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Abstract

In this set of lectures I will describe how one can use ideas of dynam-
ical systems theory to give a quite complete picture of the long time
asymptotics of solutions of the two-dimensional Navier-Stokes equa-
tion. I will discuss the existence and properties of invariant manifolds
for dynamical systems defined on Banach spaces and review the theory
of Lyapunov functions, again concentrating on the aspects of the the-
ory most relevant to infinite-dimensional dynamics. I will then explain
how one can apply both of these techniques to the two-dimensional
Navier-Stokes equation to prove that any solution with integrable ini-
tial vorticity will will be asymptotic to a single, explicitly computable
solution known as an Oseen vortex. If time permits I will describe cer-
tain extensions of this theory to the three-dimensional Navier-Stokes
equations.
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