Hill's Potentials in Weighted Sobolev Spaces and their Spectral Gaps

Jürgen Pöschel

Montreal, June 2007

Results

Hill's equation

Hill's operator

$$L = -\frac{d^2}{dx^2} + q$$
 on $L^2[0,1]$

with periodic or anti-periodic bc and $real L^2$ -potential q.

Spectrum Real, pure point and unbounded:

$$\lambda_0(q) < \lambda_1^-(q) \le \lambda_1^+(q) < \lambda_2^-(q) \le \dots,$$

asymptotic behaviour

$$\lambda_n^{\pm}(q) = n^2 \pi^2 + [q] + \ell_n^2.$$

Gap lengths

$$\gamma_n(q)=\lambda_n^+(q)-\lambda_n^-(q)=\ell_n^2.$$

2

■ Gap lengths *** Regularity of the potential?

Classic answers Hochstadt (1963)

$$q \in C^{\infty}(S^1, \mathbb{R}) \iff \gamma_n(q) = O(n^{-k}) \text{ for all } k \ge 0.$$

Marčenko & Ostrowski (1975)

$$q \in H^k(S^1,\mathbb{R}) \ \Leftrightarrow \ \sum_{n \geq 1} n^{2k} \gamma_n^2(q) < \infty.$$

Trubowitz (1977)

$$q \in C^{\omega}(S^1, \mathbb{R}) \iff \gamma_n(q) = O(e^{-an}) \text{ for some } a > 0.$$

More recent answers Sansuc & Tkachenko (96), Kappeler & Mityagin (99), Diakov & Mityagin (92.03)

for Gevrey & complex potentials, weighted Sobolev spaces ...

Weighted Sobolev Spaces

Weights

$$w: \mathbb{Z} \to \mathbb{R}, n \mapsto w_n$$

symmetric, normalized, and submultiplicative:

$$w_n \geqslant 1$$
, $w_{-n} = w_n$, $w_{n+m} \leqslant w_n w_m$.

Norm

$$||u||_{w}^{2} = \sum_{n \in \mathbb{Z}} w_{n}^{2} |u_{n}|^{2}, \qquad u = \sum_{n \in \mathbb{Z}} u_{n} e^{2\pi i n x}.$$

Spaces

$$\mathcal{H}^{w} = \{ u \in L^{2} : ||u||_{w} < \infty \},$$
$$h^{w} = \{ u \in \ell^{2} : ||u||_{w} < \infty \}.$$

■ Examples of Weighted Sobolev Spaces

With

$$\langle n \rangle = 1 + |n|$$
, $r \ge 0$, $a > 0$, $0 < \sigma < 1$

let

- $w_n = \langle n \rangle^r$: Sobolev spaces \mathcal{H}^r
- $w_n = \langle n \rangle^r e^{a|n|}$: Abel spaces $\mathcal{H}^{r,a}$
- $\mathbf{w}_n = \langle n \rangle^r e^{a|n|^{\sigma}}$: Gevrey spaces $\mathcal{H}^{r,a,\sigma}$

Note

$$\mathcal{H}^{r,a} = \mathcal{H}^{r,a,1} \subset \mathcal{H}^{r,a,\sigma} \subset \mathcal{H}^{r,a,0} = \mathcal{H}^r$$

The Forward Result

Forward Theorem [Kappeler & Mityagin, P]

For any submultiplicative weight w,

$$q\in\mathcal{H}^w\ \Rightarrow\ \gamma(q)\in h^w.\qquad \rtimes$$

Detailed estimate

For $q \in \mathcal{H}^w$,

$$\sum_{n \ge N} w_n^2 |y_n(q)|^2 \le 9||T_N q||_w^2 + \frac{576}{N}||q||_w^4$$

for $N \ge 4||q||_{\mathcal{W}}$, where $T_N q = \sum_{|n| \ge N} q_n e^{2n\pi ix}$.

RESULTS

■ Converse Results

No one-to-one converse for exponential weights:

$$\lim_{n\to\infty}\frac{\log w(n)}{n}>0,$$

because finite-gap potentials need not be entire functions.

One-to-one converse for strictly subexponential weights:

$$\lim_{n\to\infty}\frac{\log w(n)}{n}=0$$

and

$$\frac{\log w(n)}{n} \setminus 0$$
 eventually

Examples: all non-exponential weights above

■ Converse Results ...

Converse Theorem Suppose $q \in \mathcal{H}^o$ is real and

$$\gamma(q) \in h^w$$
.

If w is strictly subexponential, then $q \in \mathcal{H}^w$. If w is exponential, then q is real analytic. \bowtie

Corollary If q is real and w strictly subexponential, then

$$q \in \mathcal{H}^w \Leftrightarrow \gamma(q) \in h^w$$
. \times

2

Reduction

■ Fourier Block Decomposition [Kappeler & Mityagin]

Hill's equation $-\gamma'' + q\gamma = \lambda \gamma$ for $\lambda \sim n^2 \pi^2$ large:

$$-v'' \sim n^2 \pi^2 v \sim v \sim e^{\pm n\pi i x}$$
.

Splitting

$$H^{w} = \mathcal{P}_{n} \oplus \mathcal{Q}_{n}$$

= span { $e^{\pm n\pi ix}$ } \oplus span { $e^{\pm k\pi ix}$: $|k| \neq n$ },

and

$$v = u + v$$
, $u \in \mathcal{P}_n$, $v \in \mathcal{Q}_n$.

Decomposition of $y'' + \lambda y = qy$

(P)
$$A_{\lambda}u = P_nV(u+\nu),$$
 $A_{\lambda} = D^2 + \lambda,$

(Q)
$$A_{\lambda} v = Q_n V(u + v),$$
 $V = q.$

Q-Equation $A_{\lambda}v = Q_nV(u+v)$

For $\lambda \sim n^2 \pi^2$, A_λ has compact inverse on

$$Q_n = \operatorname{span} \left\{ e^{\pm k\pi i x} : |k| \neq n \right\}.$$

Lemma For $q \in H^w$ and $\lambda \in U_n = \{ |\lambda - n^2\pi^2| < 12n \}$,

$$||A_{\lambda}^{-1}Q_nV||_{\mathcal{W}} \leqslant \frac{2}{n}||q||_{\mathcal{W}}.$$

Solution of Q-equation

$$v = A_{\lambda}^{-1} Q_n V u + \dots, \qquad n \geqslant 4||q||_{w}.$$

■ P-Equation $A_{\lambda}u = P_nV(u+v)$

or
$$A_{\lambda}u = P_{n}W_{n}u, \qquad W_{n} = V + VA_{\lambda}^{-1}Q_{n}V + \dots ,$$

$$S_{n}u = 0, \qquad S_{n} = A_{\lambda} - P_{n}W_{n}.$$

Two-dimensional equation:

$$S_n = \begin{pmatrix} \lambda - \sigma_n - a_n & c_n \\ c_{-n} & \lambda - \sigma_n - a_n \end{pmatrix}, \qquad \sigma_n = n^2 \pi^2.$$

Lemma λ periodic eigenvalue near σ_n iff $\det S_n = 0$. \rtimes

Estimates For $q \in H^w$ and $\lambda \in U_n = \{ |\lambda - n^2\pi^2| < 12n \}$, $|a_n - q_0|, |w_n|c_n - q_n| \le \frac{4}{n} ||q||_w^2$.

3

Proofs

Forward Problem: Gap Estimates

Reduced system

$$S_n = \begin{pmatrix} \lambda - \sigma_n - a_n & c_n \\ c_{-n} & \lambda - \sigma_n - a_n \end{pmatrix}, \qquad \sigma_n = n^2 \pi^2.$$

Determinant

$$\det S_n = (\lambda - \sigma_n - a_n)^2 - |c_n|^2,$$

has two real roots $\rho_{1,2}$ with distance $|c_n|$.

Result

$$|\gamma_n| = |\rho_1 - \rho_2| < |c_n| < q_n + \frac{||q||_w^2}{nw_n}.$$

This proves Forward Theorem.

■ Converse Problem: Easy Part

Geometric step Starting with gap lengths,

$$|c_n| \leqslant |\gamma_n|, \quad n \gg 1.$$

Analytic step

$$c_n = a_n + O_2(\dots, a_{\nu}, \dots).$$

This is a

- \blacksquare nonlinear system in Fourier coefficients of q,
- \blacksquare provides bound of q_n in terms of c_n
- \blacksquare and thus γ_n .

See Mityagin et al.

Adapted Fourier Coefficients

Diagonal of

$$S_n = \begin{pmatrix} \lambda - \sigma_n - a_n & c_n \\ c_{-n} & \lambda - \sigma_n - a_n \end{pmatrix}, \quad \sigma_n = n^2 \pi^2,$$

vanishes at unique point $\alpha_n(q) = \sigma_n + a_n + \dots$

Define adapted Fourier coefficients

(A)
$$p_n = c_n(\alpha_n(q), q) = q_n + ...$$

Observation For $n > ||q||_{L^2}$, the quantity p_n

- is defined for $q \in L^2$, not only $q \in H^w$,
- is analytic function of $q \in L^2$,
- \blacksquare inherits »regularity« of q in view of (A).

■ Fourier Coefficient Map

On

$$B_m^0 = \left\{ q \in L^2 : ||q||_0 < m \right\} \quad \ni \quad q = \sum q_n e^{n\pi i x}$$

define

$$\Phi_m: B_m^0 \rightarrow L^2$$

by replacing q_n by p_n for |n| > m.

Proposition Φ_m is a near identity diffeo on B_m^0 , such that for any submultiplicative weight w.

$$\Phi_m | B_m^w, \quad B_m^w = \{ q \in H^w : ||q||_w < m \} \subset B_m^0$$

is also a real analytic diffeo onto its image in H^w , which contains $B_{m/2}^w$. \bowtie

»Abstract« Regularity Argument

Given $q \in L^2$ with asymptotics of its y_n . Then we know:

$$y_n \times c_n \times p_n$$
, $n \gg 1$.

Choosing $m \ge 8||q||_0$ we then have $q \in B_m^0$ and

$$p=\Phi_m(q)\in H^w\subset L^2.$$

If we also had

(B)
$$||p||_{w} \le m/2$$
, i.e. $\Phi_{m}(q) \in B_{m/2}^{w} \subset \Phi_{m}(B_{m}^{w})$,

then, by inverse function theorem,

$$a = \Phi_m^{-1}(p) \in H^w$$
. OED.

So we need estimate (B), an a priori bound ...

■ Getting Estimate for $p = \Phi_m(q)$

Want

$$||p||_{w} < m/2.$$

Have

$$p \in H^{w} \Rightarrow ||p||_{w} < \infty,$$

 $p \in B_{m/6}^{0} \Rightarrow ||p||_{0} < m/6,$

by choosing m appropriately.

Idea Modify the weight w to w_{ε} , so that

- asymptotics not affected,
- lower order terms almost »no weight«, as in L^2 .

■ Modified Weights, Subexponential Case

Choose

$$w_{\varepsilon,n} = w_n \wedge e^{\varepsilon |n|} \le \begin{cases} w_n, & n \text{ large} \\ e^{\varepsilon |n|}, & n \text{ small} \end{cases}$$

Choosing N large and then ε small:

$$||T_N p||_{w_{\varepsilon}} \le ||T_N p||_{w} \le ||p||_{0},$$

 $||p - T_N p||_{w_{\varepsilon}} \le 2||p||_{0}.$

Result

$$||p||_{w_{\varepsilon}} \leq 3||p||_{o} \leq m/2.$$

Conclusion $q = \Phi_m^{-1}(p) \in H^{w_{\varepsilon}} = H^w$.

Modified Weights, Exponential Case

Choose again

$$w_{\varepsilon,n} = w_n \wedge e^{\varepsilon |n|}$$

But this time, for ε sufficiently small,

$$w_{\varepsilon,n} = e^{\varepsilon |n|}$$
, all n

Conclusion

$$q = \Phi_m^{-1}(p) \in H^{w_{\varepsilon}} = H^{0,\varepsilon} \supseteq H^{w}$$
.

Complex Potentials

For complex L^2 -potential a

- Hill's operator no longer self-adjoint,
- but same spectral asymptotics.

Lexicographic ordering

$$\lambda_0(q) \prec \lambda_1^-(q) \leqslant \lambda_1^+(q) \prec \cdots \prec \lambda_n^-(q) \leqslant \lambda_n^+(q) \prec \cdots$$

Gap lenaths

$$\gamma_n(q) = \lambda_n^+(q) - \lambda_n^-(q) = \ell_n^2$$

now complex valued.

But no longer sufficient for regularity results ...

Complex Potentials ...

Gasymov: any L^2 -potential of the form

$$q = \sum_{n \ge 1} q_n e^{2n\pi i x} = \sum_{n \ge 1} q_n z^n \bigg|_{z = e^{2\pi i x}}$$

is a o-gap potential.

In the complex case, the gap sequence therefore need not contain *any* information about the regularity of the potential.

Additional spectral data are required ...

PROOFS

Additional Spectral Data

Sansuc & Tkachenko: Consider size of spectral triangles

$$\Gamma_n = |\gamma_n| + |\delta_n|,$$

where for example

$$\delta_n = \mu_n - \tau_n = \mu_n - \frac{\lambda_n^+ + \lambda_n^-}{2}.$$

Converse Theorem II Suppose $q \in \mathcal{H}^o$ is real or complex and

$$\Gamma(q) \in h^w$$
.

If w is strictly subexponential, then $q \in \mathcal{H}^w$. If w is exponential, then q is real analytic. \bowtie 4

The End