On the Periodic KdV Equation in Weighted Sobolev Spaces

Thomas Kappeler & Jürgen Pöschel

Montreal, June 2007

1

Results

Well Posedness of KdV

Initial value problem for KdV equation

$$u_t = -u_{xxx} + 6uu_x, \qquad u\Big|_{t=0} = u_0,$$

with periodic boundary conditions: $\mathcal{H}^r = H^r(\mathbb{T}, \mathbb{R}), \mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Notions

»Globally well posed in \mathcal{H}^r « global solution map

$$\mathbb{R} \times \mathcal{H}^r \to \mathcal{H}^r$$
, $(t, u_0) \mapsto \varphi(t, u_0)$

exists and is continuous.

»Globally uniformly well posed in \mathcal{H}^r « solution map is uniformly continuous on "compact \times bounded" subsets of $\mathbb{R} \times \mathcal{H}^r$.

Known Results

First results - in 70's

Temam; Sjöberg; Bona & Smith: in Sobolev spaces \mathcal{H}^r , r = 2,...

Low regularity solutions - since 90's

Bourgain; Kenig, Ponce & Vega; Colliander, Keel, Staffilani, Takaoka & Tao; Kappeler & Topalov:

KdV globally well posed in \mathcal{H}^r *for* $r \ge -1$, *and uniformly so for* $r \ge -1/2$.

High regularity solutions - since 00's

Bona; Grujic & Kalisch : in Gevrey spaces, analytic spaces, $weighted\ Sobolev\ spaces\dots$

Premre

Dremme

Weighted Sobolev Spaces

Weights

$$w: \mathbb{Z} \to \mathbb{R}, n \mapsto w_n$$

symmetric, normalized, and submultiplicative:

$$w_n \geqslant 1$$
, $w_{-n} = w_n$, $w_{n+m} \leqslant w_n w_m$.

Norm

$$\|u\|_w^2 = \sum_{n\in\mathbb{Z}} w_n^2 |u_n|^2, \qquad u = \sum_{n\in\mathbb{Z}} u_n e^{2\pi i n x}.$$

Spaces

$$\mathcal{H}^{w} = \{ u \in L^{2} : ||u||_{w} < \infty \}.$$

■ Examples of Weighted Sobolev Spaces

With

$$\langle n \rangle = 1 + |n|, \quad r \ge 0, \quad a > 0, \quad 0 < \sigma < 1$$

then

- $w_n = \langle n \rangle^r$: Sobolev spaces $\mathcal{H}^r = H^r(\mathbb{T}, \mathbb{R})$
- $w_n = \langle n \rangle^r e^{a|n|}$: Abel spaces $\mathcal{H}^{r,a}$
- $w_n = \langle n \rangle^r e^{a|n|^{\sigma}}$: Gevrey spaces $\mathcal{H}^{r,a,\sigma}$ Note

$$\mathcal{H}^{r,a}=\mathcal{H}^{r,a,1} \subsetneq \mathcal{H}^{r,a,\sigma} \subsetneq \mathcal{H}^{r,a,0}=\mathcal{H}^r.$$

Results

Theorem 1 Periodic KdV is globally uniformly well posed in

- Sobolev spaces \mathcal{H}^r , $r \ge 1$,
- Gevrey spaces $\mathcal{H}^{r,a,\sigma}$, $0 < \sigma < 1$,
- every space \mathcal{H}^w with strictly subexponential weight w. \times

Subexponential:

$$\lim_{n \to \infty} \frac{\log w_n}{n} = 0, \qquad \frac{\log w_n}{n} \setminus 0 \quad \text{eventually}$$

That is: for each inital value u_0 in such a \mathcal{H}^{w} the Cauchy problem has a global solution in \mathcal{H}^{w} , and the associated flow is uniformly continuous on bounded subset of \mathcal{H}^{w} .

More Results

Theorem 2 Periodic KdV is "almost" globally uniformly well posed in ever space \mathcal{H}^{w} with an exponential weight w. \rtimes

That is: for each bounded subset $\mathcal{B}\subset\mathcal{H}^w$ there is $0<\rho\leqslant 1$ so that we have a continuous flow

$$\mathbb{R} \times \mathbb{B} \to \mathcal{H}^{w^{\rho}}, \quad (t, u_0) \mapsto \varphi^t(u_0).$$

Theorem 3 These well posedness results also hold for every other KdV equation in the KdV hierarchy. ⋈

2

Step 1: Birkhoff Coordinates

KdV as Hamiltonian System

Hamiltonian

$$\frac{\partial u}{\partial t} = \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial H_{\mathrm{KdV}}}{\partial u}, \qquad H_{\mathrm{KdV}} = \int_{\mathbb{T}} \left(\frac{1}{2}u_x^2 + u^3\right) \mathrm{d}x$$

Phase space

$$\mathcal{H}_0^m = H^m(\mathbb{T}, \mathbb{R}) \cap \{ \int_{\mathbb{T}} u = 0 \}, \quad m \ge 1.$$

Poisson bracket

$${F,G} = \int_{\mathbb{T}} \frac{\partial F}{\partial u} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial G}{\partial u} \, \mathrm{d}x,$$

nondegenerate on \mathcal{H}_0^1 . Then

$$u_t = \{u, H_{KdV}\}.$$

STEP 1: BIRKHOFF COORDINATES

KdV as Integrable System

Well known

KdV is integrable Hamiltonian system. Indeed, it admits

Birkhoff coordinates

that is, cartesian action angle coordinates.

Sequence spaces

$$h_*^{w} = \{z = (x_n, y_n)_{n \ge 1} : ||z||_{w_*} < \infty\},$$

where

$$||z||_{w_*}^2 = \sum_{n\geq 1} n w_n^2 (|x_n|^2 + |y_n|^2).$$

Write h_*^m for Sobolev weights $w_n = n^m$.

Birkhoff coordinates

Theorem A [Kappeler & P] There exists a bi-analytic, symplectic diffeo

$$\Omega: \mathcal{H}_0^0 \to h_*^0$$
,

such that KdV-Hamiltonian becomes function of actions:

$$H_{KdV} \circ \Omega^{-1} = H(I_1, I_2, ...), \qquad I_n = \frac{1}{2}(x_n^2 + y_n^2).$$

Moreover, for each $m \ge 1$,

$$\Omega: \mathcal{H}_0^m \to h_*^m. \times$$

symplectic: Gardner bracket → standard bracket.

Invariant tori Every orbit of KdV sits on invariant torus:

$$T_I = \prod_{n \ge 1} S_{I_n} = \prod_{n \ge 1} \{x_n^2 + y_n^2 = 2I_n\},$$

circling each circle with constant speed:

$$\psi^t$$
: $\dot{I}_n = 0$, $\dot{\theta}_n = \omega_n = H_{I_m}(I_1, I_2, ...)$.

KdV well-posed in \mathcal{H}_0^m

$$\begin{split} u \in \mathcal{H}_0^m & \xrightarrow{\Omega} & (x,y) \in h_*^m \\ \phi^t \Big| & & \Big| \psi^t \\ \phi^t(u) \in \mathcal{H}_0^m & \xrightarrow{\Omega^{-1}} & \psi^t(x,y) \in h_*^m \end{split}$$

■ Extension 1 for Ω : $\mathcal{H}_0^0 \to h_*^0$

Theorem B For each strictly subexponential weight w,

$$\Omega \mid_{\mathcal{H}_0^w} : \mathcal{H}_0^w \to h_*^w$$

is a bi-analytic diffeomorphism onto. ×

Corollary KdV is well posed in \mathcal{H}^w , w strictly subexponential. \times

$$\begin{aligned} u &\in \mathcal{H}_0^w & \xrightarrow{\Omega} & (x,y) \in h_*^w \\ \phi^t & \downarrow & \psi^t \\ \phi^t(u) &\in \mathcal{H}_0^w & \xrightarrow{\Omega^{-1}} & \psi^t(x,y) \in h_*^w \end{aligned}$$

■ Extension 2 for Ω : $\mathcal{H}_0^0 \to h_*^0$

Theorem C Given an exponential weight w, for each bounded subset $B \subset h_*^w$ there is $0 < \rho \le 1$ so that

$$\Omega^{-1}(B) \subset \mathcal{H}_0^{w^{\rho}}$$
. \times

For example, for $w_n = e^{an}$,

$$(w^{\rho})_n = w_n^{\rho} = e^{\rho a n}$$
.

Corollary KdV is **almost* well posed in \mathcal{H}^w , when w is exponential. \times

3

Step 2: Regularity

Line of argument

Theorem B,

$$\Omega|_{\mathcal{H}_{0}^{\mathcal{W}}}: \mathcal{H}_{0}^{\mathcal{W}} \to h_{*}^{\mathcal{W}},$$

and Theorem C based on two observations:

- asymptotics of Birkhoff co's (x, y) of u
- \sim asymptotics of spectral gaps y_n of u
- regularity of u

Spectral Gaps of u

Hill's equation with potential u

$$-y'' + uy = \lambda y, \qquad y(x+2) = y(x).$$

periodic spectrum

$$\lambda_0(u) < \lambda_1^-(u) \leq \lambda_1^+(u) < \lambda_2^-(u) \leq \dots$$

spectral gaps

$$\gamma_n(u) = \lambda_n^+(u) - \lambda_n^-(u).$$

Reminder KdV flow is isospectral deformation:

$$\gamma_n(\varphi^t(u)) = \gamma_n(u), \quad t \in \mathbb{R}.$$

STEP 2: REGULARITY

Asymptotics of Birkhoff co's

Fact about actions of KdV

$$0 \neq 8\pi \frac{nI_n}{y_n^2} \sim 1, \qquad I_n = \frac{1}{2}(x_n^2 + y_n^2).$$

Hence

$$nI_n \sim n(x_n^2 + y_n^2) \sim y_n^2$$

and thus

- asymptotics of Birkhoff co's (x, y) of u
- \longrightarrow asymptotics of spectral gaps y_n of u

... at least in the real case.

Asymptotics of spectral gaps, I

Theorem I [Marčenko & Ostrowskii, ..., P] For subexponential or exponential weight w:

$$u \in \mathcal{H}^w \Rightarrow (y_n(u)) \in h^w$$
. \times

Corollary Birkhoff map Ω maps \mathcal{H}_0^w into h_*^w . \rtimes

Because

$$u \in \mathcal{H}^{w} \Rightarrow (y_n) \in h^{w}$$

 $\Rightarrow (nI_n) \in h^{w}$
 $\Rightarrow (x_n, y_n) \in h_*^{w}$

Asymptotics of spectral gaps, II

Theorem II [Diakov & Mityagin, P] For strictly subexponential weight w:

$$(\gamma_n(u)) \in h^w \Rightarrow u \in \mathcal{H}^w.$$

Corollary Birkhoff map Ω maps \mathcal{H}_0^w onto h_*^w . \rtimes

Because

$$\begin{split} (x,y) &\in h_{w}^{w} \subset h_{0}^{0} \\ \Rightarrow & u = \Omega^{-1}(x,y) \in \mathcal{H}_{0}^{0} \quad \textit{with} \quad y_{n}^{2} \sim n(x_{n}^{2} + y_{n}^{2}) \\ \Rightarrow & (y_{n}(u)) \in h^{w} \\ \Rightarrow & u \in \mathcal{H}^{v} \end{split}$$

Summary of Subexponential Case

Summary Let w be a strictly subexponential weight, such as Gevrey or Sobolev. Then the Birkhoff coordinate map Ω maps \mathcal{H}_0^{∞} into and onto h_*^{∞} . \bowtie

In fact,

$$\Omega: \mathcal{H}_0^w \to h_*^w$$

is a bi-analytic diffeomorphism.

But this requires to consider complex potentials, too ...

Problem in Exponential Case

Problem For instance for $w_n = \langle n \rangle^r e^{an}$:

$$(\gamma_n(u)) \in h^{r,a} \implies u \in \mathcal{H}^{r,a}.$$

Example Finite gap potentials with poles: $\gamma_n = 0$, $n \ge N \Rightarrow$

$$(\gamma_n(u)) \in h^{r,a}$$
 for all $a > 0$,

but u not in $\mathcal{H}^{r,a}$ for all a > 0.

Result in Exponential Case

Theorem III [*Trubowitz*; *P*] For exponential weight w:

$$(\gamma_n(u)) \in h^w \Rightarrow u \in \mathcal{H}^{w^\rho},$$

where $0 < \rho \le 1$ depends on $||u||_{L^2}$ and $\sum_n w_n^2 \gamma_n^2$.

Corollary

$$B \subset h_*^w$$
 bounded $\Rightarrow \Omega^{-1}(B) \subset \mathcal{H}_0^{w^{\rho}}, \quad 0 < \rho \leq 1.$

Corollary For each bounded subset $\mathcal{B} \subset \mathcal{H}_0^w$ there is $0 < \rho \leqslant 1$ such that there is a KdV flow

$$\mathbb{R} \times \mathbb{B} \to \mathcal{H}_0^{w^{\rho}}, \quad (t, u_0) \mapsto \varphi^t(u_0). \quad \times$$

4

Application

5

The End

Perturbed KdV

Perturbation

$$H = H_{KdV} + \varepsilon K$$
, $X_K = \frac{d}{dx} \frac{\partial K}{\partial u} \in \mathcal{H}^w$.

KdV well-posed in $\mathcal{H}^{w} \Rightarrow$

perturbation problem entirely within \mathcal{H}^{w} .

KAM theory within Hw

In the proof in »KdV & KAM« by Kappeler & P, replace weights

$$e^{a|n|}$$
 by w_n .

This answers a question raised by Jürgen Moser many years ago.