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1. Introduction

1.1. The non-linear Schrödinger equation. We consider the d-
dimensional nonlinear Schrödinger equation

−iu̇ = −∆u + V (x) ∗ u + ε
∂F

∂ū
(x, u, ū), u = u(t, x)

under the periodic boundary condition x ∈ Td. The convolution po-
tential V : Td → C have real Fourier coefficients V̂ (a), a ∈ Zd, and we
shall suppose it is analytic. (This equation is a popular model for the
‘real’ NLS equation, where instead of the convolution term V ∗ u we
have the potential term V u.) F is an analytic function in <u,=u and
x. When F (x, u, ū) = (uū)2 this is the cubic Schrödinger equation.

For ε = 0 the equation is linear and has time–quasi-periodic solutions

u(t, x) =
∑
a∈A

û(a)ei(|a|2+V̂ (a))tei<a,x> (0 < |û(a)|),

where A is any finite subset of Zd. For ε 6= 0 we have

If |ε| is sufficiently small, then there is a large subset U ′ of U such
that for all ω ∈ U ′ the solution u persists as a time–quasi-periodic
solution which has all Lyapounov exponents equal to zero and whose
linearized equation is reducible to constant coefficients.

This is a not so short presentation of the basic ideas behind this
result. A detailed proof is given in [EK06].

1.2. An ∞-dimensional Hamiltonian system. We write{
u(x) =

∑
a∈Zd uae

i<a,x>

u(x) =
∑

a∈Zd vae
i<−a,x> (va = ūa).

In the symplectic space {(ua, va) : a ∈ Zd} = CZd × CZd
,

i
∑
a∈Zd

dua ∧ dva,
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the equation becomes a Hamiltonian system{
u̇a = i ∂

∂va
(h + εf)

v̇a = −i ∂
∂ua

(h + εf)

with an integrable part

h(u, v) =
∑
a∈Zd

(|a|2 + V̂ (a))uava

plus a perturbation

εf(u, v) = ε
1

(2π)d

∫
Td

F (x, u(x), u(x))dx.

The second derivatives of f have a Töplitz invariance :

∂2f

∂ua+c∂vb+c

=
∂2f

∂ua∂vb

and
∂2f

∂ua+c∂ub−c

=
∂2f

∂ua∂ub

(and similar for the second derivatives with respect to va, vb), for any
c ∈ Zd.

This is easy to see for the cubic Schrödinger where

(1) f(u, v) =
∑

a+b−c−d=0

uaubvcvd.

For example

∂2f

∂ua∂ub

=
∑

c+d=a+b

vcvd

which clearly have this invariance.
The non-linear Schrödinger is a real Hamiltonian system. Indeed if

we let

ζa =

(
ξa

ηa

)
= C

(
ua

va

)
,

(2) C =
1√
2

(
1 1
−i i

)
,

then, in the symplectic space {(ξa, η) =: a ∈ Zd} = CZd × CZd
,∑

a∈Zd

dξa ∧ dηa,
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the equation becomes{
ξ̇a = − ∂

∂ηa
(h + εf)

η̇a = ∂
∂ξa

(h + εf)
= J ∂

ζa
(h + εf), a ∈ Zd,

with the integrable part

h(ξ, η) =
1

2

∑
a∈Zd

(|a|2 + V̂ (a))(ξ2
a + η2

a)

plus the perturbation εf(ξ, η) which is real, because F is a real function
in <u and =u.

The Töplitz-invariance of the second derivatives can of course be
translated to these coordinates but the description is more complicated
(see Section 7.1).

1.3. The topology. Let L be a subset of Zd. The space

l2γ(L, R), γ ≥ 0,

is the set of sequences of real numbers ξ = {ξa : a ∈ L}, such that

‖ξ‖γ =

√∑
a∈L

|ξa|2〈a〉2m∗e2γ|a| < ∞ 〈a〉 = max(|a|, 1).

There is a natural identification of l2γ(L, R)× l2γ(L, R), whose elements

are (ξ, η), with l2γ(L, R2), whose elements are {ξa, ηa) : a ∈ L}, and we
will not distinguish between them.

We shall assume that m∗ > d
2
. Then, in the phase space l20(Zd, R2),

our Hamiltonian h + εf is analytic (in some domain O). To see that f
is analytic, consider for example the cubic Schrödinger in the complex
variables (1). Using the estimate∑

a

|ua| ≤
√∑

a

(〈a〉)−2m∗ ‖u‖0 ,

we have

|f(u, v)| ≤ ‖u‖2
0 ‖v‖

2
0 ,

and it follows easily that f is analytic.
Since the phase space is a Hilbert space, its first differential

l20(L, R2) 3 ζ̂ 7→<ζ̂, ∂ζf(ζ)>

defines a unique vector ∂ζf(ζ) in l20(L, R2), its gradient, and its second
differential

l20(L, R2) 3 ζ̂ 7→ 1

2
<ζ̂, ∂2

ζ f(ζ)ζ̂>
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defines a unique matrix ∂2
ζ f(ζ) L×L → gl(2, R), its Hessian, which is

symmetric, i.e.

t(
∂2f

∂za∂zb

(ζ)) =
∂2f

∂zb∂za

(ζ).

(Here <·> is the scalar product of the phase space.)
For ζ ∈ O ∩ l2γ(Zd, R2), γ > 0, the gradient and the Hessian veri-

fies certain properties of exponential decay. These properties are most
easily seen in the complex variables (u, v) – consider for example the
cubic Schrödinger (1). The first derivatives of f verify

| ∂f

∂ua

| ≤ cte. ‖u‖γ ‖v‖
2
γ e−γ|a|.

(and similar for the derivative with respect to va). The second deriva-
tives verify

| ∂2f

∂ua∂vc

| ≤ cte. ‖u‖γ ‖v‖γ e−γ|a−c|,

and

| ∂2f

∂ua∂ub

| ≤ cte. ‖v‖2
γ e−γ|a+b|

(and similar for the second derivative with respect to vc, vd).
The exponential decay of the second derivatives Tcan of course be

translated to the real coordinates (ξ, η) but the description is more
complicated (see Section 7.1).

1.4. Action-angle variables. Let A be a finite subset of Zd and fix

0 < pa, a ∈ A.

The (#A)-dimensional torus

1
2
(ξ2

a + η2
a) = pa a ∈ A

ξa = ηa = 0 a ∈ L = Zd \ A,

is invariant for the Hamiltonian flow when ε = 0. In the symplectic
subspace RA×RA we introduce, in a neighborhood of this torus, action-
angle variables (ra, ϕa), a ∈ A,

ξa =
√

2(pa + ra) cos(ϕa)

ηa =
√

2(pa + ra) sin(ϕa).

In these coordinates the Hamiltonian equations becomes
ζa = J ∂

∂ζa
(h + εf) a ∈ L

ṙa = − ∂
∂ϕa

(h + εf)

ϕ̇a = ∂
∂ra

(h + εf)
a ∈ A
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with the integrable part h(ξ, η, r) =∑
a∈A

ωara +
1

2

∑
a∈L

Ωa(ξ
2
a + η2

a)

(modulo a constant), where

ωa = |a|2 + V̂ (a), a ∈ A,

are the basic frequencies, and

Ωa = |a|2 + V̂ (a), a ∈ L,

are the normal frequencies (of the invariant torus). The perturbation
εf(ξ, η, r, ϕ) will be a function of all variables (under the assumption,
of course, that the torus lies in the domain of F ).

Since h + εf is analytic on some domain in (some domain in) the
phase space l20(L, R2)×RA×TA, it extends to a holomorphic function
on a complex domain

O0(σ, µ, ρ) =


‖ζ‖0 =

√
‖ξ‖2

0 + ‖η‖2
0 < σ

|r| < µ
|=ϕ| < ρ.

1.5. Statement of the result. The Hamiltonian h + εf is a stan-
dard form for the perturbation theory of lower-dimensional (isotropic)
tori with one exception: it is strongly degenerate. We therefore need
external parameters to control the basic frequencies and the simplest
choice is to let the basic frequencies (i.e. the potential itself) be our
free parameters. The parameters will belong to a set

(3) U ⊂ {ω ∈ RA : |ω| ≤ C1} .

The potential V will be analytic and

(4) |V̂ (a)| ≤ C2e
−C3|a|, C3 > 0, ∀a ∈ L.

The normal frequencies will be assumed to verify

(5)

 |Ωa| ≥ C4 > 0
|Ωa + Ωb| ≥ C4

|Ωa − Ωb| ≥ C4 |a| 6= |b|
∀ a, b ∈ L.

This is fulfilled, for example, if V is small and A 3 0, or if V is arbitrary
and A is sufficiently large.



6 L. H. ELIASSON AND S. B. KUKSIN

Theorem A. Under the above assumptions, for ε sufficiently small
there exist a subset U ′ ⊂ U , which is large in the sense that

Leb (U \ U ′) ≤ cte.εexp ,

and for each ω ∈ U ′, a real analytic symplectic diffeomorphism Φ

O0(
σ

2
,
µ

2
,
ρ

2
) → O0(σ, µ, ρ)

and a vector ω′ = ω′(ω) such that (hω′ + εf) ◦ Φ equals (modulo a
constant)

<ω, r> +
1

2
<ζ, A(ω)ζ> +εg ,

where

(i)

g ∈ O(|r|2 , |r| ‖ζ‖0 , ‖ζ‖3
0),

(ii) the symmetric matrix A(ω) has the form(
Ω1(ω) Ω2(ω)
tΩ2(ω) Ω1(ω)

)
with Ω1+iΩ2 Hermitian and block-diagonal, with finite-dimensional
blocks.

Moreover,

(iii) Φ = (Φζ , Φr, Φϕ) verifies, for all (ζ, ϕ, r) ∈ O0(σ
2
, µ

2
, ρ

2
),

‖Φζ − ζ‖0 + |Φr − ρ|+ |Φϕ − ϕ| ≤ βε,

(iv) the mapping ω 7→ ω′(ω) verifies

|ω′ − id|Lip(U ′) ≤ βε.

β is a constant that depends on the dimensions d, #A, m∗, on the con-
stants C1, . . . , C4 and on V and F .

It follows from this theorem that Φ({0} × {0} × TA) is a KAM-
torus for the Hamiltonian system of h + εf , and it implies the result
mentioned in Section 1.1. We discuss this notion and its consequences
in the next section.

Theorem A, as well as a more generalized version, is proven in
[EK06].
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1.6. Notations. <, > is the standard scalar product in Rd. ‖ ‖ is an
operator-norm or l2-norm. | | will in general denote a supremum norm,
with a notable exception: for a lattice vector a ∈ Zd we use |a| for the
l2-norm.
A is a finite subset of Zd, and L is its complement. A matrix on L

is just a mapping A : L × L → C or gl(2, C). Its components will
be denoted Ab

a. If A1, A2, A3, A4 are scalar-valued matrices on L, then
we identify

A =

(
A1 A2

A3 A4

)
with a gl(2, C)-valued matrix through

Ab
a =

(
(A1)

b
a (A2)

b
a

(A3)
b
a (A4)

b
a

)
.

The dimension d will be fixed and m∗ will be a fixed constant > d
2
.

. means ≤ modulo a multiplicative constant that only, unless oth-
erwise specified, depends on d,m∗ and #A.

The points in the lattice Zd will be denoted a, b, c, . . .. Also d will
sometimes be used, without confusion we hope.

Greek letter α, β, . . . will mostly be used for bounds. Exceptions are
ϕ which will denote an element in the torus – an angle – and ω, Ω.

For two subsets X and Y of a metric space,

dist(X, Y ) = inf
x∈X,y∈Y

d(x, y).

(This is not a metric.) Xε is the ε-neighborhood of X, i.e.

{y : dist(y, X) < ε}.

Let Bε(x) be the ball {y : d(x, y) < ε}. Then Xε is the union, over
x ∈ X, of all Bε(x).

If X and Y are subsets of Rd or Zd we let

X − Y = {x− y : x ∈ X, y ∈ Y }

– not to be confused with the set theoretical difference X \ Y .

2. KAM-tori

2.1. KAM-tori. A KAM-torus of a Hamiltonian system in R2L×RA×
TA is a finite-dimensional torus with three properties:

(i) invariance – it is invariant under the Hamiltonian flow;
(ii) linearity – the flow on the torus is conjugate to a linear flow

ϕ 7→ ϕ + tω;
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(iii) reducibility – the linearized equations (the “variational equa-
tions”) on the torus are conjugate to a constant coefficient sys-
tem of the form 

dζ̂
dt

= JAζ̂
dr̂
dt

= 0
dϕ̂
dt

= βr̂

and JA has a pure point spectrum.

A torus with the two properties (i)+(ii) is nothing more and nothing
less than a quasi-periodic solution.

If the quasi-periodic solution has property (iii), then questions re-
lated to linear stability and Lyapunov exponents “reduces” to a study
of a linear system of constant coefficients, which permits (at least for
finite-dimensional systems) to answer such questions. It also permits
(at least for finite-dimensional systems) to construct higher order nor-
mal forms near the torus.

Reducibility is automatic in two cases: if the torus is one-dimensional
(and phase-space is finite-dimensional) it is just a periodic solution, and
(iii) is a general fact called Floquet theory; if the torus is Lagrangian
(i.e. there is not ζ-part), then (iii) follows from (i)+(ii)[dlL01]. In
general, however, it is a delicate property which is far from being com-
pletely understood.

KAM is a perturbation theory of KAM-tori. Not only is reducibility
an important outcome but also an essential ingredient in the proof. It
simplifies the iteration since it reduces all approximate linear equations
to constant coefficients. But it does not come for free. It requires a
lower bound on small divisors of the form

(∗∗) |<k, ω> +Ωa(ω)± Ωb(ω)| , k ∈ ZA, a, b ∈ L,

where Ωa(ω), a ∈ L are the imaginary parts of the eigenvalues of JA(o)
The basic frequencies ω will be fixed during the iteration – that’s what
parameters are there for – but the normal frequencies will vary. Indeed
the Ωa(ω) are perturbations of |a|2 + V̂ (a) which are not known a priori
but are determined by the approximation process. 1

The difficulty associated with the small divisors (∗∗) may be very
large. There is a perturbation theory, often referred to as the Craig-
Wayne scheme, which avoids this difficulty, but to a high cost: the
approximate linear equations are no longer of constant coefficients.
Moreover it gives persistence of the invariant tori but no reducibility.

1A lower bound on (∗∗) is strictly speaking not necessary at all for reducibility. It
is necessary, however, in order to have reducibility with a reducing transformation
close to the identity.
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2.2. Consequences of Theorem A. The consequences of the theo-
rem is that Φ({0, 0} × TA) is a KAM-torus for hω′ + εf . In order to
see this it suffices to show that {ζ = r = 0} is a KAM-torus for k + εg,

k =<ω, r> +
1

2
<ζ, A(ω)ζ> .

Since
∂g

∂ζ
=

∂g

∂ϕ
=

∂g

∂r
= 0

for ζ = r = 0, it follows that {ζ = r = 0} is invariant with a flow
ϕ 7→ ϕ + tω. The linearized equations on this torus become

dζ̂
dt

= JA(ω)ζ̂ + εJa(ϕ + tω, ω)r̂
dr̂
dt

= 0
dϕ̂
dt

= ε <ta(ϕ + tω, ω), ζ̂> +εb(ϕ + tω, ω)r̂

2

where a(ϕ, ω) = ∂2

∂r∂ζ
g(0, 0, ϕ, ω) and b(ϕ, ω) = ∂2

∂r2 g(0, 0, ϕ, ω).

These equations can be conjugated to constant coefficients if the
imaginary part of the the eigenvalues of JA(ω),

±iΩa(ω), a ∈ L,

are non-resonant with respect to ω. In order to see this we consider
the equations

(i)

<∂ϕZ1(ϕ), ω>= JAZ1(ϕ) + εJa(ϕ),

which has a unique smooth solution if ω is Diophantine and

<k, ω> ±Ωa(ω) 6= 0 ∀k ∈ ZA, a ∈ L;

(ii)

<∂ϕZ2(ϕ), ω>= −Z2(ϕ)JA + ε∗a(ϕ)

which has a unique smooth solution under the same condition
on ω;

(iii)

<∂ϕZ3(ϕ), ω>= ε ta(ϕ)Z1(ϕ) + εb(ϕ)− εβ

which has a smooth solution if ω is Diophantine and if we chose
β such that the meanvalue of the right hand side is = 0.

2t is used both as the independent time-variable and to denote transposition,
without confusion we hope.
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If we now take

Z(ϕ) =

 I Z1(ϕ) 0
0 I 0

Z2(ϕ) Z3(ϕ) I

 ,

then <Z(ϕ), ω>= JA εJa(ϕ) 0
0 0 0

εt|(|ϕ) εb(ϕ) 0

 Z(ϕ)− Z(ϕ)

 JA 0 0
0 0 0
0 εβ 0

 ,

so Z conjugates the linearized equations to
dζ̂
dt

= JA(ω)ζ̂
dr̂
dt

= 0
dϕ̂
dt

= εβr̂

which is constant coefficients.
The conditions on ω will hold if we restrict the set U ′ arbitrarily

little.
If

(6) C =
1√
2

(
I I
−iI iI

)
,

then

C−1JA(ω)C = i

(
tΩ(ω) 0

0 −Ω(ω)

)
,

since Ω(ω) = Ω1(ω)+iΩ2(ω) is Hermitian. Moreover, there is a unitary
matrix D = D(ω) such that

tD̄Ω(ω)D = diag(Ωa(ω))

is a real diagonal matrix, and therefore(
D 0
0 D̄

)−1

i

(
tΩ(ω) 0

0 −Ω(ω)

) (
D 0
0 D̄

)

= i

(
diag(Ωa(ω)) 0

0 −diag(Ωa(ω))

)
.

So the linearized equations on the torus have only quasi-periodic solu-
tions and, hence, the torus is linearly stable.
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2.3. References. For finite dimensional Hamiltonian systems the first
proof of persistence of stable (i.e. vanishing of all Lyapunov exponents)
lower dimensional invariant tori was obtained in [Eli85, Eli88] and there
are now many works on this subjects. There are also many works on
reducibility (see for example [Kri99, Eli01]) and the situation in finite
dimension is now pretty well understood. Not so, however, in infinite
dimension.

If d = 1 and the space-variable x belongs to a finite segment supple-
mented by Dirichlet or Neumann boundary conditions, this result was
obtained in [Kuk88] (also see [Kuk93, Pös96]). The case of periodic
boundary conditions was treated in [Bou96], using another multi–scale
scheme, suggested by Fröhlich–Spencer in their work on the Anderson
localization [FS83]. This approach, often referred to as the Craig-
Wayne scheme, is different from KAM. It avoids the, sometimes, cum-
bersome condition (∗∗) but to a high cost: the approximate linear
equations are not of constant coefficients. Moreover, it gives persis-
tence of the invariant tori but no reducibility and no information on
the linear stability. A KAM-theorem for periodic boundary conditions
has recently been proved in [GY05] (with a perturbation F indepen-
dent of x) and the perturbation theory for quasi-periodic solutions of
one-dimensional Hamiltonian PDE is now sufficiently well developed
(see for example [Kuk93, Cra00, Kuk00]).

The study of the corresponding problems for d ≥ 2 is at its early
stage. Developing further the scheme, suggested by Fröhlich–Spencer,
Bourgain proved persistence for the case d = 2 [Bou98]. More recently,
the new techniques developped by him and collaborators in their work
on the linear problem has allowed him to prove persistence in any
dimension d [Bou04]. (In this work he also treats the non-linear wave
equation.)

3. The homological equation

3.1. Normal form Hamiltonians. This is a real Hamiltonian of the
form

k = c(ω)+ <ω, r> +
1

2
<ζ, A(ω)ζ> ,

where

A =

(
Ω1 Ω2
tΩ2 Ω1

)
is block-diagonal matrix with finite-dimensional blocks (we shall say
more about these blocks in Section 4) and Ω(ω) = Ω1(ω) + iΩ2(ω) is
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Hermitian. Since Ω(ω) is Hermitian the eigenvalues of JA(ω) are

±iΩa(ω) a ∈ L,

where the Ωa(ω) are the (necessarly real) eigenvalues of Ω(ω). (See the
discussion in Section 2.2.)

We also suppose A(ω) to be close to(
diag(|a|2 + V̂ (a) Ω2

0 diag(|a|2 + V̂ (a)

)
and

‖∂ωA(ω)‖ ≤ 1

4
.

This implies that

Ωa(ω) ≈ |a|2 + V̂ (a)

and C1-small in ω.

3.2. The KAM-iteration. Given a normal form Hamiltonian

h =<ω, r> +
1

2
<ζ, A(ω)ζ>

and a perturbation f . Let Tf be the Taylor polynomial

f(0, 0, ϕ)+ <
∂f

∂r
(0, 0, ϕ), r> + <

∂f

∂ζ
(0, 0, ϕ), ζ> +

1

2
<ζ,

∂2f

∂ζ2
(0, 0, ϕ)ζ>

of f – it may also depend on ω.
If Tf was = 0 then {ζ = r = 0} would be a KAM-torus for h + f .

But in general we only have

Tf ∈ O(ε).

Suppose now there exist a Taylor polynomial s, i.e. s = Ts, and a
normal form Hamiltonian

k =<χ(ω), r> +
1

2
<ζ, B(ω)ζ> (moduo a constant)

verifying

(7) {h, s} = −Tf + k

– this equation is known as the homological equation.
Let Φt is the flow of 

ζ̇ = J ∂s
∂ζ

(ζ, ϕ, r)

ṙ = − ∂s
∂ϕ

(ζ, ϕ, r)

ϕ̇ = ∂s
∂r

(ζ, ϕ, r).
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If s, k ∈ O(ε), then (Φt − id) ∈ O(ε) and

(h + f) ◦ Φ1 = h + εk +
∫ 1

0
d
dt

(h + tf + (1− t)k) ◦ Φtdt

= h + k +
∫ 1

0
({h + tf + (1− t)k, εs}+ f − k) ◦ Φtdt

= h + k +
∫ 1

0
({tf + (1− t)k, s}+ f − Tf) ◦ Φtdt

= h + k + [(f − Tf) + f1].

So Φ1 transforms hω + f to a new normal form h′ω = hω + k plus a new
perturbation f ′. Since

T (f ′) ∈ O(ε2),

also

f ′ ∈ O(ε2)

when the domain is sufficiently restricted.
If we can solve the homological equation (7), not only for the normal

form Hamiltonian h but also for all normal form Hamiltonians h′, close
to h, then we will be able to make an iteration which will converge to a
solution as in Theorem A if the estimates a good enough. So the basic
thing in KAM is to solve and estimate the solution of the homological
equation.

It is clear from the discussion above that it is enough to solve a
slightly weaker version of the homological equation, namely

(8) {h, s} = −Tf + k +O(ε2).

3.3. The homological equation. We write s as

S01(ϕ)+ <S02(ϕ), r> + <S1(ϕ), ζ> +
1

2
<ζ, S2(ϕ)ζ>

and k as

c+ <χ, r> +
1

2
<ζ, Bζ> .

The homological equation (8) now decomposes into four linear equa-
tions.

(9)

{
<∂ϕS01(ϕ), ω>= −f(0, 0, ϕ) + c +O(ε2);

<∂ϕS02(ϕ), ω>= −∂f
∂r

(0, 0, ϕ) + χ +O(ε2);

In these equations, we are forced to take

c =<f(0, 0, ·)> and χ =<
∂f

∂f
(0, 0, ·)>,

where <g> is the mean value

1

(2π)d

∫
Td

g(ϕ)dϕ.
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(10) <∂ϕS1(ϕ), ω> +JAS1(ϕ) = −∂f

∂ζ
(0, 0, ϕ) +O(ε2).

(11)
<∂ϕS2(ϕ), ω> +AJS2(ϕ)− S2(ϕ)JA

= −∂2f
∂ζ2 (0, 0, ϕ) + B +O(ε2).

The most delicate of these equations is the last one which is related
to reducibility. This is an equation for gl(2, R)-valued matrices

A and B =

(
Ω′

1 Ω′
2

tΩ′
2 Ω′

1

)
, Ω′ = Ω′

1 + iΩ′
2,

and

S2(ϕ) and F (ϕ) =
∂2f

∂ζ2
(0, 0, ϕ).

If we write F̃ (ϕ) = tCF (ϕ)C and S̃2(ϕ) = tCS2(ϕ)C, then equation
(11) becomes

<∂ϕS̃2(ϕ), ω> −i

(
0 Ω

tΩ 0

)
JS̃2(ϕ) + iS̃2(ϕ)J

(
0 Ω

tΩ 0

)
=

−F̃ (ϕ) + i

(
0 Ω′

tΩ′ 0

)
+O(|f |2).

This equation decouples into four equations for scalar-valued matri-
ces. These are of the form

(12) <∂ϕR(ϕ), ω> ±i(ΩR(ϕ) + R(ϕ)tΩ) = G(ϕ) +O(ε2),

for the diagonal terms, and of the form

(13) <∂ϕR(ϕ), ω> ±i(ΩR(ϕ)−R(ϕ)Ω) = G(ϕ)− Ω′ +O(ε2)

for the off-diagonal terms.
The last equation is underdetermined and there are several possible

choices of Ω′. One such choice would be <G> which would give an
Hermitian matrix, but in general not a block diagonal matrix. So the
Hamiltonian h′ = h+k would not be on normal form. Instead we shall
make the “smaller” choice.

Due to the exponential decay of the second order derivatives of the
Hamiltonian (discussed in Section 1.3) the matrix G verifies

|G(ϕ)b
a| . εe−γ|a−b| a, b ∈ L,

and we can truncate the matrices away from the diagonal at distance

∆′ ≈ log(
1

ε
).
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We then take

(14) (Ω′)b
a =

{
<Gb

a> |a| = |b|, |a− b| ≤ ∆′

0 |a| 6= |b|
Since the left hand side of the equations (9-13) are linear operators

with constant coefficients, equations (9-14) can be solved in Fourier
series and to get a solution we must prove the convergence of these
Fourier series and estimate the solution. This requires good estimates
on the small divisors, i.e. the eigenvalues of the linear operators in the
left hand side.

3.4. Small Divisors and the second Melnikov condition. Since
the equations are to be solved only moduloO(ε2) and since all functions
are analytic in ϕ, we can truncate all Fourier series to order

∆′ ≈ log(
1

ε
).

We want to bound the eigenvalues (in absolute value) in the left hand
side from below by some quantity κ which should be small but much
larger than ε, say

κ = εexp

for some small exponent exp.
For equation (9), the eigenvalues of the left hand side operator are

i <k, ω> k ∈ ZA, 0 < |k| ≤′
D .

These are all larger (in absolute value) than κ for all ω ∈ U except on
a small set of Lebesgue measure

. (∆′)#Aκ.

The eigenvalues in equation (10) are

i <k, ω> +iΩa(ω) k ∈ ZA, |k| ≤′
D, a ∈ L,

where the Ωa(ω):s are the eigenvalues of A(ω). By the assumption on
A(ω),

Ωa(ω) ≈ |a|2 + V̂ (a)

and is C1-small in ω. Therefore there are only finitely many eigenvalues
which are not large, and these can be controlled by an appropriate
choice of ω.

Equation (12) is treated in the same way.
It is the equation (13) which give rise to serious problems. If we

define Ω′ by (14) and take into account the exponential decay of the
matrices, then he eigenvalues of equation (13) are

i(Ωa(ω)− Ωb(ω))) |a− b| ≤ ∆′, |a| 6= |b|,
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(which are all & 1 by assumption (5)) and

(15)

{
i <k, ω> +i(Ωa(ω)− Ωb(ω)))
k ∈ ZA, 0 < |k| ≤ ∆′, |a− b| ≤ ∆′.

In one space dimension d = 1 we have

|Ωa(ω)− Ωb(ω)| → ∞
when |a| → ∞, |a − b| ≤ ∆′, except for a = b. Therefore there are
only finitely many eigenvalues which are not large, and these can be
controlled by an appropriate choice of ω.

But in dimension d ≥ 2 there are infinitey many eigenvalues which
are not large. How to control (15) – known as the second Melnikov
condition – is the main difficulty in the proof. But before we turn to
this question we shall discuss more closely the normal form.

4. Blocks and Lipschitz-domains

4.1. Blocks. In this section d ≥ 2. For a non-negative integer ∆ we
define an equivalence relation on L generated by the pre-equivalence
relation

a ∼ b ⇐⇒
{
|a|2 = |b|2
|a− b| ≤ ∆.

Let [a]∆ denote the equivalence class (block) of a, and let E∆ be the
set of equivalence classes. It is trivial that each block [a] is finite with
cardinality

. |a|d−1

that depends on a. But there is also a uniform ∆-dependent bound.

Lemma 4.1. Let
d∆ = sup

a
(diam[a]∆).

Then
d∆ . ∆

(d+1)!
2 .

Proof. We give the proof in dimension d = 2, the general case being
treated in Section 4 of [EK06].

It suffices to consider the case when there are a, b, c ∈ [a]∆ such that
a− b and a− c are linearly independent and

|a− b|, |a− c|le∆.

(If not, then [a]∆ = {a, b} and the result is obvious.)
Since |a|2 = |b|2 = |c|2 it follows that{

<a, a− b>= 1
2
|a− b|2

<a, a− c>= 1
2
|a− C|2
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Since a − b and a − c are integervalued independent vectors it follow
from this equation that

|a| . ∆3.

�

The blocks [a]∆ have a rigid structure when |a| is large. For a vector
c ∈ Zd \ 0 let

ac ∈ (a + Rc) ∩ Zd

be the lattice point b on the line a + Rc with smallest norm – if there
are two such b’s we choose the one with <b, c>≥ 0.

Lemma 4.2. Given a and c 6= 0 in Zd. For all t, such that

|a + tc| ≥ d2
∆(|ac|+ |c|) |c| ,

the set [a + tc]∆ − (a + tc) is independent of t and ⊥ to c.

Proof. It suffices to prove this for a = ac.
Let b ∈ [a + t]̧ D for some fixed t as in the lemma. This implies, be

Lemma ??, that |b| ≤ d∆ and that |b + a + tc|2 = |a + tc|2. This last
relation is equivalent to

2t <b, c> +2 <b, a> +|b|2 = 0.

If <b, c>6= 0, then

|a + tc| ≤ |a|+ |t <b, c> ||c|2
= |a|+ | <b, a> +1

2
|b|||c|

≤ (1 + d∆)|a||c|+ 1
2
d2

∆|c|2,
but this is impossible under the assumption on a + tc.

Therefore <b, c>= 0 and hence [a + tc]∆ − (a + tc) ⊥ c. Moreover
|b + a + sc|2 = |a + sc|2 for all s, so if |b| ≤ ∆, then

[b + a + sc)∆ = [a + sc]∆ ∀s.
To conclude, let b0 = a, b1, . . . , bn be the elements of [a]∆ ordered in

such a way that bj+1 − bj|le∆ for all j. Then the preceding argument
shows that

[b + a + sc)∆ = [a + sc]∆ ∀s,∀ j.

�

Description of blocks when d = 2, 3. For d = 2, we have outside
{|a| :≤ d∆ ≈ ∆3}

? rank[a]∆ = 1 if, and only if, a ∈ b
2

+ b⊥ for some 0 < |b| ≤ ∆ –
then [a]∆ = {a, a− b} ;

? rank[a]∆ = 0 otherwise – then [a]∆ = {a}.
For d = 3, we have outside {|a| :≤ d∆ ≈ ∆12}
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? rank[a]∆ = 2 if, and only if, a ∈ b
2

+ b⊥ ∩ c
2

+ c⊥ for some 0 <
|b| , |c| ≤ 2∆ linearly independent – then [a]∆ ⊃ {a, a−b, a−c};

? rank[a]∆ = 1 if, and only if, a ∈ b
2

+ b⊥ for some 0 < |b| ≤ ∆ –
then [a]∆ = {a, a− b};

? rank[a]∆ = 0 otherwise – then [a]∆ = {a}.

4.2. Normal form matrices and Hamiltonians. We say that a
(scalar-valued) matrix X : L × L → C is on normal form – denoted
NF∆ – if

(i) X is Hermitian;
(ii) X is block-diagonal over over E∆, i.e.

Xb
a = 0 if [a]∆ 6= [b]∆.

We say that our normal form Hamiltonians

h = c+ <ω, r> +
1

2
<ζ, A(ω)ζ> ,

A =

(
Ω1 Ω2
tΩ2 Ω1

)
,

is NF∆ if Ω = Ω1 + iΩ2 is NF∆.
Clearly if h is NF∆ for some ∆ ≤ ∆′, then by the choice of Ω′ in

(14) h′ = h + k is NF∆′ , where

k = c+ <χ, r> +
1

2
<ζ, Bζ>

is determined in Section 3.3.

4.3. Lipschitz domains. For a non-negative constant Λ and for any
c ∈ Zd \ 0, let the Lipschitz domain

DΛ(c) ⊂ L× L

be the set of all (a, b) such that there exist a′, b′ ∈ Zd and t ≥ 0 such
that {

|a = a′ + tc| ≥ Λ(|a′|+ |c|) |c|
|b = b′ + tc| ≥ Λ(|b′|+ |c|) |c|

and
|a|
|c|

,
|b|
|c|

≥ 2Λ2.

The Lipschitz domains are not so easy to grasp, but it is easy to
verify

Lemma 4.3. Let Λ ≥ 3.
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(i) If a = a′ + tc| ≤ Λ(|a′|+ |c|)|c|, t ≥ 0,, then

|a|
|c|

≈ <a, c>

|c|2
≈ t & Λ|c|.

(ii) If a = a′ + t0c| ≤ Λ(|a′|+ |c|)|c|, τ0 ≥ 0, then

|a′ + tc|2 ≥ |a′ + t0c|2 + (t− t0)
2|c|2 ∀t ≥ t0.

In particular, if (a, b) ∈ DΛ(c), then

(a + tc, b + tc) ∈ DΛ(c) ∀t ≥ 0.

Proof. (i) The inequality |a′ + tc| ≤ |a′| + t|c| ≤ (|a′| + t)|c| gives
immediately that t ≥ Λ|c|.

It also gives
Λ(|a′|+ |c|) ≤ |a′|+ t,

which implies that

|a′| ≤ t

Λ− 1
.

Since

| |a|
|c|

− t|, |<a, c>

|c|2
− t| ≤ |a′|

|c|
we are done.

(ii) Let s = t− t0. Then

|a + sc|2 = |a|2 + s2|c|2 + 2s <a, c>

and

2s <a, c>= 2st0|c|2+ <a′, c>≥ 2st0(|c|2 −
|a′||c|

t0
)

which is ≥ 0. �

A bit more complicated is

Lemma 4.4. For any |a| & Λ2d−1, there exist c ∈ Zd,

0 < |c| . Λd−1,

such that
|a| ≥ Λ(|ac|+ |c|) |c| , <a, c>≥ 0.

Proof. For all K & 1 there is a c ∈ Zd ∩ {|x| ≤ K} such that

δ = dist(c, Ra) ≤ C1(
1

K
)

1
d−1

where C1 only depends on d.
To see this we consider the segment Γ = [0, K

|a|a] in Rd and a tubular

neighborhood Γε of radius ε:

vol(Γε) ≈ Kεd−1.
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The projection of Rd onto Td is locally injective and locally volume-

preserving. If ε & ( 1
K

)
1

d−1 , then the projection of Γε cannot be injective
(for volume reasons), so there are two different points x, x′ ∈ Γε such
that

x− x′ = c ∈ Zd \ 0.

Then

|ac| .
|a|
|c|

δ.

Now

Λ(|ac|+ |c|) |c| ≤ 2ΛK2 + C2
Λ

K
1

d−1

|a| .

If we choose K = (2C2Λ)d−1, then this is ≤ |a|. �

The most important property is that finitely many Lipschitz domains
cover a “neighborhood of ∞” in the following sense.

Corollary 4.5. For any Λ, N > 1, the subset

{|a|+ |b| & Λ2d−1} ∩ {|a− b| ≤ N} ⊂ Zd × Zd

is contained in ⋃
0<|c|.Λd−1

DΩ(c)

for any

Ω ≤ Λ

N + 1
− 1.

Proof. Let |a| & Λ2d−1. Then there exists 0 < |c| . Λd−1 such that
|a| ≥ Λ(|ac|+ |c|) |c|. Clearly (because d ≥ 2)

|a|
|c|

≥ 2Λ2 ≥ 2Ω2.

If we write a = ac + tc then b = ac + b− a + tc. Then

Ω(|ac + b− a|+ |c|)|c| ≤ Ω(|ac|+ |c|)|c|+ Ω(|b− a||c|
≤ Λ(|ac|+ |c|)|c| − |b− a||c|
≤ |a| − |b− a| ≤ |b|,

if and only if

(Ω− Λ)(|ac|+ |c|) ≥ (Ω + 1)|b− a|,
which holds by the assumption on Ω. Moreover

|b|
|c|

≥ |a|
|c|

−N ≥ 2Λ2 −N ≥ 2Ω2.

�
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5. Töplitz-Lipschitz matrices (d = 2)

5.1. Töplitz at ∞. We say that a matrix

X : L × L → C

has a Töplitz-limit at ∞ in the direction c if, for all a, b

lim
t→∞

Xb+tc
a+tc ∃ = Xb

a(c).

X(c) is a new matrix which is Töplitz in the direction c, i.e.

Xb+c
a+c(c) = Xb

a(c).

We say that X is Töplitz at ∞ if it has a Töplitz-limit in any direction
c.

Example. Consider the equation (13) for the unperturbed Hamiltonian,
i.e.

Ω = diag(|a|2 + V̂ (a)).

Then

R̂(k)b
a =

Ĝ(k)b
a

i(<k, ω> +|a|2 − |b|2 + V̂ (a)− V̂ (b))

and if the small divisors are all 6= 0 then R̂(k) is a well-defined matrix
L × L → C. Replacing a, b by a + tc, b + tc and letting t →∞ we see
two different cases. If <a− b, c>6= 0 then the limit exist and is = 0 as
long as |Ĝ(k)b+tc

a+tc| is bounded. If <a− b, c>= 0 then the limit exist as

long as |Ĝ(k)b+tc
a+tc| has a limit:

R̂(k)b
a(c) =

Ĝ(k)b
a(c)

i(<k, ω> +|a|2 − |b|2)
.

Hence the matrix R̂(k) is Töplitz at ∞ if Ĝ(k) is Töplitz at ∞.

If X : L × L → C is a Töplitz matrix, let us consider the block
decomposition of X into finite-dimensional submatrices

X
[b]∆
[a]∆

= {Xb
a : a ∈ [a]∆, bin[b]∆}.

The dimension of X
[b]∆
[a]∆

varies with a and b, but if (a, b) ∈ DΛ(c), Λ ≥
d2

∆, then (by Lemma 4.2)

X
[b]∆
[a]∆

(tc) =: X
[b+tc]∆
[a+tc]∆

is a well-defined matrix which depends on the parameter t ≥ and has
a limit as t →∞.
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5.2. Töplitz-Lipschitz matrices. We define the supremum-norm

|X|γ = sup
a,b∈L

|X|baeγ|a−b|,

and if X is Töplitz at ∞, the Lipschitz-constant

LipΛ,γX = sup
c∈Zd\0

sup
(a,b)∈DΛ(c)

|Xb
a −Xb

a(c)|max(
|a|
|c|

,
|b|
|c|

)eγ|a−b|

and the Lipschitz-norm

<X >Λ,γ= LipΛ,γX + |X|γ .

We say that the matrix X is Töplitz-Lipschitz if

<X >Λ,γ< ∞
for some Λ, γ.

Example. Consider R̂(k) from the example above. If

(a, b) ∈ DΛ(c), Λ ≥ 3,

then

|a = a′ + tc| ≤ Λ(|a′|+ ||c|)|c| and |b = b′ + tc| ≤ Λ(|b′|+ ||c|)|c|.
By Lemma ?? we have

|a|
|c|

≈ |b|
|c|

≈ t ≥ Λ.

If <a− b, c>6= 0 then∣∣∣R̂(k)b
a − 0

∣∣∣ max(
|a|
|c|

,
|b|
|c|

)eγ|a−b|

≈

∣∣∣∣∣ Ĝ(k)b
a

<a− b, c> +1
t
(<k, ω> +|a′|2 − |b′|2 + V̂ (a)− V̂ (b))

∣∣∣∣∣ eγ|a−b|

which is

≈

∣∣∣∣∣ Ĝ(k)b
a

<a− b, c>

∣∣∣∣∣ eγ|a−b| . |G|γ

if Λ, hence t, is sufficiently large.
If <a− b, c>= 0 then∣∣∣R̂(k)b

a − R̂(k)(c)b
a

∣∣∣ max(
|a|
|c|

,
|b|
|c|

)eγ|a−b|

.

∣∣∣∣ 1

<k, ω> +|a′|2 − |b′|2

∣∣∣∣ LipΛ,γ(Ĝ(k))+

∣∣∣∣ 1

<k, ω> +|a′|2 − |b′|2

∣∣∣∣2 ∣∣∣Ĝ(k)
∣∣∣
γ
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if Λ, hence t, is sufficiently large. Here we have used the decay of V̂ to
bound

|V̂ (a′ + tc)− (̂b′ + tc)|t . 1.

In particular, the matrix R̂(k) is Töplitz-Lipschitz if Ĝ(k) is Töplitz-
Lipschitz.

5.3. A multiplicative formula. In Section 2 of [EK06] we prove the
following multiplicative property.

Proposition 5.1. Let X1, X2 : L×L → C be Töplitz-Lipschitz matri-
ces with exponential decay off-diagonal, i.e.

|Xj|γ < ∞ j = 1, 2, γ > 0.

Then X1X2 is Töplitz-Lipschitz and

<X1X2 >Λ+3,γ′.
Λ2( 1

γ−γ′
)d+1[<X1 >Λ,γ1 |X2|γ2

+ |X1|γ1
<X2 >Λ,γ2 ],

where one of γ1, γ2 is = γ and the other one is = γ′.
Let X1, . . . , Xn : L × L → C be Töplitz-Lipschitz matrices with ex-

ponential decay off-diagonal, i.e.

|Xj|γ < ∞ j = 1, . . . , n, γ > 0.

Then X1 · · ·Xn is Töplitz-Lipschitz and

<X1 · · ·Xn >Λ+3,γ′.
Λ2( 1

γ−γ′
)d+1[<X1 >Λ,γ1 |X2|γ2

+ |X1|γ1
<X2 >Λ,γ2 ],

where one of γ1, γ2 is = γ and the other one is = γ′.

Notice that the second estimate is not an interation of the first esti-
mate.

Linear differential equation. Consider the linear system{
d
dt

X = A(t)X
X(0) = I.

where A(t) is Töplitz-Lipschitz with exponential decay. The solution
verifies

X(t0) = I +
∞∑

n=1

∫ t0

0

∫ t1

0

. . .

∫ tn−1

0

A(t1)A(t2) . . . A(tn)dtn . . . dt2dt1.

Using Proposition 5.1 we get for γ′ < γ

<X(t)− I >Λ+6,γ′.
Λ2( 1

γ−γ′
)|t| exp(cte.( 1

γ−γ′
)d|t|α(t)) sup|s|≤|t| <A(s)>Λ,γ,
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where

α(t) = sup
0≤|s|≤|t|

|A(s)|γ .

6. Estimates of small divisors

6.1. A basic estimate.

Lemma 6.1. Let f : I =]− 1, 1[→ R be of class Cn and∣∣f (n)(t)
∣∣ ≥ 1 ∀t ∈ I.

Then, ∀ε > 0, the Lebesgue measure of {t ∈ I : |f(t)| < ε} is

≤ cte.ε
1
n ,

where the constant only depends on n.

Proof. We have
∣∣f (n)(t)

∣∣ ≥ ε
0
n for all t ∈ I. Since

f (n−1)(t)− f (n−1)(t0) =

∫ t

t0

f (n)(s)ds,

we get that
∣∣f (n−1)(t)

∣∣ ≥ ε
1
n for all t outside an interval of length ≤ 2ε

1
n .

By induction we get that
∣∣f (n−j)(t)

∣∣ ≥ ε
j
n for all t outside 2j−1 intervals

of length ≤ 2ε
1
n . j = n gives the result. �

Remark. The same is true if

max
0≤j≤n

∣∣f (j)(t)
∣∣ ≥ 1 ∀t ∈ I

and f ∈ Cn+1. In this case the constant will depend on |f |Cn+1 .

Let A(t) be a real diagonal N×N -matrix with diagonal components
aj which are C1 on I =]− 1, 1[ and

a′j(t) ≥ 1 j = 1, . . . , N, ∀t ∈ I.

Let B(t) be a Hermitian N ×N -matrix of class C1 on I =]− 1, 1[ with

‖B′(t)‖ ≤ 1

2
∀t ∈ I.

Lemma 6.2. The Lebesgue measure of the set

{t ∈ I : min
λ(t)∈σ(A(t)+B(t))

|λ(t)| < ε}

is

≤ cte.Nε,

where the constant is independent of N .
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Proof. Assume first that A(t) + B(t) is analytic in t. Then each eigen-
value λ(t) and its (normalized) eigenvector v(t) are analytic in t, and

λ′(t) =<v(t), (A′(t) + B′(t))v(t)>

(scalar product in CN). Under the assumptions on A and B, this is
≥ 1− 1

2
. Lemma 6.1 applied to each eigenvalue λ(t) gives the result.

If B is non-analytic we get the same result by analytic approxima-
tion. �

We now turn to the main problem.

6.2. The second Melnikov condition (d = 2). Consider a matrix
X : L × L → C that depends C1 on ω ∈ U . If H(ω) and ∂ωH(ω) are
Töplitz at i for all ω ∈ U then we define

<H >{Λ
U}= sup

U
(<H(ω>Λ, <∂oH(ω>Λ).

If this norm is finite, then, clearly, the convergence to the Töplitz-limits
is uniform in ω both for (H(ω) and ∂ωH(ω).

Proposition 6.3. Let ∆′ > 1 and 0 < κ < 1. Assume that U verifies
(3), that

Ω = diag(|a|2 + V̂ (a) : a ∈ L)

verifies (4) and that H : L × L → C verifies

(16) ‖∂ωH(ω)‖ ≤ 1

4
ω ∈ U.

(‖·‖ is the operator norm.) Assume also that H(ω) and ∂ωH(ω) are
Töplitz at ∞ and NF∆ for all ω ∈ U .

Then there exists a subset U ′ ⊂ U ,

Leb(U \ U ′) ≤
cte. max(∆′, d2

∆, Λ)exp+#A−1(C1+ <H >{Λ
U})

dκ
1
3 C#A−1

1 ,

such that, for all ω ∈ U ′, 0 < |k| ≤ ∆′ and all

(17) dist([a]∆, [b]∆) ≤ ∆′

we have

(18) |<k, ω> +α(ω)− β(ω)| ≥ κ ∀
{

α(ω) ∈ σ((Ω + H)(ω)[a]∆)
β(ω) ∈ σ((Ω + H)(ω)[b]∆).

Moreover the κ-neighborhood of U \ U ′ satisfies the same estimate.
The exponent exp is a numerical constant. The constant cte. depends

on #A and on C2, C3.
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Proof. The proof goes in the following way: first we prove an estimate
in a large finite part of L (this requires parameter restriction); then we
assume an estimate “at ∞” of L and we prove, using the Lipschitz-
property, that this estimate propagate from “∞” down to the finite
part (this requires no parameter restriction); in a third step we have
to prove the assumption at ∞.

Let us notice that it is enough to prove the statement for ∆′ ≥
max(Λ, d2

∆). We let [ ] denote [ ]∆. Let Ω ≈ (∆′)2.

For each k, [a]∆, [b]∆ it follows by Lemma 6.2 the set of ω such that

|<k, ω> +α(ω)− β(ω)| < κ

has Lebesgue measure

. dd
∆

κ

|κ|
C#A−1

1 .

1. Finite part. For the finite part, let us suppose a belongs to

(19) {a ∈ L : |a| . (C1 +
1

κ1

dd
∆ <H >{Λ

U})Ω
2d−1},

3 where κ1 = κ
1
3 = κ

1
d+1 . These are finitely many possibilities and (18)κ

is fulfilled, for all [a] satisfying (19), all [b] with |a− b| . ∆′ and all
0 < |k| ≤ ∆′, outside a set of Lebesgue measure

(20) . (C1 + dd
∆ <H >{Λ

U})
dΩd(2d−1)(∆′)d+#A−1 κ

κd
1

C#A−1
1 .

Let us now get rid of the diagonal terms V̂ (a, ω) = Ωa(ω) − |a|2
which, by (4), are

≤ C2e
−|a|C3 .

We include them into H. Since they are diagonal, H will remain on
normal form. Due to the exponential decay of V̂ , H and ∂ωH will re-
main Töplitz at ∞. The Lipschitz norm gets worse but this is innocent
in view of the estimates. Also the estimate of ∂ωH(ω) gets worse, but if
a is outside (19) then condition (16) remains true with a slightly worse
bound, say

‖∂ωH(ω)‖ ≤ 3

8
, ω ∈ U.

So from now on, a is outside (19) and

Ωa = |a|2.

3In this proof . depends on #A and on C2, C3.
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2. Condition at ∞. For each vector c ∈ Zd such that 0 < |c| . Ωd−1,
we suppose that the Töplitz limit H(c, ω) verifies (18)κ1 for (17) and
for

(21) ([a]− [b]) ⊥ c.

It will become clear in the next part why we only need (18)κ1 and (17)
under the supplementary restriction (21).

3. Propagation of the condition at ∞. We must now prove that for
|b− a| . ∆′ and an a ∈ L outside (19), (18)κ is fulfilled.

By the Corollary 4.5 we get

(a, b) ∈
⋃

0<|c|.Ωd−1

DΩ′(c), Ω′ ≈ Ω

∆′ .

Fix now 0 < |c| . Ωd−1 and (a, b) ∈ DΩ′(c). By Lemma 4.2 – notice
that Ω′ ≥ d2

∆ –

[a + tc] = [a] + tc and [b + tc] = [b] + tc

for t ≥ 0 and

[a]− a, [b]− b ⊥ c.

It follows that

lim
t→∞

H(ω)[a+tc] = H(c, ω)[a] and lim
t→∞

H(ω)[b+tc] = H(c, ω)[b].

The matrices Ω[a+tc] and Ω[b+tc] do not have limits as t →∞. How-
ever, for any (#[a]×#[b])-matrix X,

Ω[a+tc]X −XΩ[b+tc] = Ω[a]X −XΩ[b] + 2t <a− b, c> X

for t ≥ 0, and we must discuss two different cases according to if
< c, b− a >= 0 or not.

Consider for t ≥ 0 a pair of continuous eigenvalues{
αt ∈ σ((Ω + H(ω))[a+tc])
βt ∈ σ((Ω + H(ω))[b+tc])

Case I: <c, b− a>= 0. Here

(Ω + H(ω))[a+tc]X −X(Ω + H(ω))[b+tc]

equals

(|a|2 + H(ω))[a+tc]X −X(|b|2 + H(ω))[b+tc]

– the linear and quadratic terms in t cancel!
By continuity of eigenvalues,

lim
t→∞

(αt − βt) = (α∞ − β∞),
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where {
α∞ ∈ σ((|a|2 + H(c, ω))[a])

β∞ ∈ σ((|b|2 + H(c, ω))[b])

Since [a] and [b] verify (21), our assumption on H(c, ω) implies that
(α∞ − β∞) verifies (18)κ1 .

For any two a, a′ ∈ [a] we have, since a violates (19) and |a−a′| ≤ d∆,

|a′|
|c|

≈ |a|
|c|

.

Hence ∥∥H(ω)[a] −H(c, ω)[a]

∥∥ |a|
|c|

. dd
∆ <H >{Λ

U},

because ∆′ ≥ Λ, and the same for [b]. Recalling that a and, hence, b
violate (19) this implies∥∥H(ω)[d] −H(c, ω)[d]

∥∥ ≤ κ1

4
, d = a, b.

By Lipschitz-dependence of eigenvalues (of Hermitian operators) on
parameters, this implies that

|(α0 − β0)− (α∞ − β∞)| ≤ κ1

2
and we are done.

Case II: <c, b − a>6= 0. We write a = ac + τc, where is the lattice
point on the line a + Rc with smallest norm – if there are two such
points we choose the one with <ac, c>≥ 0.

Since
|a| ≥ Ω′(|ac|+ |c|) |c| ,

it follows that

|ac| ≤
1

Ω′
|a|
|c|

.

Now, α0 − β0 differs from |a|2 − |b|2 by at most

2 ‖H(ω)‖ . dd
∆ <H >{Λ

U},

and

|a|2 − |b|2 = −2τ <c, b− a> −2 <ac, b− a> − |b− a|2 .

Since | <c, b− a> | ≥ 1 it follows that

τ . |α0 − β0|+ |ac|∆′ + (∆′)2 + dd
∆ <H >{Λ

U} .

If now |α0 − β0| . C1∆
′ then |a| ≤ |ac|+ |τ c| is

≤ cte.(|ac|∆′ |c|+ C1(∆
′)2 |c|+ dd

∆ <H >{Λ
U} |c|)
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≤ 1

2
|a|+ cte.(C1(∆

′)2 |c|+ dd
∆ <H >{Λ

U} |c|).

Since a violates (19) this is impossible. Therefore |α0 − β0| & C1∆
′

and (18)κ holds.
Hence, we have proved that (18)κ holds for any{

(a, b) ∈
⋃

0<|c|.Ωd−1 DΩ′(c)

(a, b) ∈ (17)

under the condition at ∞. Therefore (18)κ holds for any (a, b) ∈ (17).

4. Proof of condition at ∞. Let c1 be a primitive vector in 0 < |c1| .
Ωd−1, and let G be the Töplitz limit H(c1). Then G verifies (16), G(ω)
and ∂ωG(ω) are Töplitz at ∞ and

<G>{Λ
U}≤<H >{Λ

U} .

Clearly G(ω) is Hermitian and, by Lemma 4.2, G(ω) and ∂ωG(ω) are
block diagonal over E∆, i.e. G(ω) and ∂ωG(ω) are NF∆. Moreover G
is Töplitz in the direction c1,

Gb+tc1
a+tc1 = Gb

a, ∀a, b, tc1.

We want to prove that G verifies (18)κ1 for all (a, b) ∈ (17) + (21)c1 ,
i.e. for all

|a− b| . ∆′ and ([a]− [b]) ⊥ c1.

Since G is Töplitz in the direction c1 it is enough to show this for

(22) | <a,
c1

|c1|
> | and | <b,

c1

|c1|
> | ≤ |c1|.

But then all divisors are large except finitely many which we can
treat as above. �

7. Function with Töplitz-Lipshitz property (d = 2)

7.1. Töplitz structure of the quadratic differential. The qua-
dratic differential

<ζ,
∂2

∂ζ2
f(0, ϕ, r)ζ>

has the form

<ζ, Aζ>=
∑
a,b∈L

<ζa, A
b
aζb>,

where A : L × L → gl(2, R) is a gl(2, R)-valued matrix. It is uniquely
determined by the symmetry condition

tAb
a = Aa

b .
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Its properties are best seen in the complex variables

(tCAC)b
a =

(
P b

a Qb
a

Qb P̄ b
a

)
.

Consider for example the Schrödinger equation with a cubic poten-
tial, i.e.

F (x, u, ū) = u2ū2.

Then
P a2

a1
=

∑
b1,b2∈A

b1+b2=a1+a2

2
√

rb1rb2e
−i(ϕb1

+ϕb2
)

and
Qb2

a2
=

∑
a1,b1∈A

a1−b1=a2−b2

8
√

ra1rb1e
i(ϕa1−ϕb1

).

In particular {
P is symmetric
Q is Hermitian.

Moreover Q is Töplitz,

Qb+c
a+c = Qb

a ∀a, b, c,

and (since A is finite) its elements are zero at finite distance from
the diagonal. In particular, this matrix is Töplitz-Lipschitz and has
exponential decay off the diagonal a = b. P is also Töplitz-Lipschitz
with exponential decay but in a different sense:

P b−c
a+c = P b

a ∀a, b, c,

and has exponential decay off the “anti-diagonal” {a = −b}.

7.2. Töplitz-Lipschitz matrices L×L → gl(2, R). We consider the
space gl(2, C) of all complex 2 × 2-matrices provided with the scalar
product

Tr(tĀB).

Let

J =

(
0 1
−1 0

)
.

and consider the orthogonal projection π of gl(2, C) onto the subspace

M = CI + CJ.

For a matrix
A : L × L → gl(2, C)

we define πA through

(πA)b
a = πAb

a, ∀a, b.
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We define the supremum-norms

|A|±γ = sup
(a,b)∈L×L

|Ab
a|eγ|a∓b|

and

|A|γ = max(|πA|+γ , |A− πA|−γ ).

A is said to have a Töplitz-limit at ∞ in the direction c if, for all a, b
the two limits

lim
t→+∞

Ab±tc
a+tc ∃ = Ab

a(±, c).

A(±, c) are new matrices which are Töplitz/“anti-Töplitz” in the di-
rection c, i.e.

Ab+c
a+c(+, c) = Ab

a(+, c) and Ab−c
a+c(−, c) = Ab

a(−, c).

If |A|γ < ∞, γ > 0, then

πA(−, c) = (A− πA)(+, c) = 0.

We say that A is Töplitz at ∞ if all Töplitz-limits A(±, c) exist.
We define the Lipschitz-constants

Lip±Λ,γA = sup
c 6=0

sup
(a,b)∈DΛ(c)

|(A− A(±, c))±b
a |max(

|a|
|c|

,
|b|
|c|

)eγ|a∓b|

and the Lipschitz-norm

<A>Λ,γ= max(Lip+
Λ,γπA + |πA|+γ , Lip−Λ,γ(I − π)A + |(I − π)A|−γ ).

We say that A Töplitz-Lipschitz if <A>Λ,γ< ∞ for some Λ, γ. The
most important property is a product formula.

Proposition 7.1. Let A1, . . . , An : L × L → C be Töplitz-Lipschitz
matrices with exponential decay off-diagonal, i.e.

|Aj|γ < ∞ j = 1, . . . , n, γ > 0.

Then A1 · · ·An is Töplitz-Lipschitz and

<A1 · · ·An >Λ+6,γ′≤
(cte.)nΛ2( 1

γ−γ′
)(n−1)d+1[

∑
1≤k≤n

∏
1≤j≤n

j 6=k
|Aj|γj

<Ak >Λ,γk
],

where all γ1, . . . , γn are = γ except one which is = γ′.



32 L. H. ELIASSON AND S. B. KUKSIN

7.3. Functions with Töplitz-Lipschitz property. Let Oγ(σ) be
the set of vectors in the complex space l2γ(L, C) of norm less than σ,
i.e.

Oγ(σ) = {ζ ∈ CL × CL : ‖ζ‖γ < σ}.
Our functions f : O0(σ) → C will be defined and real analytic on

the domain O0(σ). 4 Its first differential

l20(L, C) 3 ζ̂ 7→<ζ̂,
∂f

∂ζ
(ζ)>

defines a unique vector ∂f
∂ζ

(ζ) in l20(L, C), and its second differential

l20(L, C) 3 ζ̂ 7→<ζ̂,
∂2f

∂ζ2
(ζ)ζ̂>

defines a unique matrix ∂2f
∂ζ2 (ζ) L × L → gl(2, C) which is symmetric,

i.e.
tAb

a = Aa
b .

We say that f is Töplitz at ∞ if the matrix ∂2f
∂ζ2 (ζ) is Töplitz at ∞

for all ζ ∈ O0(σ). We define the norm

[f ]Λ,γ,σ

to be the smallest C such that
|f(ζ)| ≤ C ∀ζ ∈ O0(σ)
‖∂ζf(ζ)‖γ′ ≤

1
σ
C ∀ζ ∈ Oγ′(σ), ∀γ′ ≤ γ,

<∂2
ζ f(ζ)>Λ,γ′≤ 1

σ2 C ∀ζ ∈ Oγ′(σ), ∀γ′ ≤ γ.

7.4. A short remark on the proof of Theorem A. Our Hamiltoni-
ans are functions of ζ = (ξ, η), r, ϕ and ω. We measure these functions
in a norm given by

• the [ ]Λ,γ,σ-norm for ζ
• the sup-norm over a complex domain |r| < µ and |=ϕ| < ρ
• the C1-norm in ω.

In this norm we estimate the solution s, k of the homological equation
(8) (described in Section 3.3) and the transformed Hamiltonian

h′ + f ′ = (h + f) ◦ Φ1,

where Φ1 is the time-one-map of the Hamiltonian vector field of s,
In order to carry this out we study the behavior of this norm under

truncations, Poisson brackets, flows and compositions.

4The space l2γ(L, C) is the complexification of the space l2γ(L, R) of real sequences.
“real analytic” means that it is a holomorphic function which is real on O0(σ) ∩
l2γ(L, R).
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