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Abstract

We discuss the initial value problem for the periodic KdV equation,

ut = −uxxx + 6uux, u|t=0 = u0, (1)

where all functions are considered to be defined on T = R/Z. Accord-
ing to one of the first results in this direction due to Bona and Smith
[1] this initial value problem is globally well-posed on Hm = Hm(T, R)
with m ≥ 2 in the sense of Hadamard: solutions exist for all time, are
unique, and depend continuously on their initial values.

Here we will discuss high regularity solutions. These are solutions in
a general class of weighted Sobolev spaces Hw within H0, that encom-
pass analytic and Gevrey spaces, among others, as well as the spaces
Hm. One of the main results is the following.

Theorem The periodic KdV equation is globally uniformly well-
posed in every space Hw with a subexponential weight w. That is, for
each initial value u in Hw the associated Cauchy problem has a global
solution in Hw , giving rise to a continuous flow R×Hw → Hw which
is even uniformly continuous on bounded subsets of Hw.



These results are based on two observations. First, the periodic
KdV equation is an infinite-dimensional, integrable Hamiltonian sys-
tem, which even admits global Birkhoff coordinates (xn, yn)n≥1. Sec-
ond, the KdV flow defines an isospectral deformation among potentials
of Hill operator −d2/dx2 + u, and the spectral asymptotics of u are
closely connected with the asymptotics of (xn, yn) on one hand, and
spectral asymptotics on the other hand. For a comprehensive list of
references see in particular [2].
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