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Abstract
It has been known since the 60’s that many Hamiltonian systems

close to integrable are stable for many for all the time, for all the points
are stable for large time, but also that they are not stable for all the
points for all the time.

The goal of the lectures is to give a geometric characterization of
some mechanisms of instability. Other variational approaches are given
by Prof. Cheng.

We plan to introduce several geometric objects that have easy to
ascertain long term behavior and, then explain how the different inter-
actions between these objects can lead to instability and many other
effects.

• Some basic objects:
– KAM tori
– Normally hyperbolic manifolds
– Normally hyperbolic laminations

• Some classical tools:
– Averaging theory
– Melnikov theory

• Some more recent tools:
– The scattering map
– The separatrix map
– Correctly aligned windows

• Putting it all together.
– Some basic examples
– Estimates on time, Hausdorff dimension
– Some tentative statistical properties
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