding to the same orbit. This
is done through the germs of holomorphic maps ψ0

j,ε (resp. ψ∞
j,ε) defined respectively in the

neighborhood of 0 (resp. ∞) on the spheres. The coordinates on the spheres are given up to
linear maps (which are the only global holomorphic diffeomorphisms of CP1 fixing 0 and ∞).
It is possible to choose the coordinates so that

(ψ0
j,ε)

′(0) = (ψ∞
j,ε)

′(∞) = exp

(
2π2a

q

)

. (2.8)

So far we have described the modulus space of f q
ε . But each orbit of f q

ε represents q orbits
of fε. This is reflected in the fact that only two ψ0,∞

j,ε are independent and the others are
related through:

ψ0,∞
σ(j) = B−1 ◦ ψ0,∞

j ◦ B, (2.9)

where σ is the permutation of {0, . . . , q − 1} given by

σ(j) ≡ j + p (mod q) (2.10)

and

B(w) = exp

(
2πi

q

)

w. (2.11)
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Theorem 2.1 [14] The complete modulus of analytic classification of the family f q
ε (and

hence fε) is given by a(0), together with the family of equivalent classes of 2-tuples

[(ψ0
0,ε, ψ

∞
0,ε)]/∼, (2.12)

where the equivalence relation is defined by :

(ψ0
0,ε, ψ

∞
0,ε) ∼ (ψ

0
0,ε, ψ

∞

0,ε) ⇐⇒ ∃c ∈ C∗ ψ
0,∞
0,ε (w) = c−1ψ0,∞

0,ε (cw). (2.13)

Remark 2.2 It is not possible to define the ψ0,∞
j,ε depending continuously on ε on a neigh-

borhood of the origin. It is however possible to cover a neighborhood of the origin in ε-space
with two sectors V±, and to choose families (ψ0,∞

j,ε,±)|ε∈V± depending analytically on ε 6= 0 and
continuously on ε near ε = 0 (details in [14]), where

V+ = {ε; |ε| < ρ, arg(ε) ∈ (−π/2 + δ, 3π/2 − δ)
V− = {ε; |ε| < ρ, arg(ε) ∈ (−3π/2 + δ, π/2 − δ).

(2.14)

δ can be chosen arbitrarily small and ρ depends on δ. For the rest of the paper we drop the
lower indices ±.

Definition 2.3 We call the Siegel direction of the origin in parameter space ε the direction
where |λ0| = 1. As λ0 = exp(−ε) this yields ε ∈ iR. The Siegel direction of the periodic
orbit is the direction where |λj | = 1, i.e. qε

1+aε ∈ iR. When a ∈ iR both coincide. The
negative (resp. positive) Siegel direction of the origin is the half part of the Siegel direction
of the origin contained in V− (resp. V+). The negative (resp. positive) Siegel direction of the
periodic point is the half part of the Siegel direction of the periodic orbit contained in V−

(resp. V+).

Although we do not want to reproduce the proof of Theorem 2.1 we will need later the
following tools introduced in the proof.

We use a change of coordinate

z = pε(Z) =







(
ε

1−eqεZ

)1/q
ε 6= 0

(

− 1
qZ

)1/q
ε = 0,

(2.15)

conjugating f q
ε with F q

ε which is a small perturbation of the translation by 1. We consider
2q translation domains Q±

j,ε, j = 0, . . . , q − 1, in Z-space (see Figure 2) on which there exists

a change of coordinate W = Φ±

j,ε conjugating F q
ε with the translation by 1:

Φ±

j,ε(F
q
ε (Z)) = Φ±

j,ε(Z) + 1. (2.16)

The maps Φ±

j,ε are called the Fatou coordinates. As Fε commutes with F q
ε they satisfy

Φ±

σ(j),ε ◦ Fε = T 1

q
◦ Φ±

j,ε, (2.17)

where T 1

q
is the translation W 7→ W + 1

q and σ is defined in (2.10).



6 C. Rousseau
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Figure 2: The Z-space. The shaded area is a translation domain.

The 2q coordinates on the 2q spheres S±

j,ε discussed before are then obtained (as functions

of z) by means of E ◦ Φ±

j,ε ◦ p−1
ε , where E(W ) = exp(−2πiW ). The lifting of the ψ0,∞

j,ε in
W -space are obtained as

{

Ψ∞
j,ε = Φ−

j,ε ◦ (Φ+
j,ε)

−1

Ψ0
j,ε = Φ−

j,ε ◦ (Φ+
j+1,ε)

−1,
(2.18)

j = 0, . . . , q − 1, where indices are (mod q). The relation (2.17) yields (2.9).

Remark 2.4 Note on the choice of the indices 0 and ∞ in the functions ψ0,∞
j,ε

defining the modulus. The direction of the maps ψ0,∞
j,ε follow the dynamics of f q

ε . When

the parameter is in the Siegel direction then the map ψ0
j,ε (resp. ψ∞

j,ε) goes clockwise (resp.
counterclockwise).

The case of family (2.3). The model family in that case is the time-one map of the vector
field

z2 − ε

1 + a(ε)z

∂

∂z
. (2.19)

It is possible to prepare the family to a form

fε(z) = z + (z2 − ε)(1 + A(ε) + (z2 − ε)h(z, ε)). (2.20)

As before we prepare the family so that the parameter becomes an analytic invariant. We
then introduce a change of coordinate analogous to (2.15)

z =

{√
ε1+e2

√
εZ

1−e2
√

εZ
ε 6= 0

− 1
Z ε = 0.

(2.21)

The rest of the analysis, including the construction of Fatou coordinates, is similar to the
previous case and we replace ε by

√
ε in the definition of V± in (2.14). All details appear in

[8]. The crescents and maps ψ0,∞
ε appear in Figure 3.
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ψ
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Figure 3: The maps ψ0,∞
ε for (2.20), a(ε) ∈ iR and ε ∈ R−

2.2 The Martinet-Ramis point of view for the modulus

Although the paper [7] is primarily concerned with the modulus of a resonant saddle, the
authors also treat the modulus of a resonant diffeomorphism. Instead of using 2q spheres to
describe the modulus, and 2q germs of diffeomorphisms, of which only 2 are independent,
they use only two spheres and two germs of diffeomorphisms. We call this the Martinet-Ramis
point of view.

In the Martinet-Ramis point of view we can see the modulus as a pair of germs of maps
(ψ0

0,ε, ψ̃
∞
ε ) from S+

1,ε to S−

0,ε. The map ψ̃∞
ε identifies points belonging to the same orbit. As

w1 ∈ S−

j,ε and w2 ∈ S−

σm(j),ε belong to the same orbit if w2 = exp(−2πim
q )w1 = `(w1) we need

to take m such that mp ≡ −1 (mod q). Then

ψ̃∞
ε = ` ◦ ψ∞

1,ε = ψ∞
0,ε ◦ ` (2.22)

where

`(w) = exp

(

−2πim

q

)

w, mp ≡ −1 (mod q). (2.23)

If we let ψ0
0,ε = ψ̃0

ε we will denote the modulus by (ψ̃0
ε , ψ̃

∞
ε ). When the context is clear

we will simply denote it by (ψ0
ε , ψ

∞
ε ).

As (ψ0
j,ε)

′(0) = (ψ∞
j,ε)

′(∞) = exp(2π2a
q ) this yields

(ψ̃0
ε )

′(0)(ψ̃∞
ε )′(∞) = exp

(
4π2

q
+

2πim

q

)

. (2.24)

Note that (2.24) remains valid under global changes of coordinates on the spheres S+
1,ε and

S−

0,ε preserving 0 and ∞.

2.3 The root extraction problem for f

Let us first discuss the case f ′(0) = 1 and

f(z) = z + z2 + o(z2). (2.25)
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The following lemma, which looks trivial, contains the idea which will be used in the
further explanations of the analytic obstructions to the N -th root problem.

Lemma 2.5 Let f be as in (2.25) and

g(z) = exp

(

2πi
j

N

)

z + o(z), (2.26)

for j = 0, . . . , N − 1. Then an N -th root g of f with N > 1 necessarily has the form
g(z) = z + o(z), i.e. j = 0.

Proof: If gN = f then necessarily gN (z) = z + O(zN+1) as soon as j 6= 0. 2

Remark 2.6 (1) The formal obstruction for solving gN = f when j 6= 0 can easily be
understood. Indeed f has a double fixed point at the origin, while g, if it exists, has a
single one. So any unfolding of f will have two fixed points. Let gε be any unfolding
of g with g0 = g given in (2.26), yielding that gN

ε = fε is an unfolding of f . Then gε

has a unique fixed point and the other fixed point of fε corresponds to a periodic point
z1 of gε of period N . The orbit of z1 is given by z1, . . . , zN , with zj+1 = gε(zj). But
then all zj are fixed points of fε, a contradiction. In the limit for ε = 0, in order that
f = gN , where g is as in (2.26) with j 6= 0, then the origin must be a fixed point of f of
multiplicity N + 1 as it should be the coallescence of a fixed point of f with a periodic
point of multiplicity N .

(2) The simple explanation of (1) is very important. We will see the same phenomenon
being reproduced in cascades. These cascades will explain the analytic obstructions to
the root extraction problem.

Theorem 2.7 ([3] and [4]) Let f be as in (2.25). Then f has an N -th root g with N > 1
of the form g(z) = z + o(z) if and only if the maps ψ0,∞ of the Ecalle-Voronin modulus of f
satisfy

ψ0,∞(w) = wξ0,∞(wN ), (2.27)

for some germs of non vanishing analytic functions (ξ0, 0) and (ξ∞,∞).

Idea of the proof. (To complete to a full proof see corresponding proof for the unfolding
in Theorem 4.1 (2)). The orbit space of f is given by the two spheres identified in the
neighborhood of 0 and ∞ via ψ0 and ψ∞ respectively. We want to describe the dynamics on
the orbit space. Then, on each sphere, the action of f can be viewed as the time-one map of
the vector fields ẇ = −2πiw, i.e. the identity w 7→ w. On each sphere an N -th root of f is
given by the time 1/N of the same vector fields, namely w 7→ L(w) = exp(−2πi/N)w. The
N -th roots on the two spheres must be compatible with ψ0,∞, i.e. ψ0,∞ must commute with
L. This is equivalent to (2.27). 2

Corollary 2.8 Let f be as in (2.25) such that its modulus satisfies (2.27) for N > 1 and let
(ψ0, ψ∞) be its Ecalle-Voronin modulus. Then the Ecalle-Voronin modulus of the N -th root
g tangent to the identity has a modulus of the form (ψ̃0, ψ̃∞) with

ψ̃0,∞ = R ◦ ψ0,∞ ◦ R−1, (2.28)

where R(w) = wN . Hence ψ̃0,∞(w) = w(ξ0,∞(w))N .
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Proof. Let Φ̃± be the Fatou coordinates of g. Then the Fatou coordinates Φ± of f are
given by Φ± = 1

N Φ̃± = L1/N ◦ Φ̃±, where Lα(W ) = αW (since the Fatou coordinates are
unique up to translation). Hence the modulus of g is given by

Ψ̃ = Φ̃− ◦ (Φ̃+)−1 = LN ◦ Φ− ◦ (Φ+)−1 ◦ L1/N . (2.29)

Let E(W ) = exp(−2πiW ). It follows that

ψ̃ = E ◦ Ψ̃ ◦ E−1 = R ◦ E ◦ Ψ ◦ E−1 ◦ R−1. (2.30)

2

The theorem 2.7 can be generalized as follows.

Theorem 2.9 ([3] and [4]) Let

f(z) = exp

(

2πi
p

q

)

z + zq+1 + o(zq+1) (2.31)

and let N |p, i.e. p = Np′. There exists a germ of map g(z) = exp
(

2πip′

q

)

z + o(z) such that

gN = f if and only if the components of the modulus ψ0,∞
j , j = 0, . . . , q − 1, satisfy

ψ0,∞
j (w) = exp

(

−2πi

N

)

ψ0,∞
j

(

exp

(
2πi

N

)

w

)

, j = 0, . . . , q − 1, (2.32)

i.e. ψ0,∞
j (w) = wξ0,∞

j (wN ) for some non vanishing germs of maps ξ0,∞
j .

Corollary 2.10 Let f be as in (2.31) which satisfies (2.32) for N |p and let [(ψ0
0, ψ

∞
0 )]/ ∼

be its Ecalle-Voronin modulus. Then the modulus of the N -th root g of f with multiplier
exp(2πip′

q ) has the form [(ψ̃0
0, ψ̃

∞
0 )]/ ∼ with

ψ̃0,∞
0 (w) = R ◦ ψ0,∞

0 ◦ R−1, (2.33)

where R(w) = wN . Hence ψ̃0,∞
0 (w) = w(ξ0,∞

0 (w))n.

Proof. We have that f q = gNq. Let Φ̃±

j be the Fatou coordinates of gq. Then the Fatou

coordinates Φ±

j of f are given by Φ±

j = 1
N Φ̃±

j = L1/N ◦ Φ̃±, where Lα(W ) = αW . Hence

Ψ̃0
j = Φ̃−

j ◦ (Φ̃+
j )−1 = LN ◦ Φ−

j ◦ (Φ+
j )−1 ◦ L1/N , (2.34)

and similarly for Ψ̃∞
j . The rest of the proof follows as in Corollary 2.8. 2

It is the conditions (2.27) and (2.32) which we will explain in Section 4 below.

There are other kinds of root extraction problems. Although we expect similar explana-
tions we will not consider them here, except for one, since the corresponding map f is not
of codimension 1. In all cases there can be formal obstructions due to improper multiplicity,
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as described above for the root extraction of f tangent to the identity when g′(0) 6= 1 (see
Lemma 2.5). The one exception we analyze now is the case of a map

f(z) = z + zq+1 + o(zq+1) (2.35)

and the existence of a q-th root of the form g(z) = exp(2πi/q)z + o(z). The Ecalle-Voronin
modulus of (2.35) is a 2q-tuple of germs of analytic functions (ψ0

0, ψ
∞
0 , . . . , ψ0

q−1, ψ
∞
q−1) and

the condition for the existence of g is

ψ0,∞
j+1 = B−1 ◦ ψ0,∞

j ◦ B (2.36)

with B given in (2.11). We explain below in Theorem 4.3 the meaning of this condition.

2.4 The Lavaurs maps and the renormalized return maps

When ε 6= 0 there are global maps Lj,ε : S−

j+1,ε → S+
j,ε identifying points with the same orbits

(see Figure 1), called the Lavaurs maps. As these maps are global analytic diffeomorphisms of
the sphere preserving 0 and ∞ they are linear. With the choice of coordinates yielding (2.8)
all Lj,ε are identical: we simply call them Lε. The exact expression for Lε can be calculated
explicitly under (2.8) but the result depends whether ε ∈ V+ or ε ∈ V−, where V± are given
in (2.14) ([14]). We do not give the exact value since it is not needed here. The Lavaurs
maps allow to define the renormalized return maps on S+

j,ε in the neighborhood of 0 or ∞
by composing the ψ0,∞

j,ε with Lε. A renormalized return map is just a first return map for

the orbit of a point on the crescent S+
j,ε, but written in the spherical coordinate on S+

j,ε (Sj,ε

is the quotient of S+
j,ε under f q

ε ). It is defined as follows: taking a point z in the crescent

S+
j,ε we follow its orbit forward under f q

ε until we come back for the first time to the crescent

S+
j,ε. The corresponding point is κ(z) = fMq

ε (z) for some M . Such a map κ is defined in the

neighborhood of each end of the crescent. Its expression in the spherical coordinate on S+
j,ε

is the renormalized return map. While M may not depend continuously on z the expression
of the renormalized return map is analytic in the spherical coordinate, including at 0 or ∞.
Depending on ε, the points 0 and ∞ represent either the fixed point 0 and one of the periodic
points zj of f , or the converse (see Figure 1).

Multipliers at the fixed points of the renormalized return maps. While the Lavaurs
maps depend on the parametrization of the spheres the multipliers of the renormalized return
maps are intrinsic. If S+

j,ε is bounded by curves ` and f q
ε (`) crossing at zm, where (f q

ε )′(zm) =

exp(2πiα), then the renormalized return map at the corresponding point of S+
j,ε has multiplier

exp(−2πi
α ) (see for instance [15] or [8]).

3 The renormalized return map and parametric resurgence

phenomenon

The renormalized return maps are only really interesting in the Siegel directions.
The renormalized return maps of f q

ε are defined in the neighborhoods of the representa-
tives of the fixed points zj of f q

ε on the spheres S±

` . When q > 1, the fixed points of f q
ε are of
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two types: z0 = 0 is the fixed point of fε, while z1, . . . , zq are periodic points of fε of period
q. For q = 1, fε has two fixed points ±√

ε and there are renormalized return maps in the
neighborhood of each of them.

The renormalized return maps are defined as germs of diffeomorphisms (S+
j,ε, 0) → (S+

j,ε, 0)

and (S+
j,ε,∞) → (S+

j,ε,∞) and identify points belonging to the same orbits of f q
ε .

As the two discussions are completely identical we will limit ourselves to discuss the case
(S+

1,ε, 0) → (S+
1,ε, 0).

Theorem 3.1 (1) We consider a germ of generic family fε in prepared form

fε(z) = z + (z2 − ε)(1 + A(ε) + (z2 − ε)h(z, ε)). (3.1)

Let us suppose that for some value ε0 the renormalized return map for fε0 at −√
ε0

(resp.
√

ε0) is resonant of order 1 (the first coefficient of the normal form is nonzero).
Then fε0 is resonant at −√

ε0 (resp.
√

ε0) of order 1.

(2) We consider a germ of generic family fε in prepared form unfolding a resonant diffeo-
morphism with multiplier exp(2πip

q ) and its q-th iterate

f q
ε (z) = z + z(zq − ε)(1 + A(ε) + (zq − ε)h(z, ε)). (3.2)

Let us suppose that for some value ε0 the renormalized return map for f q
ε0 at the origin

(resp. at one of the periodic points zj of fε0) is resonant of order 1. Then fε0 is resonant
at the origin (resp. at zj) of order 1.

Proof. We only prove (2) as (1) is similar and a bit simpler. In (2), there are four cases to
consider, depending whether ε is in the negative or positive Siegel direction of the origin and
of the periodic orbit. We discuss two of these as the two others are completely similar.

Case 1: The first case is when ε0 is in the negative Siegel direction for the periodic orbit
and we consider for instance the renormalized return map at z1 which, in the spherical
coordinate w on S+

1,ε (see Figure 1), is the germ of map k1,ε0 at 0. We drop the first index

and simply write kε0 and kε for its unfolding. The map has the form kε0(w) = Lε0 ◦ψ0
0,ε(w) =

exp(2πir/m)w + o(w) = exp(2πir/m − 2π2a/q)ψ0
1,ε0

(w). This means that

(f q
ε0)

′(z1) = exp

(

− 2πim

r + mn

)

(3.3)

for some n ∈ N (see for instance [8] or [14]). The only periodic orbits which can bifurcate
from the orbit (z1, . . . , zq) for ε = ε0 have period q(r + mn) (r + mn points bifurcate from
each zj). The lifting Kε(W ) of kε to the Z-plane has the form

Kε = Φ+
1,ε ◦ T−qα ◦ (Φ+

1,ε)
−1, (3.4)

(see [14]) where in general Tβ is the translation

Tβ(Z) = Z + β (3.5)
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and

α(ε) =

{
2πi
qε ε 6= 0

0 ε = 0.
(3.6)

We are interested in a neighborhood of ε0. Since k′
ε0(0) = exp(2πir/m) with (r, m) = 1,

we have

lim
Im(W )→−∞

Km
ε0 (W ) = W + M, (3.7)

with M ∈ Z, while there exists R > 0 such that

Km
ε0 (W ) 6= W + M ∀W such that Im(W ) < −R. (3.8)

Moreover

lim
Im(W )→−∞

Kd
ε0(W ) − W /∈ Z (3.9)

if d is a strict divisor of m.

Let W = Φ+
1,ε0

(Z). Then Kε0(Φ
+
1,ε0

(Z)) = Φ+
1,ε0

◦ T−qα0
(Z). From (3.7)

lim
Im(Z)→−∞

Km
ε0 (Φ+

1,ε0
(Z)) = Φ+

1,ε0
(Z) + M. (3.10)

Suppose now that km
ε0(w) = w + bwm+1 + o(wm+1) with b 6= 0. Hence, for ε close to ε0,

the map kε has a unique periodic orbit (w1(ε), . . . , wm(ε)) such that wj(ε0) = 0. This yields
points Wj(ε), j = 1, . . . , m, such that Km

ε (Wj(ε)) = Wj(ε) + M(ε) with M(ε) ∈ Z and such
that limε→ε0 Im(Wj(ε)) = −∞. Moreover if Zj(ε) are such that Φ+

1,ε(Zj(ε)) = Wj(ε), then

Km
ε (Φ+

1,ε(Zj(ε))) = Φ+
1,ε ◦ T−qmα(Zj(ε)) = Φ+

1,ε(Zj(ε)) + M(ε) = Φ+
1,ε(F

qM(ε)
ε (Zj(ε))). (3.11)

Because of (3.7) we get M(ε) ≡ M . Moreover as Φ+
1,ε is a diffeomorphism we get

F qM
ε (Zj(ε)) = T−qmα(Zj(ε)). (3.12)

Hence if yj(ε) = pε(Zj(ε)), then f qM
ε (yj(ε)) = yj(ε), i.e. yj(ε) is a periodic point of f q

ε whose
period divides M . Let us show that the period is exactly M . Indeed suppose that the period
is d|M . Then M = dc. From (3.12) we need have c|m, i.e. m = cd′. Then F qd

ε (Zj(ε)) =

T−qd′α(Z0), which implies Φ1,ε(F
qd
ε (Zj(ε))) = Kd′

ε (Φ1,ε(Zj(ε)))+d, a contradiction with (3.9).

Moreover limε→ε0 yj(ε) = z1. From (3.3) we have that M = r + mn. Note that we have
obtained only m points of a periodic orbit of fε of period q(mn + r): it comes from the fact
that we have only obtained the points of the orbit which belong to the crescent S+

1,ε associated

to the sphere S+
1,ε. The remaining points of the orbit are obtained by taking the iterates of

the yj(ε) under fε.

We now look at the normal form of f q
0 . It can either be linear or have nonzero resonant

terms. We start by the latter and suppose that the normal form for f q
ε0 be given by f q

ε0(z) =

exp(−2πi m
r+mn)(z−z1)+c(z−z1)

`(r+mn)+1+o(z`(r+mn)+1) with c 6= 0 and ` > 1. As ∂2fε

∂z∂ε 6= 0
in a neighborhood of (0, 0) in (z, ε) space, then the small perturbation f q

ε of f q
ε0 would have

` periodic orbits of period r + mn bifurcating from z1 (counting multiplicities). These would
produce ` small orbits of periodic points of period m of kε for ε close to ε0, a contradiction.
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If the normal form of f q
ε0 has no nonzero resonant terms then fε0 is analytically linearizable,

yielding that f
q(r+mn)
ε0 is the identity. This implies that F qM

ε0 = T−qmα. It then follows that

Φ+
1,ε ◦ T−qmα = TM ◦ Φ+

1,ε. (3.13)

Hence
TM = Φ+

1,ε ◦ T−qmα ◦ (Φ+
1,ε)

−1 = Km
ε . (3.14)

The last equality follows from (3.4), yielding that Km
ε is a translation, a contradiction with

(3.8).

Case 2: The second case is the case when ε0 is in the positive Siegel direction for the

origin and we consider values ε0 for which f ′
ε0(0) = exp

(

2πi
(

p
q − m

q(r+mn)

))

. Let kε0 be

the renormalized return map at the origin which is defined on S+
1,ε. As this case is very

similar to the previous case we only write the differences. The map has the form kε0(w) =
exp(2πir/m)(w) + o(w).

From Figure 1, we see that kε0(w) = L ◦ ψ0
1,ε0

◦ L ◦ · · · ◦ L ◦ ψ0
q−1,ε0

◦ L ◦ ψ0
0,ε0

(w). The

lifting Kε(W ) of kε to the Z-plane has the form Kε = Φ+
1,ε ◦ T−q2α ◦ (Φ+

1,ε)
−1 (see [14]).

We are interested in a neighborhood of ε0. We have

lim
Im(W )→−∞

Km
ε0 (W ) = W + M ∈ Z. (3.15)

Let W = Φ+
1,ε0

(Z). Then Kε0(Φ
+
1,ε0

(Z)) = Φ+
1,ε0

◦T−q2α0
(Z). Hence limIm(Z)→−∞ Km

ε0 (Φ+
1,ε0

(Z)) =

Φ+
1,ε0

(Z) + M.

Suppose now that km
ε0(w) = w + bwm+1 + o(wm+1) with b 6= 0. Hence for ε close to ε0

the map kε has a periodic orbit (w1(ε), . . . , wm(ε)) such that wj(ε0) = 0. This yields points
Wj(ε) such that Km

ε (Wj(ε)) = Wj(ε) + M and limε→ε0 Im(Wj(ε)) = −∞. Moreover if Zj(ε)
are such that Φ+

1,ε(Zj(ε)) = Wj(ε), then

Km(Φ+
1,ε(Zj(ε))) = Φ+

1,ε ◦ T−q2mα(Zj(ε)) = Φ+
1,ε(Zj(ε)) + M = Φ+

1,ε(F
qM
ε (Zj(ε))). (3.16)

We get F qM
ε (Zj(ε)) = T−q2mα(Zj(ε)). Hence if yj(ε) = pε(Zj(ε)), then f qM

ε (yj(ε)) = yj(ε),
i.e. yj(ε) is a periodic point of f q

ε whose period divides M . Let us show that the period is
exactly M . Indeed suppose that the period is d|M . Then M = dc and c|m, so that m = cd′.

Hence F qd
ε (Zj(ε)) = T−q2d′α(Z0), which implies Φ1,ε(F

qd
ε (Zj(ε))) = Kd′

ε (Φ1,ε(Zj(ε))) + d,
a contradiction with the minimality of m satisfying (3.15). As before we conclude that
M = r + mn.

Moreover limε→ε0 yj(ε) = 0.
Now suppose that the normal form for fε0 be given by fε0(z) = exp(2πi(p

q − m
q(r+mn)))z +

cz`q(r+mn)+1 + o(z`q(r+mn)+1), with c 6= 0 and ` > 1. Then as before, for ε close to ε0, fε

would have ` periodic orbits of period Mq bifurcating from the origin (counting multiplicities).
These would produce ` small orbits of periodic points of period m of kε for ε close to ε0, a
contradiction. Hence ` = 1. The case of a linear normal form also yields a contradiction as
in Case 1.

Cases 3 and 4: The last two cases are similar, the only difference being that we work in
regions which are neighborhoods of Im(W ) = +∞. 2
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4 The root extraction problem

We now explain the condition (2.27) of Theorem 2.7.

Theorem 4.1 We consider a generic germ of analytic diffeomorphism f as in (2.25).

(1) If f has an N -th root g tangent to the identity, then there exists a generic family fε

unfolding f (i.e. f0 = f for ε = 0) such that, for all sufficiently small ε, fε has an N -th
root.

(2) If fε has an N -th root gε which is tangent to the identity for ε = 0, then the components
ψ0,∞

j,ε of its modulus all satisfy

ψ0,∞
j,ε (w) = wξ0,∞

j,ε (wN ). (4.1)

Then the modulus of the N -th root gε has the form (ψ̃0
ε , ψ̃

∞
ε ) with

ψ̃0,∞
ε (w) = R ◦ ψ0,∞

ε ◦ R−1, (4.2)

where R(w) = wN .

(3) If f has no N -th root tangent to the identity, then for any generic family fε unfolding
f , i.e. such that ∂fε

∂ε 6= 0, (hence fε has two distinct fixed points z1 and z2 for ε 6= 0),
then there exists a neighborhood U of the origin such that, for sufficiently small ε, fε

never has an N -th root over U .

The obstruction materializes in particular in the following way: there exists ` ∈ {1, 2}
and a sequence (εn) converging to the origin, so that the germ of fεn at z` has no N -th
root. For each n there exists a small neighborhood Vn of εn, a small neighborhood Un of
z` and an integer M(n) such that, for ε ∈ Vn, fε has a unique periodic orbit of period
M(n) in Un, which is an obstruction to finding an N -th root of fε over Un. The periodic
orbit coallesces with z` as ε = εn. Moreover M(n) ↑ +∞ as n → ∞.

Meaning of part (3) of Theorem 4.1: as it is the important part of our paper it is worth
taking some time to discuss what is the meaning of the conclusion. If f has no N -root, then
either ψ0 or ψ∞ has a nonzero monomial whose exponent is not of the form kN + 1. Let us
take the lowest such monomial and call it our “obstruction”. The map ψ0 (resp. ψ∞) controls
the dynamics near −√

ε (resp.
√

ε) (see Figure 3). We localize the diffeomorphism fε at −√
ε

(resp.
√

ε) if the obstruction is a monomial of ψ0 (resp. ψ∞). To study the dynamics of fε

near this point we rather study the dynamics of its renormalized return map as in Section 3.
We focus on special values of ε, namely the sequence εn, where the renormalized return map
has a fixed multiplier. The multiplier is chosen so that the “obstruction” becomes a resonant
monomial of the renormalized return map of first order. Then, when we perturb εn, we get
a unique periodic orbit which is an obstruction to taking an N -th root. In the case of the
multiplier being equal to 1, this is the phenomenon described in Lemma 2.5.

Proof of Theorem 4.1.

(1) Let f have an N -th root g tangent to the identity, and let gε be a generic family (i.e.
∂gε

∂ε 6= 0) unfolding g. Then fε = gN
ε is a family unfolding f and having an N -th root.
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(2) Let us derive the condition for fε to have an N -th root in terms of the Fatou coordinates:
it is the same as for the case ε = 0. The Fatou coordinates Φ for fε satisfy

Φ(Fε(Z)) = Φ(Z) + 1. (4.3)

Let us suppose that fε = gN
ε with gε analytic and g0 tangent to the identity. Let Gε be

its lifting in the Z-coordinate. Let Φ1 be a Fatou coordinate for gε. Then

Φ1(Gε(Z)) = Φ1(Z) + 1, (4.4)

yielding Φ1(Fε(Z)) = Φ1(Z) + N . Then Φ(Z) = 1
N Φ1(Z) is a Fatou coordinate for Fε.

From (4.4) we get
Gε(Z) = Φ−1

1 ◦ T1 ◦ Φ1 = Φ−1 ◦ T 1

N
◦ Φ. (4.5)

In order that gε exists we need that Gε commutes with Tα, i.e.

Tα ◦ Φ−1 ◦ T 1

N
◦ Φ = Φ−1 ◦ T 1

N
◦ Φ ◦ Tα. (4.6)

We can rewrite this

(Φ ◦ T−α ◦ Φ−1) ◦ T 1

N
= T 1

N
◦ (Φ ◦ T−α ◦ Φ−1) (4.7)

i.e. the map T 1

N
commutes with the renormalized return map K = Φ ◦ T−α ◦ Φ−1.

The renormalized return map is the composition of the Lavaurs translation with a
map Ψ (Ψ is either Ψ0

ε or Ψ∞
ε satisfying Ψ(W + 1) = Ψ(W ) + 1). As Ψ(W ) = W +

∑

n∈Z
bn exp(2πinW ) we need that bn = 0 as soon as N does not divide n. At the level

of the modulus (ψ0,∞
ε ) the condition is

ψ0,∞
ε (w) = exp

(

−2πi

N

)

ψ0,∞
ε

(

exp

(
2πi

N

)

w

)

. (4.8)

The last part is as in Corollary 2.8.

(3) The first part comes from the fact that it is possible to cover a neighborhood of the origin
in ε-space with two sectors and on each sector to define ψ0,∞

ε depending continuously
on ε near ε = 0.

We can always suppose (modulo a change of coordinate and parameter) that the family
fε is “prepared”, i.e. the fixed points are located at ±√

ε and let us suppose that
z` = −√

ε. Then

ψ0
0(w) = c1w +

r∑

j=1

cjw
Nj+1 + Cwm+1 + o(wm+1) (4.9)

with c1, C 6= 0 and Nr < m < N(r + 1). The sequence εn is chosen such that the first
return map k0

εn
= L◦ψ0

εn
has a multiplier exp(2πi/m), where L is the Lavaurs map and

f ′
εn

(0) = exp(−2πi m
1+mn). As ψ0

ε (w) = ψ0
0(w) + O(ε), then, for n sufficiently large the

normal form of k0
εn

is of the form

exp(2πi/m)w + C ′(ε)wm+1 + o(wm+1), (4.10)
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with C ′(ε) 6= 0. Indeed, when we remove the terms in wjN+1, this only creates higher
order terms of the same form, so the process can never annihilate the term in wm+1.
Hence at ε = εn we have the birth of a unique periodic orbit of kε of period m. Then
the lifting Km

εn
is such that

lim
Im(W )→−∞

Km
εn

= W + M(n) (4.11)

for some M(n) ∈ Z. For ε close to εn this yields to the birth of a periodic orbit of
fε of period M(n) = 1 + mn for ε close to εn (see Theorem 3.1). Let us now suppose
that fε = gN

ε with g′εn
(−√

ε) = exp(−2πi m
N(1+mn)). Then the periodic orbit of period

M(n) yields a periodic orbit of period exactly NM(n) for gε, since N - m and the orbit
coallesces with z` for ε → εn. This in turn yields N periodic orbits of period M(n) for
fε, a contradiction. 2

Similarly we explain the condition (2.27) of Theorem 2.7.

Theorem 4.2 We consider a generic germ of analytic diffeomorphism f as in (2.31).

(1) If f has an N -th root then there exists a generic family fε unfolding f such that, for all
sufficiently small ε, then fε has an N -th root.

(2) If fε has an N -th root then the components ψ0,∞
j,ε of its modulus satisfy

ψ0,∞
j,ε (w) = wξ0,∞

j,ε (wN ). (4.12)

(3) If f has no N -root then, for any generic family fε unfolding f , i.e. such that ∂2fε

∂z∂ε 6= 0,
then there exists a neighborhood U of the origin such that, for sufficiently small ε, fε

never has an N -th root over U .

The obstruction materializes in particular in the following way:

(i) there exists a sequence (εn) converging to the origin, so that the germ of fεn at the
origin has no N -th root. For each n there exists a small neighborhood Vn of εn, a
small neighborhood Un of the origin and an integer M(n) such that, for ε ∈ Vn,
fε has a unique periodic orbit of period M(n) in Un which is an obstruction to
finding an N -th root of fε over Un. The periodic orbit coallesces with the origin
as ε = εn. Moreover M(n) ↑ +∞ as n → ∞;

(ii) there exists a second sequence (ε′n) so that the germ of f q
ε′n

localized at a fixed point

zj (a periodic point of fε′n) has no N -th root. For each n there exists a small
neighborhood V ′

n of ε′n, a small neighborhood U ′
n of zj and an integer M ′(n) such

that, for ε ∈ V ′
n, f q

ε has a unique periodic orbit of period M ′(n) in U ′
n which is

an obstruction to finding an N -th root of fε over U ′
n. The periodic orbit coallesces

with the fixed point zj of f q
εn as ε = ε′n. Moreover M ′(n) ↑ +∞ as n → ∞.

Proof. The proofs of (1) and (2) are similar to the ones in Theorem 4.1. We now consider
(3). Then one of ψ0

1 (resp. ψ∞
1 ) does not satisfy (2.32). If it is ψ0

1 (resp. ψ∞
1 ) then the

sequence of values εn will be chosen in the Siegel domain in the direction in which ψ0
1 (resp.
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ψ∞
1 ) controls the dynamics of the origin and the sequence of ε′n also in the Siegel domain, in

the direction in which ψ0
1 (resp. ψ∞

1 ) controls the dynamics of the periodic orbit.
Let us treat the case of ψ0

1. For the sequence (ε′n) we consider the renormalized return
map for f q

ε′n
which is given by kε′n = L ◦ψ0

1,ε′n
for an appropriate L so that all kε′n be resonant

of order 1 with same multiplier exp(2πi/m). Then as in Theorem 3.1 the ε′n are such that

(f q
ε′n

)′(z1) = exp
(

− 2πim
1+nm

)

. The rest of the proof is as in Theorem 4.1.

The case of the sequence εn requires a little more work. Let m be defined as in (4.9).
The relation between the ψ0

j,ε is given in (2.9). Let s be such that sp ≡ −1 (mod q). Then

ψ0
j−1,ε = B−s ◦ψ0

j,ε ◦Bs. The renormalized return map kεn of f q
εn in the neighborhood of 0 is

given by:

kεn = L ◦ ψ0
1,εn

◦ L ◦ · · · ◦ ψ0
q−1,εn

◦ L ◦ ψ0
0,εn

= L ◦ (B−(q−1)s ◦ ψ0
0,εn

◦ B(q−1)s) ◦ L ◦ · · · ◦ (B−s ◦ ψ0
0,εn

◦ Bs) ◦ L ◦ ψ0
0,εn

= B−(q−1)s ◦ L ◦ ψ0
0,εn

◦ L1 ◦ · · · ◦ ψ0
0,εn

◦ L1 ◦ ψ0
0,εn

= (L1 ◦ ψ0
0,εn

)q

(4.13)

where L1 = L ◦Bs, since linear maps commute and Bsq = id. The sequence (εn) is chosen so

that f ′
εn

(0) = exp
(

2πi
(

p
q − m

q(1+mn)

))

, which implies that the multiplier of L1 ◦ ψ0
0 at the

origin is given by exp(2πi
mq ). Then it is easily checked that kεn also has the form (4.9) (since

composition of maps of this type yields a map of this type) with multiplier at the origin
exp(2πi

m ). The rest of the proof is as in Theorem 4.1. 2

Theorem 4.3 We consider a germ of analytic diffeomorphism

f(z) = z + zq+1 + o(zq+1). (4.14)

(1) If f has a q-th root g with g′(0) = exp(2πi/q), then there exists a generic family fε

unfolding f such that, for all sufficiently small ε, fε has a q-th root.

(2) If f has no q-th root g, with g′(0) = exp(2πi/q), then for any generic one-parameter
“prepared” family fε unfolding f , i.e. fε is of the form

fε(z) = z + z(zq − ε)(1 + A(ε) + (zq − ε)h(z, ε)) (4.15)

and satisfies the properties described in Section 2.1, there exists a neighborhood U of
the origin such that, for sufficiently small ε, fε never has a q-th root over U . Also:

(i) There exists a sequence (εn) converging to the origin, so that the germs of fεn at
zj have no q-th root. For each n and each zj there exists a small neighborhood Vn

of εn, a small neighborhood Un of zj and an integer M(n) such that, for ε ∈ Vn,
fε has a unique periodic orbit of period M(n) in Un which is an obstruction to
finding a q-th root of fε over Un. The periodic orbit coallesces with zj as ε = εn.
Moreover M(n) ↑ +∞ as n → ∞.

(ii) There exists a sequence (ε′n) converging to the origin, so that the germ of fε′n at
the origin has no q-th root. For each n there exists a small neighborhood V ′

n of ε′n,
a small neighborhood U ′

n of the origin and an integer M ′(n) such that, for ε ∈ V ′
n,

fε has a unique periodic orbit of period M ′(n) in U ′
n which is an obstruction to

finding a q-th root of fε over U ′
n. Moreover M ′(n) ↑ +∞ as n → ∞.
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Proof. We only discuss (2). As f has no q-th root then there exists j such that ψ0
j+1 6=

B−1 ◦ ψ0
j ◦ B or ψ∞

j+1 6= B−1 ◦ ψ∞
j ◦ B. We only discuss the first case. Let m + 1 be the first

order where this is not true. Depending if ε is in the positive or negative Siegel direction we
will consider the renormalized return map kj,ε near zj (case (i)) or the renormalized return
map k0,ε at the origin (case(ii)).

(i) Because of the hypothesis there exists at least one j such that (ψ0
j,0)

(m+1)(0) 6= 0. We
consider the renormalized return map kj,ε near zj and we choose the sequence εn so that
k′

j,εn
(0) = (ψ0

j,εn
)′(0)L′

εn
(0) = exp(2πi

m ) (zj is represented by 0 on S+
j,ε). This yields, for ε close

to εn, the birth of a periodic orbit {w1, . . . wm} of period m for kj,ε. We suppose that the germ
of fε at zj has a square root gε for ε close to εn. The points w` belong to S+

j,ε. Their images

w̃` ∈ S+
j+1,ε under the dynamics of gε are given by w̃` = B−1(w`) must be periodic points of

kj+1,ε of period m. The points w` (resp. w̃`) are fixed points of km
j,ε (resp. km

j+1,ε). Because

ψ0
j+1 6= B−1 ◦ ψ0

j ◦ B at the order m + 1 the equation B−1 ◦ km
j,ε(w) − km

j+1,ε ◦ B−1(w) = 0
has exactly m + 1 small zeros which should be 0 and the w`. But 0 is a double root of
this equation, yielding a contradiction. An obstruction at the level of periodic points of the
renormalized return maps obviously yields one at the level of periodic points of fε. We do
not discuss the details.

(ii) The renormalized return map k0,ε near 0 is given by

k0,ε = L ◦ ψ0
1,ε ◦ · · · ◦ L ◦ ψ0

q−1,ε ◦ L ◦ ψ0
0,ε (4.16)

We let χ0
j,ε = Bj ◦ ψ0

j,ε ◦ B−j (in particular χ0
0,ε = ψ0

0,ε). Note that B and L commute and

Bq = id and let M = L ◦ B−1.

k0,ε = L ◦ (B−1 ◦ χ0
1,ε ◦ B) ◦ · · · ◦ L ◦ (B−(q−1) ◦ χ0

q−1,ε ◦ Bq−1) ◦ L ◦ ψ0
0,ε

= M ◦ χ0
1,ε ◦ · · · ◦ M ◦ χ0

q−1,ε ◦ M ◦ χ0
0,ε.

(4.17)

The hypothesis is that

χj,ε =
m∑

`=1

c`(ε)z
` + Cj(ε)z

m+1 + o(zm+1), (4.18)

where the c`(0) are independent of j and there exists j and j′ such that Cj 6= Cj′ . We take
ε′n such that (M ◦ χ0

0,ε′n
)′(0) = exp(2πi s

mq ), for some s ∈ {1, . . . , m − 1} to be chosen below.

Let h be a map which brings M ◦ χ0
0,ε′n

to normal form up to order m + 1:

h−1 ◦ M ◦ χ0
0,ε′n

◦ h = exp

(

2πi
s

mq

)

w + D0w
m+1. (4.19)

We apply the change of coordinate to M ◦ χ0
j,ε′n

and get

h−1 ◦ M ◦ χ0
j,ε′n

◦ h = exp

(

2πi
s

mq

)

w + Dq−jw
m+1. (4.20)

Moreover necessarily Dj 6= Dj′ for small ε′n. Let τ = exp(2πi
qm ). Then

h−1 ◦ k0,ε′n ◦ h(w) = τ sq(w) + τ s(q−1)





q−1
∑

j=0

Djτ
sjm



 wm+1 + o(wm+1). (4.21)
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The system
q−1
∑

j=0

Djτ
sjm = 0, s = 1, . . . q − 1 (4.22)

has a matrix of rank q − 1, since it contains a Vandermonde submatrix. Hence the set of
solutions has dimension 1. As

∑q−1
j=0 τ sjm = 0 they are all multiple of (1, 1, . . . , 1). So there

exists one s such that
∑q−1

j=0 Djτ
sjm 6= 0.

This yields that

km
ε′n

= w + C(ε′n)wm+1 + o(wm+1) (4.23)

with C(ε′n) 6= 0. Hence for ε close to ε′n we have the birth of a unique periodic orbit of period
m for k0,ε. As before this orbit is an obstruction to the existence of a q-th root of fε. 2

5 The problem of conformal equivalence of curvilinear angles

in conformal geometry

Conformal geometry is the study of properties of geometric configurations which are invariant
under all conformal transformations. We limit ourselves to germs of regular real analytic arcs
in the plane and regular conformal transformations in a region including the arcs. If the
region is identified to an open set of C then a regular conformal transformation is identified
to a holomorphic diffeomorphism on that region. Any germ of single curve can be transformed
into the germ of the real axis at the origin. So the first non trivial configuration is composed
of two germs of curves having a common point, i.e. a curvilinear angle. We will suppose that
the common point is the origin. The particular case where the two curves are straight lines
will be called the linear angle. The problem of conformal equivalence of two such curvilinear
angles has been studied by Kasner ([5], [6]), Pfeiffer ([10], [11]) and, more recently, by Nakai
[9] and Ahern & Gong [1] (none of these authors have considered the unfoldings.)

Definition 5.1 A curvilinear angle, (C1, C2) formed by two germs of real analytic curves
C1 and C2 intersecting at the origin is conformally equivalent to a second curvilinear angle
(C ′

1, C
′
2) if there exists a germ of holomorphic diffeomorphism h at the origin such that

h(Ci) = C ′
i, i = 1, 2.

Obviously the angle θ between the two curves is a conformal invariant. Kasner has proved
that there are no other formal conformal invariant if β = θ/π /∈ Q and that there exists a
formal change of coordinate

z 7→
∞∑

n=1

anzn (5.1)

sending the curvilinear angle to the linear angle. However divergence is the rule and con-
vergence the exception when β = θ/π is Liouvillian. Here we will discuss the case θ/π ∈ Q.
In the generic case there is a formal obstruction to bring the curvilinear angle to the linear
angle and one gets as formal invariants an integer k (to be thought of as the codimension)
and one real number a [6]. This yields for each odd k and a a unique “model”. For an even
k and given a there can be two models [1]: this comes from the fact that the transformation
sending one to the other does not preserve the “real” character of the problem. In all cases



20 C. Rousseau

we have generic divergence of a transformation (5.1) sending a curvilinear angle to the model
curvilinear angle. The equivalence classes of curvilinear angles with same invariants k and
a have been first studied by Nakai [9]. Ahern & Gong [1] completed the construction of a
complete modulus of conformal classification.

Here we will explain the meaning of the invariants and of the modulus by studying a
deformation of the curvilinear angle.

We consider two germs of regular analytic curves C1 and C2 such that the curves C1

and C2 cut at an angle θ = π p
q at the origin. We also consider the case of a zero angle

corresponding to p = 0, i.e. the two curves are tangent, which is called a horn. We can
of course suppose that C1 is the real axis. For each curve we consider the germ of Schwarz
reflection Σj with respect to the curve Cj . Then Σ1(z) = z and Cj = Fix(Σj). We consider
the map:

f = Σ2 ◦ Σ1. (5.2)

Then f is a germ of resonant analytic diffeomorphism with

f(z) = exp

(

2πi
p

q

)

z + o(z). (5.3)

Moreover from the definition of f and the fact that the Schwarz reflections are involutions
we have that

Σ1 ◦ f = f−1 ◦ Σ1. (5.4)

Definition 5.2 The diffeomorphism f = Σ2 ◦ Σ1 is called the diffeomorphism associated to
the curvilinear angle (C1, C2).

Lemma 5.3 We consider two curvilinear angles (C1, C2) and (C ′
1, C

′
2) and let f and f ′ be

their respective associated diffeomorphisms. For each curve Cj (resp. C ′
j) we consider the

germ of Schwarz reflection Σj (resp. Σ′
j) with respect to the curve. Then Cj = Fix(Σj) and

C ′
j = Fix(Σ′

j). The two curvilinear angles (C1, C2) and (C ′
1, C

′
2) are conformally equivalent

under the conformal equivalence h if and only if

h ◦ Σj = Σ′
j ◦ h, (5.5)

which yields h ◦ f = f ′ ◦ h, i.e. h conjugates f and f ′.
Conversely given two germs of analytic diffeomorphisms f and f ′ and two germs of

Schwarz reflections Σ1 and Σ′
1 such that Σ1 ◦ f = f−1 ◦ Σ1 and Σ′

1 ◦ f ′ = (f ′)−1 ◦ Σ′
1

which are conjugate under h satisfying h ◦ Σ1 = Σ′
1 ◦ h, then h is a conjugacy between the

curvilinear angles (C1, C2) and (C ′
1, C

′
2), where







Σ2 = f ◦ Σ1

Σ′
2 = f ′ ◦ Σ′

1

Cj = Fix(Σj)

C ′
j = Fix(Σ′

j).

(5.6)

Proof. If h is a conformal equivalence between (C1, C2) and (C ′
1, C

′
2) then (5.5) is satisfied.

Also
h ◦ f = h ◦ Σ2 ◦ Σ1 = Σ′

2 ◦ h ◦ Σ1 = Σ′
2 ◦ Σ′

1 ◦ h = f ′ ◦ h. (5.7)
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Conversely we only need to show that h ◦ Σ2 = Σ′
2 ◦ h. This follows from

h ◦ Σ2 = h ◦ (Σ2 ◦ Σ1) ◦ Σ1 = h ◦ f ◦ Σ1 = f ′ ◦ h ◦ Σ1 = f ′ ◦ Σ′
1 ◦ h = Σ′

2 ◦ h. (5.8)

2

When we consider the problem of conformal equivalence of curvilinear angles (C1, C2) and
(C ′

1, C
′
2), we can of course suppose that we have applied conformal transformations sending

C1 and C ′
1 to the real axis. Then the problem of conformal equivalence between the two

angles is equivalent to the problem of conjugacy of the associated diffeomorphisms under a
conjugacy h satisfying h ◦ Σ = Σ ◦ h where

Σ(z) = z. (5.9)

5.1 The modulus of conformal classification

We limit our discussion to the generic case where, up to a change of coordinates, the map f0

can be written in one of the forms

f0(z) = z + iz2 + o(z2) (5.10)

and

f0(z) = exp

(

2πi
p

q

)

z + Czq+1 + o(zq+1), (5.11)

with arg(C) = −2π p
q ± π

2 . In the latter case the only linear changes of coordinates which
commute with Σ are the changes z 7→ cz with c ∈ R. Depending whether q is even or odd,
we can bring f0 to:

f0(z) =

{

exp(2πip
q )z + 1

q exp(−2πip
q + πi

2 )zq+1 + o(zq+1) q even

exp(2πip
q )z + 1

q exp(−2πip
q ± πi

2 )zq+1 + o(zq+1) q odd.
(5.12)

In the case of (5.10) the two curves have a contact of order 2. If we unfold the curves in
families Cj,ε of curves depending analytically on ε, then the two unfolded curves Cj,ε can have
two intersection points or none. Note however that the unfolded map fε always has two fixed
points. The two fixed points are the intersection points of C1,ε and C2,ε when the two curves
intersect. They are outside the curves when the two curves do not intersect, but they control
the geometry if we want to describe the conformal geometry over a fixed neighborhood of the
origin throughout the perturbation (Figure 4). If we call P1,ε and P2,ε the two fixed points
of fε, then, for ε in the Poincaré region, we have that Σj,ε(P1,ε) = P2,ε, j = 1, 2.

The presence of P1,ε and P2,ε when ε is in the Poincaré region puts a limit on the size of
a neighborhood on which we can send two non intersecting arcs to two non intersecting arcs.
In general the neighborhood must not contain both P1,ε and P2,ε.

In the case of (5.11), one easily sees that the obstruction to linearize the family (i.e. to
bring the curvilinear angle to the linear angle) comes from the fact that, in all unfoldings, fε

has a unique small periodic orbit of period q. The uniqueness comes from the fact that the
diffeomorphism f0 is generic (the codimension k is equal to 1).

Because of the fact that we consider unfoldings fε satisfying

fε ◦ Σ = Σ ◦ f−1
ε (5.13)
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P
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P
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P
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1,0
 = P

2,0

Figure 4: The points P1,ε and P2,ε

we need to adapt the definition of “prepared family”. Indeed we need to compare fε with a
model family which satisfies (5.13). For a generic family fε unfolding (5.12) we prefer to give
a model family for its q-th iterate: such a model family is given by the time-one map of

i
z(zq − ε)

1 + A(ε)zq

∂

∂z
. (5.14)

For a family unfolding (5.10) it is given by the time-one map of

i
z2 − ε

1 + A(ε)z

∂

∂z
. (5.15)

In both cases we limit ourselves to real values of ε and to real A(ε). A family fε is prepared
if the fixed points zj of f q

ε coincide with the singular points of the vector field and if the
multipliers λj of f q

ε at the fixed points zj of f q
ε are of the form λj = exp(µj) where µj is

the eigenvalue of the singular point zj of the vector field. The fixed points zj are either
real or come in pairs zj , zj . The µj = µ(zj) satisfy µ(zj) + µ(zj) = 0, so µ(zj) ∈ iR when
zj ∈ R. Equivalently λ(zj)λ(zj) = 1. As the formal invariant is given by a(ε) =

∑ 1
µj

, then

a(ε) = −iA(ε) ∈ iR. From this the following proposition follows easily.

Proposition 5.4 We consider a generic family fε unfolding (5.12) and satisfying (5.13)
where Σ is given in (5.9). The only admissible values of ε are such that |f ′

ε(0)| = 1 and
|(f q

ε )′(zj)| = 1, where z1, . . . , zq are the periodic points of fε of period q. It is possible to find
a change of coordinate and parameter (z, ε) 7→ (z̃, ε̃) so as to bring the family to a prepared
family f̃ε̃ which still satisfies (5.13).

Proof. We give few details as we do not want to recall the full details of how the preparation
is done in [14]. If a family is in normal form up to order q then the equation for singular
points has the form

(1 + O(ε))zq − ε + o(zq) = 0. (5.16)

which we bring to ẑq − ε̂ = 0 by means of a change of coordinate ẑ = z(1 + O(ε)) + o(z). We
then make a scaling in ẑ and a change of parameter to bring the family to the prepared form.
As the initial system satisfies (5.13) (so the singular points either satisfy Σ(zj) = zj or come
in symmetric pairs) and the condition to fulfill in the prepared form also satisfies (5.13) it is
easily to see that the change (z, ε) 7→ (z̃, ε̃) preserves (5.13). 2

The unfolding of (5.10) also yields the geometric interpretation of the quantity A(ε):
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Proposition 5.5 When the two curves intersect at ±√
ε in the unfolding of a curvilinear

angle, the angles at the intersection points are given by

θ± =
±√

ε

1 ± A(ε)
√

ε
. (5.17)

In particular when A(0) 6= 0 the angles can never be opposite in the unfolding. A(ε) yields a
measure of the difference between the two angles through the relation:

1

θ+
+

1

θ−
= A(ε). (5.18)

For the next theorem we use the Martinet-Ramis point of view for the modulus of analytic
classification of a resonant diffeomorphism. The case ε = 0 was done in [9] and [1].

Theorem 5.6 We consider a generic prepared family fε unfolding (5.12) satisfying (5.13).
Then for admissible values of ε the formal invariant a(ε) is pure imaginary. For an adequate
choice of coordinates on the spheres, the modulus of orbital analytic classification given by
the 2-tuple (ψ̃0

ε , ψ̃
∞
ε ) (in the Martinet-Ramis point of view) satisfies for admissible values of

ε {

ψ̃0
ε = Σ ◦ (ψ̃0

ε )
−1 ◦ Σ

ψ̃∞
ε = Σ ◦ (ψ̃∞

ε )−1 ◦ Σ.
(5.19)

Proof. Because of the condition (5.13) we need to take the conjugate f̃ q
ε = r ◦ f q

ε ◦ r−1 of
f q

ε by the rotation r(z) = z̃ = exp(πi
2q )z in order to apply directly the results of [14]. Let

s = r ◦ Σ ◦ r−1. Then s ◦ f̃ q
ε = f̃−q

ε ◦ s. We have s(z) = exp(πi
q )z: it is the symmetry with

respect to the line making an angle π
2q with the horizontal axis. Geometrically this means

that, when embedding f̃ q
ε in a flow, the trajectories look symmetric with respect to this line

as in Figure 1.

In the original coordinate the map looks as in Figure 5 with a horizontal symmetry axis.

To construct the Fatou coordinates we make the change of parameter η = iε and of
variable

Z = p−1
η (z̃) =

{
1
qη ln z̃q−η

z̃ η 6= 0

− 1
qz̃q η = 0.

(5.20)

We let F q
η be the map f̃ q

η in Z-coordinate. As η ∈ iR this yields

S ◦ F q
η = F−q

η ◦ S, (5.21)

where the map S is an involution on the Z-space (see Figure 2) defined as follows: S is
the identity on the half-line l = {Z|ReZ = 0, ImZ < 0} located in the lower part of the
translation domain Q−

0 (which we can view as the image of the positive real axis in z-space).
Let Z0 belong to this half-line and let α(t) and β(t), t ∈ [0, 1] be curves in Z-space with
α(0) = β(0) = Z0 whose projections on z̃-space (resp. z-space) are symmetric under s (resp.
Σ). We define S(α(1)) = β(1). S is well defined and is a kind of generalized symmetry
with respect to the vertical direction on the q-sheeted Z-space. Moreover S is an involution:
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(c) Positive Siegel direction

Figure 5: The maps ψj,ε for ε in the Siegel direction

S−1 = S. In the lower part of the translation domains Q−

0 and Q+
1 it looks like Z 7→ −Z.

Elsewhere there is an additional change of sheet.

Once we have identified the symmetry (5.21) on F q
η we can follow what it means for the

modulus. We choose Φ+
1,η and Φ−

0,η so that

S ◦ Φ−

0,η = Φ+
1,η ◦ S, (5.22)

where by abuse of notation we also define S(W ) = −W . We still have freedom for one base
point Z0 such that Φ+

1,η(Z0) = 0. The base point is chosen so that the set of Fatou coordinates

is normalized (i.e. (2.8) is valid). This means in particular that the translation terms in Ψ0,∞
j,η

are real.

All the other Fatou coordinates are then determined by the rule

Φ±

σ(j),η ◦ Fη = T1/q ◦ Φ±

j,η (5.23)

As Ψ0
0,η = Φ−

0,η ◦ (Φ+
1,η)

−1 this yields

S ◦ Ψ0
0,η = (Ψ0

0,η)
−1 ◦ S (5.24)

Let us now consider Ψ̃∞
η . Let m be such that mp ≡ 1 (mod q). Then from (2.17)

{

Φ−

1,η = Φ−

σm(0),η = Tm
q
◦ Φ−

0,η ◦ F−m
η

Φ+
0,η = Φ+

σ−m(1),η
= T−

m
q
◦ Φ+

1,η ◦ Fm
η .

(5.25)

Hence, as Ψ∞
j,η = Φ−

j,η ◦ (Φ+
j,η)

−1,

Ψ∞
0,η = Φ−

0,η ◦ (Φ+
0,η)

−1 = Φ−

0,η ◦ F−m
η ◦ (Φ+

1,η)
−1 ◦ Tm

q
, (5.26)
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and
Ψ∞

1,η = Φ−

1,η ◦ (Φ+
1,η)

−1

= Tm
q
◦ Φ−

0,η ◦ F−m
η ◦ (Φ+

1,η)
−1

= Tm
q
◦ S ◦ Φ+

1,η ◦ S ◦ F−m
η ◦ S ◦ (Φ−

0,η)
−1 ◦ S

= Tm
q
◦ S ◦ Φ+

1,η ◦ Fm
η ◦ (Φ−

0,η)
−1 ◦ S

= S ◦ T−
m
q
◦ Φ+

1,η ◦ Fm
η ◦ (Φ−

0,η)
−1 ◦ S

= S ◦ (Ψ∞
0,η)

−1 ◦ S

(5.27)

At the level of the small ψ0,∞
j,η = E ◦ Ψ0,∞

j,η ◦ E−1 with E(W ) = exp(−2πiW ) this yields:

{

ψ0
0,η(w) = Σ ◦ (ψ0

0,η)
−1 ◦ Σ

ψ∞
0,η(w) = Σ ◦ (ψ∞

1,η)
−1 ◦ Σ

(5.28)

with Σ(w) = E ◦ S ◦ E−1(w) = w. Hence, using (2.22) we have

ψ̃∞
η = ` ◦ ψ∞

1,η = ` ◦ Σ ◦ (ψ∞
0,η)

−1 ◦ Σ = Σ ◦ `−1 ◦ (ψ∞
0,η)

−1 ◦ Σ = Σ ◦ (ψ̃∞
η )−1 ◦ Σ, (5.29)

yielding (5.19). 2

Corollary 5.7 We consider a generic family fε unfolding (5.12) and satisfying (5.13). Then
for admissible ε ∈ iR it is possible to construct Fatou coordinates satisfying

S ◦ Φ−

j = Φ+
q+1−j ◦ S. (5.30)

(Indices are (mod q).)

Theorem 5.8 ([1] for the case ε = 0) We consider two prepared families fε and f̃ε unfolding
f0 and f̃0, with same multiplier exp(2πip

q ), of the same type (5.12), and both satisfying (5.13).
Then they are conjugate under a conjugacy hε commuting with Σ if and only if they have the
same formal invariant a and the same modulus (ψ0

1,ε, ψ
∞
1,ε).

Proof. It is already known from [14] that the two families are conjugate. We only need to
prove that there exists a conjugacy between the associated diffeomorphisms which commutes
with Σ. Let Φ±

j,ε (resp. Φ̃±

j,ε) be the Fatou coordinates of fε (resp. f̃ε). As the conjugacy is
obtained by the compositions

pε ◦ (Φ̃±

j,ε)
−1 ◦ Φ±

j,ε ◦ (pε)
−1 (5.31)

which glue together as a global map this follows from Corollary 5.7 and the fact that Σ◦pε =
pε ◦ S. 2

Theorem 5.9 We consider a generic prepared family fε unfolding (5.10) and satisfying
(5.13). Then, for admissible values of ε ∈ R, the formal invariant a(ε) is pure imaginary. For
an adequate choice of coordinate on the spheres, the modulus of orbital analytic classification
given by (ψ0

ε , ψ
∞
ε ) satisfies for admissible values of ε

{

ψ0
ε = Σ ◦ (ψ0

ε )
−1 ◦ Σ

ψ∞
ε = Σ ◦ (ψ∞

ε )−1 ◦ Σ.
(5.32)

Proof. The proof is identical to that of Theorem 5.9. 2
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5.2 The problem of conformal bisection of a generic curvilinear rational

angle

Here we consider the problem of conformal bisection of a generic rational angle. A curvilinear
zero angle is called a “horn” in the terminology of [5].

Definition 5.10 (1) A curvilinear angle (C1, C2) can be bisected if there exists a germ of
analytic curve C3 such that Σ3(C1) = C2, where Σ3 is the Schwarz reflection associated
to C3. If the diffeomorphism f associated with (C1, C2) has multiplier exp(2πip

q ), then
C3 is an internal (resp. external) bisector if the diffeomorphism associated to (C1, C3)
has multiplier exp(πip

q ) (resp. exp(πip+q
q )).

(2) A curvilinear angle (C1, C2) can be sected in N equal parts if there exists N − 1 curves
Cj , j = 3, . . . , N + 1, and their associated Schwarz reflections Σj such that

Σ3(C1) = C4

Σ4(C3) = C5
...

ΣN+1(CN ) = C2

(5.33)

Proposition 5.11 A curvilinear angle can be sected in N equal parts if and only if its asso-
ciated diffeomorphism has an N -th root which satisfies (5.13).

Proof. If the angle can be sected in N equal parts then

f = Σ2 ◦ Σ1 = (Σ2 ◦ ΣN+1) ◦ (ΣN+1 ◦ ΣN ) · · · ◦ (Σ3 ◦ Σ1). (5.34)

Moreover (5.33) implies that







Σ4 = Σ3 ◦ Σ1 ◦ Σ3,

Σ5 = Σ4 ◦ Σ3 ◦ Σ4,
...

Σ2 = ΣN+1 ◦ ΣN ◦ ΣN+1

(5.35)

which yields
Σ3 ◦ Σ1 = Σ4 ◦ Σ3 = · · · = Σ2 ◦ ΣN+1. (5.36)

Hence f = gN with g = Σ3 ◦ Σ1. Moreover g ◦ Σj = Σj ◦ g−1 for all j.
Conversely, let us suppose that f = gN for some g satisfying g ◦ Σ1 = Σ1 ◦ g−1. Let

Σ3 = g ◦Σ1, Σ4 = g ◦Σ3, . . . , ΣN+1 = g ◦ΣN and Cj = Fix(Σj). Then the Cj satisfy (5.33).
2

As we have seen in Section 2.3 (for instance Lemma 2.5) the two problems of internal and
external bisection of the angle can be very different: in some cases there are formal obstruc-
tions which can be seen at the level of a finite jet, in addition to the analytic obstructions
which exist in all cases and can never be seen at the level of a finite germ.

We discuss the different cases: the first case will be discussed at length and the others
more briefly.
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(i) Internal section of the horn into N ≥ 2 parts.

This case is covered by Theorem 4.1. Indeed if f0 satisfies (5.13) and has an N -th root,
then an N -th root can be found which also satisfies (5.13). If f0 has no N -th root, then
the Siegel direction is the direction in which the two curves Cj,ε intersect. We consider the
renormalized return map of fεn at one of the intersection points, for instance −√

εn and let
us take the case where the renormalized return map is calculated with ψ0

εn
. The values εn

are chosen so that the curves intersect with an angle mπ
1+mn , where m is as in (4.9). The

corresponding f1+mn
εn

has a fixed point of multiplicity 2+mn. Let us now consider values of ε
close to εn. Then, multiplying the angle by 1+mn, (the inverse of secting the angle in 1+mn
equal parts) yields to curves C1,εn and C ′

2,εn
intersecting with an angle mπ (see Figures 6-8).

The two curves C1,ε and C ′
2,ε intersect in one, two or three points in the 1-parameter family

for ε close to εn: one is the intersection point −√
ε of C1,ε and C2,ε, while the others are

periodic points of fε of an orbit of exact period 1 + mn. The exact number of intersection
points of C1,ε and C ′

2,ε depends on the parity of 1 + mn and on ε (see Figures 6-8).

So the interesting question is to give the meaning of the other periodic points of fε. For
that purpose we embed our curves Cj,ε, j = 1, 2, in a sequence of curves (C̃j,ε)|j∈Z. The
curves C̃j,ε are obtained by taking copies of the angle. They are given by C̃`,ε = Fix(Σ̃`,ε)
where

Σ̃`,ε = f `−1
ε ◦ Σ1, ` ∈ Z. (5.37)

From this definition we have







C̃1,ε = C1,ε

C̃2,ε = C2,ε = Fix(Σ2,ε)

C̃3,ε = Fix(Σ2,ε ◦ Σ1 ◦ Σ2,ε)

C̃4,ε = Fix(Σ2,ε ◦ Σ1 ◦ Σ2,ε ◦ Σ1 ◦ Σ2,ε)
...

C̃0,ε = Fix(Σ1 ◦ Σ2,ε ◦ Σ1)

C̃−1,ε = Fix(Σ1 ◦ Σ2,ε ◦ Σ1 ◦ Σ2,ε ◦ Σ1)
...

(5.38)

In particular C̃j+1,ε is the bisector of C̃j,ε and C̃j+2,ε. We now prove that the periodic points
represent points where the curves C̃j,ε are likely to intersect.

Theorem 5.12 We consider the family of curves C̃`,ε given by C̃`,ε = Fix(Σ̃`,ε) where Σ̃`,ε

is defined in (5.37). If fε has a unique orbit {z1, . . . , zN} of period N , then necessarily some
periodic point zs of the orbit lies either on C1,ε or on C2,ε. In the first case, if Σ1(zs) = zs

then, for all ` ∈ Z, z`+s ∈ Fix(Σ̃2`+1,ε), where the index for z is modulo N . In the second
case Σ2,ε(zs) = zs then, for all ` ∈ Z, z`+s ∈ Fix(Σ̃2`+2,ε).

Proof. Let {z1, . . . , zN} be the unique orbit of period N and let us suppose that zj =

f j−1
ε (z1). If zj is a periodic point of period N , then zj = Σ1(zj) and Σ2,ε(zj) are also periodic

points of period N . Let us apply this to z1. As we have a unique orbit of period N , then
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Figure 6: C1,ε, C2,ε, C̃0,ε, C̃3,ε and C ′
2,ε for m = 1, n = 2 and ε near ε2
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Figure 7: C1,ε, C2,ε, C̃3,ε, C̃4,ε and C ′
2,ε for m = 1, n = 3 and ε near ε3

there exists j such that z1 = Σ1(z1) = zj = f j−1
ε (z1). We will distinguish the cases j odd

and j even. If j = 2` + 1, then

f−`
ε ◦ Σ1(z1) = Σ1 ◦ f `

ε (z1) = f `
ε (z1), (5.39)

i.e. Σ1(z`+1) = z`+1. If j = 2`, then

f−`
ε ◦ Σ2,ε(z1) = f−`+1

ε ◦ (Σ1 ◦ Σ2,ε) ◦ Σ2,ε(z1)
= f−`+1

ε ◦ Σ1,ε(z1)
= f `

ε (z1).
(5.40)

As we also have f−`
ε ◦ Σ2,ε = Σ2,ε ◦ f `

ε we finally get Σ2,ε(z`+1) = z`+1.
In both cases let z`+1 = zs. If Σ1(zs) = zs, then

Σ̃2`+1,ε(f
`
ε (zs)) = f2`

ε ◦ Σ1 ◦ f `
ε (zs) = f `

ε ◦ Σ1(zs) = f `
ε (zs). (5.41)

If Σ2,ε(zs) = zs, then

Σ̃2`+2,ε(f
`
ε (zs)) = f2`

ε ◦ (Σ2,ε ◦ Σ1) ◦ Σ1 ◦ f `
ε (zs) = f2`

ε ◦ Σ2,ε ◦ f `
ε (zs)

= f `
ε ◦ Σ2,ε(zs) = f `

ε (zs).
(5.42)
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Figure 8: Same as Figure 7 with other values of ε

2

If the angle (C1,ε, C2,ε) could be sected in N parts, (i.e. fε would have an N -th root gε),
additional periodic points are needed (see Figure 9). For instance, in the case N = 2 as in
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Figure 9: The need for new additional periodic points in case of a bisection of the angle

Figure 9, let z′1 = Σ3,ε(z1). If z1 ∈ C1,ε, then z′1 ∈ C2,ε. As gε = Σ3,ε ◦ Σ1 then gε(z1) = z′1.
Hence fmn+1

ε (z′1) = z′1, i.e. z′1 is a point of an orbit of period mn + 1. The other points of
the orbit are z′j = f j−1

ε (z′1). We get a contradiction as in Theorem 4.1 since there are only
1 + mn periodic points, while N(1 + mn) periodic points would be needed if the section was
possible.

(ii) External bisection of the zero curvilinear angle. We need to find a function
g0(z) = −z + o(z) such that g2

0(z) = f0(z), where f0(z) = z + iz2 + o(z2). There is a formal
obstruction to this as g2

0(z) = z+o(z2) (the first higher order coefficient of g0 is of odd order).
External bisection means for instance finding C3,0 making an angle π/2 with C1,0 (and C2,0).

The obstruction to an external section of the angle comes from the fact that the multi-
plicity of intersection of C1,0 and C2,0 is only 2 while a multiplicity of order 3 is necessary for
an external section. Indeed suppose that g0 exists and suppose that g0 can be unfolded as
gε, which means that we have unfoldings Cj,ε of the curves Cj,0, j = 1, 2, 3. Because C3,0 and
C1,0 are orthogonal, then necessarily C3,ε and C1,ε have a unique intersection point, yielding
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a unique fixed point of gε. So all other fixed points of fε come from periodic points of gε of
period 2, so there are an even number of them. Hence fε always has an odd number of fixed
points.

On the other hand, suppose now that, instead of considering a generic f0, we consider
f0(z) = z ± iz3 + o(z3) (i.e. f0 of codimension 2) , then its modulus is given by 4 germs of
functions ψ0,∞

j , j = 0, 1. The condition f0 = g2
0 means that the four germs are related by the

following relations
ψ0,∞

1 (w) = −ψ0,∞
0 (−w), (5.43)

i.e. the modulus is given by the pair (ψ0
0, ψ

∞
0 ) [4]. This case has been discussed in Theo-

rem 4.3, where it was shown that when the condition (5.43) is violated there are periodic
points which are obstructions to the bissection problem. We do not discuss it any longer.

(iii) Bisection of a rational nonzero curvilinear angle. We consider a generic f0

as in (5.12). If p is odd or if p is even and we consider an external bisection h0(z) =
exp(2πi p

2q +πi)z+o(z) then this case is completely similar to the previous one: The bisection

is formally impossible as we should have f q
0 (z) = h2q

0 (z) = z + O(z2q+1). Such a bisection
would be possible for f0 of the form f0(z) = exp(2πip

q )z + C p
q )z2q+1 + o(z2q+1) provided the

modulus (ψ0,∞
j ), j = 0, . . . 2q − 1, would satisfy

ψ0,∞
σ(j)(w) = exp

(

−πi

q

)

ψ0,∞
j

(

exp

(
πi

q

)

w

)

(5.44)

where σ(j) ≡ j+p (mod 2q) (resp. σ(j) ≡ j+p+q (mod 2q)) for the internal (resp. external)
bisection. The case of p even and an internal bisection h0(z) = exp(2πi p

2q )z + o(z) will be
considered in (iv) below.

(iv) The case of the internal section in N parts of an angle 2π p
q when N |p. This

case is completely similar to (i) and covered by Theorem 4.2. The two curves C1,ε and C2,ε

always have a unique intersection point. Multiplying the angle by q the curves C1,ε and C ′
2,ε

have one to three intersection points (the other solutions do not belong to Fix(Σ)). The
obstruction to the section in N equal parts can again be explained in terms of cascades or
periodic points.

6 The modulus of orbital analytic classification of generic 1-

parameter families of real vector fields unfolding a resonant

saddle or saddle-node

Here again we only discuss very briefly the codimension 1 case. It has been shown in [14]
for the resonant saddle case (resp. [13] for the saddle-node case) that a complete modulus
of orbital analytic classification for a generic 1-parameter family of vector fields unfolding a
resonant saddle (resp. saddle-node) is given by a complete modulus of analytic classification
for the family of holonomies of one separatrix (resp. the strong separatrix). Let fε be this
family. If we have a family of real analytic vector fields it is easy to verify that fε satisfies
(5.13). Hence Theorem 5.6 applies in this case and characterizes the moduli of orbital analytic
classification of generic 1-parameter families of real vector fields.
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7 Conclusion

Theorem 4.1, Theorem 4.2 and Theorem 4.3 only explain the obstructions to the existence
of an N -th root near some sequences of parameter values (εn). For these parameters values
some of the fixed or periodic points are resonant. For the other values of ε (in particular the
values of ε in the Poincaré domain) it occurs often that there exists an N -th root of fε near
each of the fixed or periodic points. The obstruction to a section over a fixed neighborhood
containing all the fixed points is then an incompatibility for the local N -th roots to glue in a
global N -th root. The particular sequences of parameters we have chosen are those where the
obstructions are carried by the fixed or periodic points themselves (the parametric resurgence
phenomenon).

The case of fixed points with non resonant multiplier on the unit circle is particularly
interesting. Indeed a germ of diffeomorphism f̃ with a fixed point whose multiplier is of the
form exp(2πiα) where α is Liouvillian, may not have an N -th root. Such diffeomorphisms
occur in the unfolding fε of a germ of diffeomorphism f with a fixed point whose multiplier is
a root of unity. Can we find conditions on the Ecalle-Voronin modulus of f guaranteeing that
in all unfoldings fε the map fε would have no N -th root in a neighborhood of a fixed point
whose multiplier is of the form exp(2πiα) where α is Liouvillian? Of course “Liouvillian”
would need to be defined for this special problem. The author conjectures that the answer is
negative.
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